
NOTES FOR 3 NOV (FRIDAY)

1. Recap

(1) Defined closed and exact forms and by means of an example, showed that the topology of a
domain can be detected by means of the question “Which closed forms are exact ?”

(2) Stated (and gave an idea of the proof) of Poincaré ’s lemma, i.e., on any star-shaped domain
(in fact, on any smoothly contractible manifold), every smooth closed form is exact.

2. Integration of top forms over manifolds

If ω = fdx1∧dx2 . . . dxm, then we may define
∫
Rm ω =

∫
fdx1dx2 . . .. If you change coordinates to

x̃, then
∫
ω =

∫
f ∂x

i

∂x̃j
dx̃1 . . .. The change of variables formula implies that

∫
ω is well-defined only if

the coordinate changes do not change the sign of the Jacobian, i.e., they are orientation-preserving.
But other than that, the integral of a form does not seem to depend on the coordinates chosen.

Definition 2.1. So suppose ω is a smooth top form with compact support (otherwise it may not
be integrable) on an oriented manifold M . Assume that (~xα, Uα) is a locally finite coordinate cover
that is compatible with the given orientation (that is, µp = [ ∂

∂x1α
(p), ∂

∂x2α
(p), . . .]). Let ρα be a

partition-of-unity subordinate to the open cover. Then define∫
M
ω =

∑
α

∫
Φα(Uα)=Rm

ραωαdx
1
αdx

2
α . . .(2.1)

Note that ραωα has compact support in Rm and hence the integral makes sense.

If we choose a different coordinate cover (~yβ, Vβ) with a different partition-of-unity ψβ, then we
need to prove that we get the same integral.

To do this, firstly, we claim that
∫
Rm ωαdx

1
α . . . =

∫
ωβdx

1
β . . . whenever ω has compact support

in Rm. Indeed, this follows from the change-of-variables formula, orientation-compatibility, and the
transformation rule for top forms. Thus

∫
Uα
ω is well-defined independent of the coordinate chart

chosen as long as ω has compact support in Uα.
Secondly, if ω has compact support within one coordinate chart Uα, then

∫
M ω =

∫
Uα
ω. Indeed,

if
∫
M ω =

∑
β

∫
Vβ

ψβω =
∑
β

∫
Uα∩Vβ

ψβω =

∫
Uα

ω where the last equality holds because, on Rm,∫
Rm f =

∫ ∑
ψβf .

Thirdly, it is easy to see that
∫
M (ω1 + ω2) =

∫
M ω1 +

∫
M ω2 if both forms have compact support

inside one oriented coordinate chart. Indeed, this follows from the addition property of Lebesgue
integration for functions in Rm.

Hence,
∫
M ω =

∑
α

∫
M
ραω =

∑
α,β

∫
M
ραψβω =

∑
β

∫
M
ψβω.

Therefore the integral of top forms with compact support over manifolds is well-defined. Now
suppose f : M → N is a diffeomorphism and suppose ω is a top form on N having compact
support, then clearly f∗ω is a top form on M having compact support. Suppose (yα, Vα) is an
oriented coordinate cover of N and ρα is a partition-of-unity. If f is orientation-preserving, then
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(xα = yα ◦ f, Uα = f−1(Vα) is an oriented open cover of M (and ψα = ρα ◦ f is a partition of unity).

Thus

∫
M
f∗ω =

∑∫
ψαf

∗ω =
∑∫

f∗(ραω). By the change of variables formula and the formula

for the pullback of a top-form, we see that the latter integral is
∫
ω. On the other hand, if f is

orientation-reversing, we would have gotten −
∫
ω.

Now we define integration over manifolds with boundary. Firstly, a smooth form ω on a manifold
with boundary is a continuous form which is smooth on the interior, and in every boundary chart
Φ : U → Hm, it extends smoothly to a neighbourhood of the upper half space. (Essentially, a smooth
function on a closed set is simply a smooth function on some open set containing the closed set.)

Firstly, an oriented manifold-with-boundary (M,∂M,µ) is simply one which can be covered with
charts so that the jacobians are positive. (Even for the boundary charts.) So if ω is a smooth top-form
on an oriented manifold with boundary (M,∂M), then we define the integral as follows : Firstly, if ω
is a smooth form on Hm with compact support, then

∫m
H ω is independent of the coordinates chosen

(as long as the coordinates are compatible with the orientation) by the change of variables formula.

If ω is a smooth form on M with compact support, then define
∫
ω =

∑∫
Φα(Uα)

ωρα where ρα is a

partition-of-unity. As before, this definition is independent of choices.
Before we state Stokes’ theorem, let’s look at

∫
[0,1]m dω where ω = ω1dx

2∧dx3 . . .+ω2dx
1∧dx3∧. . ..∫

[0,1]m
dω =

∑
i

∫
[0,1]m

∂ωi
∂xi

(−1)i−1dx1 ∧ . . . dxm

=
∑
i

∫
[0,1]m−1

ωi(x
1, . . . , 1, xi+1, . . .)− ωi(x1, . . . , 0, . . .)dx1 ∧ . . . ˆdxidxi+1 . . .(2.2)

So we have reduced the integral to an integral over the boundary which is a sum of integrals over
each of the boundary faces. However, there seem to be some orientation choice on the boundary.
Indeed, suppose we look at the face x1 = 1, then we are integrating ω1(1, x2, . . .) over it. Whereas
for x1 = 0, we pick up a negative sign. This means, (x2, . . . , xm) is an oriented chart for x1 = 1 but
it has the opposite orientation for x1 = 0. This means that our orientation on the boundary is by an
ordered basis e1, . . . , em−1 such that [N, e1, . . . , em−1] = µ where N is the outward pointing normal.

Using this observation we define the “induced orientation” ∂µ on ∂M given an orientation µ on
M . Suppose we choose a boundary chart Φ : U → Hm. Then [v1, . . . , vm−1] ∈ ∂µ if and only if
[w, v1, . . . , vm−1] ∈ µ where w is any outward pointing vector (pointing towards the lower half-plane).
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