NOTES FOR 3 NOV (FRIDAY)

1. Recap

- (1) Defined closed and exact forms and by means of an example, showed that the topology of a domain can be detected by means of the question "Which closed forms are exact ?"
- (2) Stated (and gave an idea of the proof) of Poincaré 's lemma, i.e., on any star-shaped domain (in fact, on any smoothly contractible manifold), every smooth closed form is exact.

2. Integration of top forms over manifolds

If $\omega = f dx^1 \wedge dx^2 \dots dx^m$, then we may define $\int_{\mathbb{R}^m} \omega = \int f dx^1 dx^2 \dots$ If you change coordinates to \tilde{x} , then $\int \omega = \int f \frac{\partial x^i}{\partial \tilde{x}^j} d\tilde{x}^1 \dots$ The change of variables formula implies that $\int \omega$ is well-defined only if the coordinate changes do not change the sign of the Jacobian, i.e., they are orientation-preserving. But other than that, the integral of a form does not seem to depend on the coordinates chosen.

Definition 2.1. So suppose ω is a smooth top form with compact support (otherwise it may not be integrable) on an oriented manifold M. Assume that $(\vec{x}_{\alpha}, U_{\alpha})$ is a locally finite coordinate cover that is compatible with the given orientation (that is, $\mu_p = \left[\frac{\partial}{\partial x_{\alpha}^1}(p), \frac{\partial}{\partial x_{\alpha}^2}(p), \ldots\right]$). Let ρ_{α} be a partition-of-unity subordinate to the open cover. Then define

(2.1)
$$\int_{M} \omega = \sum_{\alpha} \int_{\Phi_{\alpha}(U_{\alpha}) = \mathbb{R}^{m}} \rho_{\alpha} \omega_{\alpha} dx_{\alpha}^{1} dx_{\alpha}^{2} \dots$$

Note that $\rho_{\alpha}\omega_{\alpha}$ has compact support in \mathbb{R}^m and hence the integral makes sense.

If we choose a different coordinate cover $(\vec{y}_{\beta}, V_{\beta})$ with a different partition-of-unity ψ_{β} , then we need to prove that we get the same integral.

To do this, firstly, we claim that $\int_{\mathbb{R}^m} \omega_\alpha dx_\alpha^1 \dots = \int \omega_\beta dx_\beta^1 \dots$ whenever ω has compact support in \mathbb{R}^m . Indeed, this follows from the change-of-variables formula, orientation-compatibility, and the transformation rule for top forms. Thus $\int_{U_\alpha} \omega$ is well-defined independent of the coordinate chart chosen as long as ω has compact support in U_α .

Secondly, if ω has compact support within one coordinate chart U_{α} , then $\int_{M} \omega = \int_{U_{\alpha}} \omega$. Indeed,

if
$$\int_{M} \omega = \sum_{\beta} \int_{V_{\beta}} \psi_{\beta} \omega = \sum_{\beta} \int_{U_{\alpha} \cap V_{\beta}} \psi_{\beta} \omega = \int_{U_{\alpha}} \omega$$
 where the last equality holds because, on \mathbb{R}^{m} , $\int_{\mathbb{R}^{m}} f = \int \sum \psi_{\beta} f$.

Thirdly, it is easy to see that $\int_M (\omega_1 + \omega_2) = \int_M \omega_1 + \int_M \omega_2$ if both forms have compact support inside one oriented coordinate chart. Indeed, this follows from the addition property of Lebesgue integration for functions in \mathbb{R}^m .

Hence,
$$\int_M \omega = \sum_{\alpha} \int_M \rho_{\alpha} \omega = \sum_{\alpha,\beta} \int_M \rho_{\alpha} \psi_{\beta} \omega = \sum_{\alpha} \beta \int_M \psi_{\beta} \omega.$$

Therefore the integral of top forms with compact support over manifolds is well-defined. Now suppose $f : M \to N$ is a diffeomorphism and suppose ω is a top form on N having compact support, then clearly $f^*\omega$ is a top form on M having compact support. Suppose (y_α, V_α) is an oriented coordinate cover of N and ρ_α is a partition-of-unity. If f is orientation-preserving, then

NOTES FOR 3 NOV (FRIDAY)

 $(x_{\alpha} = y_{\alpha} \circ f, U_{\alpha} = f^{-1}(V_{\alpha})$ is an oriented open cover of M (and $\psi_{\alpha} = \rho_{\alpha} \circ f$ is a partition of unity). Thus $\int_{M} f^* \omega = \sum \int \psi_{\alpha} f^* \omega = \sum \int f^*(\rho_{\alpha} \omega)$. By the change of variables formula and the formula for the pullback of a top-form, we see that the latter integral is $\int \omega$. On the other hand, if f is orientation-reversing, we would have gotten $-\int \omega$.

Now we define integration over manifolds with boundary. Firstly, a smooth form ω on a manifold with boundary is a continuous form which is smooth on the interior, and in every boundary chart $\Phi: U \to \mathbb{H}^m$, it extends smoothly to a neighbourhood of the upper half space. (Essentially, a smooth function on a closed set is simply a smooth function on some open set containing the closed set.)

Firstly, an oriented manifold-with-boundary $(M, \partial M, \mu)$ is simply one which can be covered with charts so that the jacobians are positive. (Even for the boundary charts.) So if ω is a smooth top-form on an oriented manifold with boundary $(M, \partial M)$, then we define the integral as follows : Firstly, if ω is a smooth form on \mathbb{H}^m with compact support, then $\int_{\mathbb{H}}^m \omega$ is independent of the coordinates chosen (as long as the coordinates are compatible with the orientation) by the change of variables formula.

If ω is a smooth form on M with compact support, then define $\int \omega = \sum \int_{\Phi_{\alpha}(U_{\alpha})} \omega \rho_{\alpha}$ where ρ_{α} is a partition-of-unity. As before, this definition is independent of choices.

Before we state Stokes' theorem, let's look at $\int_{[0,1]^m} d\omega$ where $\omega = \omega_1 dx^2 \wedge dx^3 \dots + \omega_2 dx^1 \wedge dx^3 \wedge \dots$

(2.2)
$$\int_{[0,1]^m} d\omega = \sum_i \int_{[0,1]^m} \frac{\partial \omega_i}{\partial x^i} (-1)^{i-1} dx^1 \wedge \dots dx^m$$
$$= \sum_i \int_{[0,1]^{m-1}} \omega_i(x^1, \dots, 1, x^{i+1}, \dots) - \omega_i(x^1, \dots, 0, \dots) dx^1 \wedge \dots \hat{dx^i} dx^{i+1} \dots$$

So we have reduced the integral to an integral over the boundary which is a sum of integrals over each of the boundary faces. However, there seem to be some orientation choice on the boundary. Indeed, suppose we look at the face $x^1 = 1$, then we are integrating $\omega_1(1, x^2, ...)$ over it. Whereas for $x^1 = 0$, we pick up a negative sign. This means, $(x^2, ..., x^m)$ is an oriented chart for $x^1 = 1$ but it has the opposite orientation for $x^1 = 0$. This means that our orientation on the boundary is by an ordered basis $e_1, ..., e_{m-1}$ such that $[N, e_1, ..., e_{m-1}] = \mu$ where N is the outward pointing normal.

Using this observation we define the "induced orientation" $\partial \mu$ on ∂M given an orientation μ on M. Suppose we choose a boundary chart $\Phi : U \to \mathbb{H}^m$. Then $[v_1, \ldots, v_{m-1}] \in \partial \mu$ if and only if $[w, v_1, \ldots, v_{m-1}] \in \mu$ where w is any outward pointing vector (pointing towards the lower half-plane).