
NOTES FOR 27 OCT (FRIDAY)

1. Recap

(1) Wrote a basis for Ωk. Prove that a bunch of 1-forms are independent if and only if their
wedge product is non-zero. Also proved that for top order forms, if you change a basis, then
you pick up a factor of the determinant.

(2) Defined orientation of vector spaces and orientation-preserving maps. Proved that this is the
same as providing a top-order alternating tensor.

(3) Defined orientation for vector bundles. Proved that it is equivalent to being able to trivialise
using transition functions that have positive determinant.

2. A digression - Orientation

If V = TM , then

Definition 2.1. A manifold M is said to be orientable if TM is orientable. Equivalently, if there

exists a choice of connected coordinate charts (xα, Uα) covering M so that det(x
i
α

xjβ
) > 0 ∀ α, β, then

M is said to be orientable with the orientation given by the charts. A diffeomorphism f : M → N
between oriented manifolds is said to be orientation preserving (reversing) if f∗ : TpM → Tf(p)N is
orientation preserving (reversing) for all p. Equivalently, if we choose charts compatible with the
given orientations, then det(Df) > 0.

Here are examples and counterexamples :

(1) The trivial bundle is orientable. Hence the n-torus S1 × S1 . . . is an orientable manifold.
(2) We will prove later on that the sphere Sn is orientable. More generally, any hypersurface

f−1(0) ⊂ Rn+1 is orientable if ∇f(p) 6= 0 ∀ p ∈ f−1(0). (Essentially, the orientation is given
by either the outward or inward pointing normal N , i.e., a basis e1, . . . , en in the TpS is
an orientation if [N(p), e1, . . . , en] is the standard orientation in Rn+1. Proving this varies
smoothly is not too hard but it is cleaner to do it later using differential forms.)

(3) The Möbius line bundle over S1 is not orientable. Indeed, if it had an orientation µ, then
define a nowhere vanishing smooth section s as s(p) ∈ µp ∩ {1,−1}. It is easy to see (using
coordinates) that this varies smoothly.

(4) The open infinite Möbius strip as a manifold is not orientable. Note that the central circle
is orientable using the vector field X = ∂

∂θ . So, define an orientation ν on the Möbius line
bundle by saying that vp ∈ νp ⇔ [vp, X(p)] ∈ µp. It is easy to see (as above) that it varies
smoothly.

(5) RP2 is not orientable because it contains the Möbius strip (so any compatible set of coordinate
charts would have covered the Möbius strip too but we know that cannot happen). (In fact,
this is the case for all even dimensional real projective spaces but a clean proof of this can
be given using differential forms which we will do later.)

(6) RP3 is orientable. Use the orientation inherited from S3 via the antipodal map p → [p].
This is valid because I claim that this map, when written in coordinates, has a positive
determinant for its derivative. (Similar for odd real projective spaces.)
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2 NOTES FOR 27 OCT (FRIDAY)

3. Differential forms on manifolds

Suppose M is a manifold. Then, we can form the bundle Ωk(M) by first considering it as a

set Ωk(M) = ∪p∈MΩk
p = T ∗pM ∧ T ∗pM . . ., i.e., at every point, take the rank-k alternating tensor

space. As usual, we give it a topology and a vector bundle structure over M by taking coordi-
nate charts (x, U) on M , and trivialising Ωk(U) by using dxi1 ∧ dxi2 . . . (where 1 ≤ i1 < i2 . . .).
A smooth section ω of Ωk(M) is called a differential form (field). Locally, it is of the form,
ω = ωi1i2...(x)dxi1 ∧ dxi2 . . . = ωI(x)dxI where ωI(x) are smooth functions. If you change coor-

dinates to (x̃, U), then the components change as ω̃I = ωJk!AltI(
∂xj1
∂x̃i1

∂xj2
∂x̃i2

) . . . where AltI is an-

tisymmetrization on the I-indices, i.e., k!AltI(A
j1
i1
Aj2i2 . . .) is the determinant of the k × k minor

of the matrix Aji consisting of the J rows. In fact, this construction can be generalised to gen-

eral vector bundles V . Indeed, if the transition functions of V are gαβ, then those of Ωk(V ) are

(hαβ)JI = k!AltI([gαβ]j1i1 [gαβ]j2i2 . . .).
Given a k-form field ω on N and a smooth map f : M → N , we can define the pullback f∗ω

as a smooth k-form field on M . Indeed, (f∗ω)p(v1, v2, . . . , vm) = ωf(p)(f∗v1, f∗v2, . . .). Before pro-
ceeding to find out its expression in coordinates, we observe that we can define the wedge product
of differential form (fields) ω ∧ η as (ω ∧ η)p = ωp ∧ ηp. This produces a smooth k + l-form. In-
deed, if ω = ωIdx

I and η = ηJdx
J , then ω ∧ η = ωIηJdx

I ∧ dxJ which is smooth (because the
components are quadratic polynomials in smooth functions). An example of a wedge product in R5

: ω = x1dx2 ∧ dx3 + ex
2
dx1 ∧ dx5 and η = 3dx1 ∧ dx4. Now ω ∧ η = 3x1dx1 ∧ dx2 ∧ dx3 ∧ dx4. The

wedge product satisfies the usual properties :

(1) It is bilinear over the ring of smooth functions.
(2) ω ∧ η = (−1)klη ∧ ω,
(3) f∗(ω ∧ η) = f∗ω ∧ f∗η.

Now we evaluate the coordinate expression of the pullback.

Theorem 3.1. If f : M → N is a smooth function, (x, U) is a coordinate system near p ∈ M and
(y, V ) near f(p) ∈ N , then

f∗(gdy1 ∧ . . . dyk) = (g ◦ f) det(
∂yα ◦ f
∂xjβ

)dxj1 ∧ . . . dxjk(3.1)

where as before, the sum over multi-indices is always over increasing indices, i.e., 1 ≤ j1 < j2 . . ..

Proof.

(f∗(gdy1 ∧ . . . dyk))x(
∂

∂xj1
,
∂

∂xj2
, . . .) = (gdy1 ∧ . . . dyk)f(x)(f∗

∂

∂xj1
, f∗

∂

∂xj2
, . . .)

= g(f(x))dy1 ∧ . . . dyk(∂y
a ◦ f
∂xj1

∂

∂ya
, . . .)

= g(f(x))
∂ya ◦ f
∂xj1

∂yb ◦ f
∂xj2

. . . dy1 ∧ . . . dyk( ∂

∂ya
,
∂

∂yb
, . . .) = (g ◦ f) det(

∂yα ◦ f
∂xjβ

)(3.2)
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