
NOTES FOR 2 AUG (WEDNESDAY)

1. Logistics

(1) Welcome to 338 - Differentiable manifolds and Lie Groups. We may or may not deal with
Lie groups (despite the title). I will mostly follow Spivak’s Comprehensive Introduction to
Differential Geometry (Vol 1). Other references are there on the webpage. I will more less
follow the syllabus mentioned in http://www.math.iisc.ac.in/courses/aug_dec2014/
Differentiable_Manifolds_and_Lie_Groups.htm. However, we might go over vector bun-
dles instead of homogeneous spaces.

(2) As for the grading scheme, there will be one midterm (carrying 30% of the grade), HW (20%),
and a final (50%). Please note that the HW are expected to be written clearly and rigorously
on stapled pieces of paper. I would strongly encourage writing them in LaTeX. But that is
completely upto you.

(3) The course webpage is http://math.iisc.ac.in/˜vamsipingali/338_2017.html. It con-
tains the HW, the dates of the exams, the PDFs of the notes, the lecture schedule, etc. Please
visit it frequently.

(4) My email address is vamsipingali@math.iisc.ac.in. My office is N-23. I will hold “office hours”
on Wednesdays from 3:00-4:00 in my office whence you can ask me questions regarding this
course. (Of course you can always email me as well. This is just to maintain a routine.)

2. Motivation and history (liberally copied fromWikipedia)

(1) The ancient civilisations (Indus-Valley, Babylonian, Egyptian, and Chinese) all knew some
geometric figures (like cylinders) and a little bit of measurement (after all they knew architec-
ture to some extent). There seems to be evidence that the Babylonians knew the Pythagoras
theorem much before the Vedic Indians and hence Pythagoras himself.

(2) The first milestone comes with Euclid in the 3rd century BC. He axiomatised geometry in the
form of five axioms. (Currently, the most popular modern version of them are the Hilbert’s
axioms.) His fifth axiom was “If a transversal cuts two lines such that the sum of the interior
angles is less than two right angles, then these two lines intersect.” A famous question of
that time was “Can this postulate be derived from the other 4?”

(3) Along different lines, during the Renaissance (14th century), the concept of “perspective
art” came into prominence. Perspective deals with drawing three-dimensional objects on a
piece of paper as the eye would see them. This lead to a different facet of geometry - One
that de-emphasised distances and angles, and instead focussed on points of intersection of
lines. This is called projective geometry and is instrumental in the development of modern
algebraic geometry.

(4) In the 17th century, two important developments took place - Descartes and Fermat intro-
duced coordinates, thus opening up analytic/coordinate geometry. Whatever could be done
earlier by clever geometric arguments became routine algebra. The other important discov-
ery was calculus by Newton and Leibniz. Their work answered two questions thought to
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be intractable - finding tangents to general curves (cubics for instance) and the area under
curves. (Special cases were studied in great detail by Indians much earlier.)

(5) Another important development in the 17th century was the solution of the seven bridges
problem by Euler. He discovered graph theory as well as the formula V − E + F = 2 thus
beginning the study of topology.

(6) In the 19th century, the old problem of Euclid’s fifth postulate resurfaced. Gauss, Bolyai,
and Lobatchewsky constructed a geometry (hyperbolic geometry) which was more or less
consistent, but violated the fifth postulate. This was the birth of non-Euclidean geometries.
Klein constructed a “coordinate” model of hyerbolic geometry.

(7) During the same time, Gauss answered an important cartographical question - “Can one
draw the map of let’s say a part of Germany on a piece of paper without distorting distances
?” (The usual Mercator projection we are used to seeing in Atlases preserves angles but
distorts distances heavily) The answer (in the form of Theorema Egregium) that Gauss
provided was NO. To do this, he calculated a quantity called “Gaussian curvature” and
proved that it does not depend on whether you put Germany on a piece of paper or on the
earth. But earth is curved whereas the paper is not.

(8) Gauss’s student Riemann began a systematic study of higher dimensional versions of sur-
faces. His main point was to use coordinates to parametrise objects (just like latitude and
longitude on the earth, the positions and momenta of all the particles in a room, etc). He,
like Gauss, defined quantitites that “behaved well” under changes of coordinates.

(9) In the late 19th and early 20th centuries, Poincare developed Algebraic topology (fundamen-
tal group, homology, etc) in his famous Analysis Situs papers.

(10) Albert Einstein used Riemannian geometry in his General theory of relativity and motivated
further development.

(11) Whitney and Whitehead defined manifolds rigorously and clarified the foundations of the
subject.

(12) In 2006, Perelman proved the Poincare conjecture.

In simple terms, given two intersecting straight lines, the question “What is the angle made by these
lines ?” has to do with Differential geometry, “How many points do these lines intersect in?” has to
do with Algebraic geometry, and “If the lines are made of rubber, can you deform them to a single
line ?” is a topological question.

3. Definition of a manifold and examples

The above is enough motivation for the definition of a manifold but here is a problem that will
serve as a guide for our definitions :
Suppose P : S2

⊂ R3
→ R is a differentiable function. Where does it achieve its maximum ?

Firstly, what does it mean for P to be differentiable ? (After all, S2 is a closed set.) It means that P is
differentiable on an open set containing S2. Secondly, the answer is that the maximum is achieved
at a place where ∂P

∂θ = ∂P
∂φ = 0 where θ, φ are the latitude and longitude respectively. (Why?) I claim

that this condition does not depend on what way one parametrises the sphere, i.e., if you choose
(x, y) coordinates where z = ±

√
1 − x2 − y2, you will get the same answer. Indeed, the chain rule of

multivariable calculus guarantees this.

The above problem and the aforementioned history shows that we need to define “sphere-like”
objects (manifolds) in such a way that
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(1) A manifold can be parametrised (at least locally) by coordinates, i.e., it locally looks like Rn.
(2) If a function is differentiable in one coordinate system, it is so, in all the others.
(3) Gauss’ theorema egregium shows that we must focus our efforts into defining quantities that

“behave well” under coordinate changes.
(4) One of the aims of studying manifolds ought to be to “classify” them, i.e., “write” a “standard

list” of them such that every manifold is one element of that hypothetical list.
Keeping these requirements in mind, here is the definition of a Topological manifold (as opposed to

a smooth manifold which will be our main object of study later on) :

Definition 3.1. A topological manifold M is a Hausdorff, second countable space that is locally
Euclidean, i.e., it is covered by open sets Uα such that there exist homeomorphisms Φα : Uα → Vα ⊂

Rnα where nα ≥ 0 is an integer and Vα is an open subset of Rnα .

Remark 3.2. By the way, if instead of being “modelled” by Rnα we use an infinite dimensional
Hilbert or a Banach space, then we will get an infinite dimensional Hilbert or Banach manifold.
Such seemingly abstract objects are actually quite useful in the study of (nonlinear) PDEs.

Remark 3.3. It is obvious that the nα need not all be the same. For example, take M = R2
∪ R.

However, this is cheating because M is disconnected. For connected manifolds (and whenever I
say manifold in this course, unless I specify otherwise, it is assumed to be connected) are all the nα
equal to each other ? The answer is YES. But we will discuss it in a moment.

Remark 3.4. Why Hausdorff (separating points by open sets) and second countable (countable
basis) ? Hausdorff guarantees uniqueness of limits of sequences. Second countable (which is
sometimes replaced by a weaker requirement - paracompact) is necessary for a more technical
reason - partitions-of-unity. Ultimately these requirements stem from the desire of seeing every
manifold arising as a subset of Rn (and hence as a metric space). A caveat - there are examples
of non-Hausdorff second countable spaces that are locally Euclidean. An infamous example is the
“double line” (see Hawking and Ellis’ Large scale structure of spacetime for instance) - Take 2 copies
of the real line and identify the corresponding strictly negative numbers on both lines.

As mentioned in remark 3.3, if M is connected (which we will assume without mention from now
on), the nα are all equal to n. This number is called the dimension of the manifold. (Sometimes M is
called an “n-fold”.) Indeed, this is a corollary of the following famous theorem. (Why is this fact a
corollary ?)

Theorem 3.5. Invariance of Domain
If f : U ⊂ Rn

→ Rn is a continuous injection from an open set U to its image, then the image of f is open in
Rn.

Remark 3.6. The proof of this theorem involves some complicated Algebraic topology. It follows
from the generalised Jordan curve theorem (see Spivak). But the latter still involves complicated
algebraic topology.

What are examples of topological manifolds ? Any open subset of Rn should do the job. We can
easily come up with more examples (check that the circle is one) but let us defer that job for later
discussion of smooth manifolds.

The above definition is unfortunately not good enough to state “optimisation” problems like our
guiding one. Indeed, how can one define the notion of a differentiable function on a topological
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manifold ? One might be tempted to use the local coordinates, i.e., P ◦ Φ−1
α : Vα ⊂ Rn

→ R is an
ordinary function for which differentiability makes sense. The problem is that if we change coordi-
nates, i.e., on Uα ∩ Uβ, there is no guarantee that P ◦ Φ−1

β = P ◦ Φ−1
α ◦ Φα ◦ Φ−1

β is still differentiable

because the “transition map” φαβ = Φα ◦ Φ−1
β is not necessarily a differentiable map. So we need to

remedy this through a new definition. Here is a naive definition of a differentiable manifold. We
will replace this definition with the “correct” one in a moment.

Naive definition : A Ck manifold (M, {Uα,Φα}) is a Hausdorff, second countable space M that
is covered with open sets (called coordinate charts) Uα such that there exist homeomorphisms
Φα : Uα → Vα ⊂ Rn with the transition functions φαβ = Φα∩Φ−1

β : Φβ(Uα∩Uβ)→ Φα(Uα∩Uβ) are Ck

diffeomorphisms, i.e., there are k-times continuously differentiable with their inverses being k-times
continuously differentiable. Such charts are called “Ck compatible”. The collection of Ck compatible
charts {Uα,Φα} covering M is called an atlas (because it is a collection of “charts”). If k = 0 it is a
topological manifold. If k = ∞ then it is called a smooth manifold.

Remark 3.7. Instead of Ck, we can study Cω which is the class of real analytic manifolds (the
transition functions are locally power series). Likewise, we can have complex manifolds which
locally look like Cn and the transition maps are biholomorphisms. The latter are quite useful in the
study of algebraic geometry.

Why is this definition naive ? This is because, suppose we take an atlas, and add another open
set U such that the new transition maps are still Ck diffeomorphisms, then according to our naive
definition, we have obtained a “new” Ck manifold. But this is stupid. Clearly, it is the same beast.
The same kind of calculus can be done on both (try solving an optimisation problem for instance).
So such things should not give rise to new objects. To this end, we first make a definition and then
prove a lemma.

Definition 3.8. A Ck atlasU is defined to be contained ≤ in a Ck atlasV if every chart inU is a chart
inV, i.e., if (U,Φ) ∈ U then (U,Φ) ∈ V. A maximal Ck atlas is one that is not contained in any other
Ck atlas.
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