
NOTES FOR 30 OCT (MONDAY)

1. Recap

(1) Defined orientations on manifolds. Gave several examples of orientable and non-orientable
manifolds. (The Möbius strip and even projective spaces are non-orientable whereas odd
projective spaces and hypersurfaces of Rn+1 which have a unit normal vector field are ori-
entable.)

(2) Defined the bundle of differential forms on manifolds (and generalised it to exterior powers
of vector bundles). Saw how smooth forms changed under change of coordinates (involved
some ugly determinants of minors of the derivative maps), defined wedge product, pullback
and computing the pullback in coordinates.

2. Differential forms on manifolds

By the way, recall for the record that if ω is a top form, i.e., ω = gdx1 ∧ . . . dxm, then if you

change coordinates to x̃, then g̃ = g det( ∂x
i

∂x̃j
). From now onwards, let’s make a small change in

the summation over mult-indices. Let us sum over all multi-indices and divide by k!, i.e., write
ω = 2dx1 ∧ dx2 = dx1 ∧ dx2 − dx2 ∧ dx1. We will find this way of doing things more convenient.

Returning to the concept of an orientation, note that if we have a nowhere zero top form ω ∈
Ωm(M), then at every point p, ωp induces an orientation µp on TpM . I claim that µp varies smoothly,
i.e., it is locally standard. Indeed, suppose (x, U) is a connected coordinate chart around p, then
[ ∂
∂x1

(q), . . .] = µq ⇔ ωq(
∂
∂x1

(q), . . .) > 0. But if this is the case at p, then this will definitely be the
case on all of U by smoothness of ω and connectedness of U . Thus ω defines an orientation on M .
Conversely,

Theorem 2.1. An orientable manifold M admits a nowhere zero smooth m-form ω.

Proof. We have shown that orientability is equivalent to covering by coordinate charts such that
det(∂~xα∂~xβ

) > 0. On (~xα, Uα) define an m-form form ωα = dx1α ∧ dx2α . . . dxmα . Note that ωα is nowhere

vanishing on Uα. Using paracompactness we may assume that Uα is locally finite without loss of
generality. Now take a partition-of-unity ρα subordinate to Uα (indexed by the same set. So ρα
need not have compact support). Define ω =

∑
α ραωα. This I claim is nowhere 0. Indeed, at p,

we sum over the finitely many (but non-empty) αi such that p ∈ Uαi . Now, ωαi = ωαj det(∂~xα∂~xβ
) =

det(∂~xα∂~xβ
) > 0. Thus we are summing positive numbers. �

In other words, M is orientable if and only if Ωm(M) is a trivial line bundle. In fact, this can be
generalised to : A vector bundle V is orientable if and only if Ωr(V ) is a trivial line bundle. In the
case where V is itself a line bundle, it says that a line bundle is orientable if and only if it is trivial.
(Therefore, the Möbius line bundle is not orientable.)

Note that sections of Ω0(M) are simply functions f : M → R. Sections of Ω1(M) are 1-form fields.
Recall that given a smooth function f : M → R, there is a natural 1-form - df : M → Ω1(M) defined

as df(X) = X(f) where X is a tangent vector, or locally df = ∂f
∂xi
dxi.

Recall that our aim of doing all of this is to generalise the fundamental theorem of calculus. To do
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that, we need to take the “curl”∇× ~F of differential forms ω. So in Rn, suppose ω = ωIdx
I , the “curl”

of it (called the exterior derivative of ω) should naively be “d∧ω” = ( ∂
∂x1

dx1+ ∂
∂x2

dx2+. . .)∧ωIdxI =
∂ωI
∂xj

dxj ∧ dxI (where the summation is over all indices, whether increasing or not). We drop the “∧”

from the above expression and define dω = ∂ωI
∂xj

dxj ∧ dxI = dωI ∧ dxI in Rn.
To make this definition on a mnaifold, we need to make sure that it is independent of coordinates,

i.e., if ω = ωIdx
I and in another coordinate system, ω = ω̃Jdx̃

J , then is dω well-defined ? That is,
is ∂ωI

∂xj
dxj ∧ dxI = ∂ω̃I

∂x̃j
dx̃j ∧ dx̃I ? We could do this by looking at how ω̃I is related to ωI but there

is a more elegant way : We prove some properties of d and show that any other thing that satisfies
these properties coincides with our definition on any open set of Rn (and therefore is well-defined on
a manifold). Indeed,

Proposition 2.2. If ω1, ω2, ω : U ⊂ M → ΩK(M) are smooth forms where (x, U) is a coordinate
chart, then

(1) d(ω1 + ω2) = dω1 + dω2

(2) If ω1 is a k-form, then d(ω1 ∧ ω2) = dω1 ∧ ω2 + (−1)kω1 ∧ dω2

(3) d(dω) = 0 (d2 = 0).

Proof. (1) Trivial (addition rule of partial derivatives).
(2)

d(ω1Iω2Jdx
I ∧ dxJ) = d(ω1Iω2J) ∧ dxI ∧ dxJ = dω1I ∧ dxIω2J ∧ dxJ + dω2J ∧ ω1Idx

I ∧ dxJ

= dω1 ∧ ω2 + (−1)kdω2Jdx
J ∧ ω1(2.1)

(3)

d(dωI ∧ dxI) = d(dωI) ∧ dxI + (−1)k+1d(dxI) = 0(2.2)

by induction if we prove it for 1-forms. Indeed, d(df) = d( ∂f
∂xi
dxi) = ∂2f

∂xj∂xi
dxj ∧ dxi =

− ∂2f
∂xj∂xi

dxi ∧ dxj = − ∂2f
∂xi∂xj

dxi ∧ dxj . Thus d2f = 0.
�

These properties characterise d on U ⊂M (where (x, U) is a coordinate chart).

Proposition 2.3. Suppose da is another map that takes smooth k-forms on U to smooth k+1-forms
on U for all k and satisfies

(1) da(ω1 + ω2) = daω1 + daω2

(2) If ω1 is a k-form, then da(ω1 ∧ ω2) = daω1 ∧ ω2 + (−1)kω1 ∧ daω2

(3) da(daω) = 0 ((da)2 = 0).
(4) daf = df

then daω = dω on U .

Proof. da(ω) = da(ωIdx
I) = daωI∧dxI+(−1)kωId

adxI = dω by induction if we prove it on functions
as well as prove that da(dxI) = 0. But for functions it is assumed and da(dxi1∧. . .) = da(daxi1∧. . .) =
0 by induction. �

Finally, here is a corollary that shows that our d is well-defined.

Corollary 2.4. There is a unique operator d from the smooth k-forms on M to k + 1-forms on M
for all k satisfying

(1) d(ω1 + ω2) = dω1 + dω2
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(2) If ω1 is a k-form, then d(ω1 ∧ ω2) = dω1 ∧ ω2 + (−1)kω1 ∧ dω2

(3) d(dω) = 0 (d2 = 0).

and agreeing with the old d on functions.

Proof. For each coordinate chart (x, U) we have a unique dU defined earlier. Thus define dω(p) =
dUω(p). �

There is yet another way (a third way) to prove that our d is well-defined.

Theorem 2.5. If ω is a smooth k-form on M , then there is a unique k+ 1-form dω on M such that
for every set of vector fields X1, . . . , Xk+1 we have

dω(X1, . . . , Xk+1) =
k+1∑
i=1

(−1)i+1Xi(ω(X1, . . . , X̂i, . . .))

+
∑

1≤i<j≤k+1

(−1)i+jω([Xi, Xj ], X1, . . . , X̂i, . . . , X̂j , . . .)(2.3)

where X̂i indicates omission. This k + 1-form agrees with the dω defined previously.

Proof. Note that in order to define a k+ 1-form, it is enough to define an operator that alternatingly
takes k + 1 vector fields to smooth functions and is linear over smooth functions. It is trivial to
see that the above definition satisfies all the properties except perhaps for the linearity of smooth
functions. (That requires work.) Replace Xa by fXa for some fixed a.

dω(X1, . . . , faXa, Xk+1) =
k+1∑

i=1, 6=a
(−1)i+1Xi(faω(X1, . . . , Xa, . . . , X̂i, . . .)) + (−1)a+1faXa(ω(X1, . . . , X̂a, . . .))

+likewise(2.4)

Noting that Xi(fg) = Xifg + fXig, [fX, Y ] = f [X,Y ] − (Y f)X, and [X, fY ] = f [X,Y ] + (Xf)Y
we see that f pulls out.

To check that this coincides with our old d, choose a coordinate sytem (x, U). dω = (dω)Jdx
J

where (dω)J = dω( ∂
∂xj1

, . . .). Thus

(dω)I =

i+1∑
i=1

(−1)i+1 ∂

∂xji
(ω(X1, . . . , X̂i, . . .)) =

∑
i

(−1)k+1 ∂

∂xji
ωj1,...,ĵi,...(2.5)

Thus

dω =
∑
i,J

(−1)i+1 ∂

∂xji
ωj1,...,ĵi,...dx

J =
∑
i,J

∂

∂xji
ωJ̃dx

jidxJ̃ = dUω(2.6)

�

In the particular case when ω is a 1-form, the formula says dω = X(ω(Y ))−Y (ω(X))−ω([X,Y ]).
This is useful sometimes. In fact the Frobenius theorem can be stated in the language of forms
instead of vector fields, but we won’t bother with it.
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