
NOTES FOR 27 SEPT (WEDNESDAY)

1. How to come up with submanifolds ?

How do you come up with submanifolds of R2 ? One example is the circle x2 + y2 = 1. It is a
“level set” of a function, i.e., S1 = f−1(1) where f (x, y) = x2 + y2. Likewise, more generally, if you
have a smooth function f : M→ N, then one way to hope to come up with submanifolds of M is to
take level sets of f , i.e., f−1(q) where q ∈ N. Unfortunately, they may not always be submanifolds.
Even if they are submanifolds, they may not have the “correct” dimension. (After all, suppose N has
dimension n. Then if you look at all p ∈ M such that f (p) = q, then you are imposing n conditions.
There are m free parameters. So you should m − n free parameters left. So you should hope that
f−1(q) is an m − n dimensional manifold.) Examples and counterexamples :

(1) If f (x, y) = x2 + y2, then f−1(0) = (0, 0). This is a submanifold but it has dimension 0 (instead
of 1).

(2) Likewise, for the same f , f−1(−1) = φ. An empty set is a submanifold of whatever dimension
you want.

(3) Suppose g(x, y) = x2
− y2. Now g−1(0) consists of two straight lines y = ±x. The level set is a

submanifold of dimension 1 everywhere except at the origin.
(4) Suppose h(x, y, z) = (x2 + y2 + z2, x + y + z). Then h−1(1,

√
3) is a point ( 1

√
3
, 1
√

3
, 1
√

3
), i.e., a

submanifold of dimension 0 (instead of 1).
What is it that makes some preimages (or level sets) submanifolds and some not ? The crucial point
here is the implicit function theorem. If you have a function f : Rm

→ Rn such that D f (p) is a
surjective linear map, then denoting f (p) = q, the set of points x ∈ Rm near p satisfying f (x) = q
(i.e. the preimage of q near p) is a submanifold of dimension m − n. Let us look at the problematic
examples above.

(1) The derivative matrix of f is a row matrix, D f = [2x, 2y]. When x = y = 0, this derivative is
0, i.e., it is not a surjective linear map. So there is no surprise that f−1(0, 0) is not what we
want.

(2) Obvious.
(3) Dg = [2x,−2y] which is [0, 0] at the origin. Not a surjective linear map from R2toR.
(4) For h, the derivative matrix is a 2 × 3 matrix.

Dh =

[
2x 2y 2z
1 1 1

]
(1.1)

Now clearly when x = y = z, this matrix does not have rank 2 (i.e. full rank). So the
derivative is not surjective as a matrix fromR3 toR2 at that point. No surprise that problems
occur there.

More generally, given a map f : M → N, f−1(q) ⊂ M is an embedded submanifold of dimension
m − n if q is regular value, i.e., after choosing coordinates, the derivative map is a surjective linear
map at all points in the pre-image of q. In the above examples, q was a critical value, i.e., there are
some points in the pre-image where the derivative map is not surjective.

A small warning : if q is a regular value, then f−1(q) is a submanifold of dimension m− n. But the
1



2 NOTES FOR 27 SEPT (WEDNESDAY)

converse need not be true. Just because q is not a regular value does not mean that f−1(q) cannot
be a submanifold of the correct dimension. Here is a stupid example : Take f (x, y) = x2. Sard’s
theorem states that the set of critical values has measure 0. In other words, for almost all q ∈ N,
either

(1) f−1(q) is empty, or
(2) f−1(q) is a submanifold of M of dimension m − n.

In our midterm, the question was (roughly) if Z is a submanifold of N of dimension z, then under
a technical assumption (“ f is transverse to Z”) is f−1(Z) a submanifold of M ? How can we solve
this problem ? The hint indicated was that locally there exists a coordinate system on N such
that y1 = y2 = . . . = yn−z = 0 is Z, i.e., locally, you can define Z as the preimage/level set of
g : U ⊂ N → Rn−z given by g(y1, . . . , yn) = (y1, . . . , yn−z). Now f−1(Z) = (g ◦ f )1−(0). So at least
locally, we have a map f−1(U) ⊂ M → Rn−z given by h = g ◦ f such that f−1(Z) ∩ f−1(U) is a level
set of h. So this level set is locally a submanifold of dimension m − (n − z) provided 0 is a regular
value, i.e., for every point in the preimage, Dh is surjective (after choosing coordinates on M to find
Dh). To do this, we need use the assumption of transversality, i.e., f∗(TpM) + T f (p)Z = T f (p)N. For
us to use this, we need to remember what a pushforward is. We will recall that in more detail in a
moment. But at a very simple level, the pushforward should be thought of as the derivative matrix
after choosing coordinates in the domain and the target. All transversality is saying is that the image

of n × m matrix D f (p) =



∂ f 1

∂x1
∂ f 1

∂x2 . . . . . . . . .
...

...
...

...
...

∂ f n−z

∂x1
∂ f n−z

∂x2 . . . . . . . . .
...

...
...

...
...


plus the vector space spanned by vectors of

the form (0, 0, 0 . . . , 0, 1, 0 . . .) (where the 1 occurs after n − z slots) is all of Rn for all p ∈ f−1(Z). In
other words, the image of D f must at least contain the first n − z basis vectors of Rn (it may be
bigger though). This means that at least n − z columns of D f (p) should be linearly independent for
all p ∈ f−1(Z) and be independent of the last z basis vectors. Thus the first n− z×m part of D f which
is nothing but Dg should have full rank.

2. Tangent and cotangent bundles

Firstly, a vector bundle V →M is a manifold with an onto map to M such that every preimage is a
vector space, and locally, it is isomorphic to U×Rr. Recall that every vector bundle is isomorphic to
a weird quotient using transition functions. Transition functions are smooth maps gαβ : Uα ∩Uβ →

GL(r,R) satisfying

(1) gαα = Id
(2) gαβ = g−1

βα

(3) gαβgβγgγα = Id.

There are lots of examples of vector bundles. Two important examples of vector bundles associated
to every manifold M are its tangent TM and cotangent T∗M bundles. The cotangent bundle T∗M

was constructed as a weird quotient with transition functions [gαβ]i j =
∂xi
β

∂x j
α

. The tangent bundle was

constructed by putting a topology and a vector bundle structure on the set ∪pTpM. Interestingly

enough, if you write the transition functions for the tangent bundle, they are [hαβ]i j =
∂xi
α

∂x j
β

. Note that
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j=1[gαβ]i j[hαβ]kj = δi j. This means that hαβ = (g−1

αβ)T.
This reminds us of a familiar linear algebra concept : Suppose V is a vector space and e1, . . . , en is

a basis. Then every vector is of the form v =
∑n

i=1 viei. Given a basis of V, there is a “natural” basis
for V∗ given by linear functionals ωi defined by ωi(e j) = δi j. So every linear functional w is of the
form w =

∑
i wiωi. Note that the pairing w(v) is w(v) =

∑
i wivi. In other words, the expression

∑
i wivi

is independent of the basis chosen. Moreover, suppose we choose a new basis ẽ1, ẽ2, . . . , ẽn for V.
Then the new components for v =

∑
i ṽiẽi are related to the old by an invertible matrix, ṽi =

∑
j Pi jv j.

What about the corresponding linear functional components w̃i? Note that since
∑

j w jv j =
∑

i w̃iṽi,
we see that

∑
j w jv j =

∑
i
∑

j Pi jv jw̃i. Thus, w̃ = (P−1)Tw.
In other words, every cotangent space is dual to the corresponding tangent space. Given a 1-form

ω =
∑n

i=1ωidxi, and a vector field X =
∑n

i=1 Xi
∂
∂xi , we can form a scalar ω(X) =

∑n
i=1ωiXi (which is

independent of the coordinate system chosen). The cotangent bundle is the “dual bundle” of the
tangent bundle.

More generally, suppose we are given a vector bundle V with transition functions gαβ, we can
form a new set of matrix-valued functions hαβ = ([gαβ]−1)T. You can easily verify that hαβ satisfy the
requirements to be the transition functions of another vector bundle. That vector bundle is called
the “dual” bundle to V and is denoted as V∗. Every fibre of V∗ is dual to every fibre of V. Given a
section s of V and t of V∗, we can get a function using t(s).

Coming back to the tangent and cotangent bundles, given a basis ∂
∂xi of the tangent bundle, the

corresponding dual basis is none other than dxi which satisfies dxi( ∂
∂x j ) = δi j.

3. What the heck is a pushforward f∗ ? What is d f ? What is a pull-back f ∗? What is the
difference ?

Given a smooth function f : R2
→ R, what is its derivative D f ? commonly, in multivariable

calculus, it is a row matrix [∂ f
∂x
∂ f
∂y ]. The directional derivative Dv f =

∂ f
∂x v1 +

∂ f
∂y v2 = [D f ]

[
v1
v2

]
.

So the derivative D f can be thought of as a linear functional R2
→ R given by D f (v) = [D f ][v].

Alternatively, we can think of the gradient∇ f as a column vector

 ∂ f
∂x
∂ f
∂y

. But usually this is not done

in any class on multivariable calculus.
More generally, if you have f : Rm

→ Rn, the derivative matrix D f is an n ×m matrix consisting

of


D f1
D f2
D f3
...

. It takes a vector from Rm and spits out a vector in Rn.

Given a smooth map f : M → N, we would like to know what the “derivative” of this map is.
Unfortunately, we can’t simply take coordinates and write down the derivative matrix D f : M→ Rn

because such an object will depend on the coordinates chosen. However, given a tangent vector
v ∈ TpM, we can produce another tangent vector w ∈ T f (p)N in a natural manner. Indeed, suppose v
is the equivalence class of a curve [c(t)], then w = f∗v = [ f ◦ c(t)]. Alternatively, if v is a derivation,
then w = f∗v is a derivation that acts on a function g as w(g) = v(g ◦ f ). At the level of coordinates,

suppose v =
∑

i vi
∂
∂xi , then f∗v =

∑
i, j vi

∂ f j

∂xi
∂
∂y j . So indeed, the derivative matrix in coordinates IS the
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pushforward in coordinates. No difference!
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