
NOTES FOR 28 AUG (MONDAY)

1. Recap

(1) Defined the cotangent bundle and vector bundles. Proved that the cotangent bundle is a
vector bundle.

(2) Defined sections and proved that d f : M→ T∗M is a section.
(3) Proved that dxi are local sections that span the fibres at every point and hence every section

of T∗M (1-forms) is locally a smooth linear combination of dxi.

2. Vector fields, Tangent bundle, Cotangent bundle, etc

Given a smooth map f : M → N, a smooth 1-form η on N, there is a way to construct a
smooth 1-form on M denoted as f ∗η and called the “pullback” of η. Indeed, suppose locally
we choose coordinates (x,U), (y,V) on M and N respectively, and η(q) = [q, ηi(q)dyi(q)] where
ηi : V ⊂ N →→ T∗N are smooth functions transforming “correctly” under change of coordinates.

Now define f ∗η(p) = [p, ηi ◦ f (p)∂ f i

∂x j (p)dx j(p)]. Verify that indeed this is a valid smooth 1-form (i.e.,
does it change as a one-form is supposed to under changes of coordinates ?).

Returning back to vector bundles, we need to decide when two vector bundles are to be considered
the same (in some sense):

Definition 2.1. A bundle map (or sometimes bundle morphism) from E1 over M1 to E2 over M2 is a
pair of smooth maps f : M1 → M2, f̃ : E1 → E2 such that f ◦ π1 = π2 ◦ f̃ and f̃ : π−1

1 (p)→ π−1
2 ( f (p))

is a linear map between vector spaces.
If M1 = M2, f = Identity, and f̃ is a diffeomorphism that is an isomorphism of vector spaces for

every p, then f̃ is said to be an isomorphism between the bundles E1 and E2. E1 and E2 are then said
to be isomorphic.

Remark 2.2. It turns out that every vector bundle as defined above is isomorphic to one that has a
weird construction similar to the one we gave for T∗M using a quotient of a disjoint union.

Here are two examples of vector bundles :
(1) The cotangent bundle T∗M of a manifold M is a rank-m vector bundle. An example of a

section of T∗M is d f where f : M→ R is a smooth function.
(2) The trivial rank-r vector bundle T = M × Rr. All of its smooth sections are of the form

s : M→ T given by s(p) = (p, f (p)) where f : M→ Rr is a smooth function.
We will construct more examples as we go along. (Spoiler alert : The next example will be the
tangent bundle.)

Our next “natural question” will have to do with physics and engineering : Suppose you want
to model the flow of rain water on the surface of our IISc roads. Of course the roads are not smooth
and water can seep into them. But let’s ignore such real world complications. Effectively, what we
are saying is that we have a submanifold Road ⊂ R3 and a vector-valued function ~X : Road → R3

that tells you the velocity of the water at every point on the road. Of course has to be a smooth
1
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function. More importantly, every such vector has to be “tangent” to the road, i.e., if locally, the
road looks like f−1(0) for some function f , then ∇ f .~X = 0 (the vectors should be perpendicular to
the normal). Alternatively, at every point p ∈ Road, there exists a smooth curve ~c : (−ε, ε) → Road
such that c

′

(0) = ~X(p) where ~c(0) = p. Such a vector-valued function is called “a smooth tangent
vector field” or sometimes, simply, “a vector field”. If we now want to study hydrodynamics on a
general manifold M, one possible way is to embed it in RN using the Whitney theorem, and define
vector fields as above. But we want to do this without any reference to RN, i.e., intrinsically. So
how may we define a “tangent vector space” TpM at every point p ? Also, how can we make the
notion of “smoothly varying tangent vectors, i.e., a vector field” precise as perhaps a smooth map
X : M→ TM where TM is some other manifold ?

We could try to define a smooth vector field as a collection of smooth vector-valued functions
~Xα : Uα → Rn (where Uα forms an atlas) such that when you change coordinates, the vector field
transforms in a particular manner and try to construct TM akin to T∗M. But we will construct in a
more abstract manner by first defining the “tangent spaces” TpM and making TM =

∐
p∈M

TpM into a

manifold. This is just for the sake of variety more than anything else.
There are two ways to define tangent spaces. One of them is concrete and very natural. The other

is abstract but is useful in some contexts.
(1) TpM as an equivalence class of smooth curves passing through p : Let C be the set of all

smooth curves c : (−1, 1) → M such that c(0) = p. Define a relation ∼ on C as c1 ∼ c2 if
for every coordinate chart Φ : U → Rm where p ∈ U, d(Φ◦c1)

dt |t=0 =
d(Φ◦c2)

dt |t=0. Denote the
equivalence class of c as [c] and define TpM as the set of equivalence classes {[c]|c ∈ C}. I
claim that this is an m-dimensional vector space.

Firstly, to check for equivalence, it is enough to do so in one coordinate chart (why?).
Fix a coordinate chart (U, x = Φ) around p such that p is at the origin of this coordinate
system. Given a vector v ∈ Rm, define a curve c̃v : (−1, 1) → Rm as c̃v(t) = tv. This curve
passes through the origin and has a tangent vector v there, i.e., c̃

′

v(0) = v. Now define a map
h : Rm

→ TpM as h(v) = [Φ−1
◦ c̃v]. I claim that this is a bijection (thus proving that TpM has

a vector space structure).

(a) h is injective : If h(v1) = h(v2), then
dc̃v1
dt (0) = v1 =

dc̃v2
dt (0) = v2.

(b) h is surjective : Suppose we take [c] ∈ TpM and consider a representative c ∈ C. Then
d(Φ◦c)

dt (0) = v ∈ Rm. Now [h(v)] = [c] (why ?)
(2) TpM as point-derivations on the algebra of germs of smooth functions at p : To be continued....


	1. Recap
	2. Vector fields, Tangent bundle, Cotangent bundle, etc

