
NOTES FOR 7 AUG (MONDAY)

1. Recap

(1) Gave a biased history of geometry.
(2) Stated an optimisation problem on a sphere. Decided to define sphere-like objects (manifolds)

that are locally Euclidean, have smooth functions on them, and have quantities that behave
well under coordinate changes.

(3) Defined a topological manifold. Proved the notion of dimension is well-defined. Gave a
naive definition of a Ck manifold through Ckness of transition functions. Decided that we
need to cut our ability to add more charts. To that end we defined a Ck maximal atlas.

2. Definition of a manifold and examples

Lemma 2.1. Every Ck atlasA is contained in a unique Ck maximal atlasA
′

Proof. Consider the set of all Ck atlases containingA (thanks to Chaitanya for pointing this typo out)
S equipped with the above partial order of containment. (This is an honest set in ZFC.) Given any
chain Ai ⊂ A j ⊂ . . ., let B = ∪iAi. This is certainly an atlas because, given any two charts (U,ΦU)
and (V,ΦV), there is an atlas Ak containing these two and hence the transition map is Ck. Thus by
Zorn’s lemma there exists a Ck maximal atlas. If there are two of them, then their union gives a
larger atlas. This is a contradiction to maximality. Hence uniqueness holds. �

We now give the correct definition of a Ck manifold.

Definition 2.2. A Ck manifold (M,A) is a topological manifold M equipped with a Ck maximal atlas
A. In this case A is said to provide M with a Ck differentiable structure. (We will abuse notation
and forget theA entirely from now on.)

Remark 2.3. It is a very non-trivial result that for k ≥ 1, every Ck structure is compatible with a C∞

structure, i.e., given a Ck maximal atlasA there exists a C∞ maximal atlasA
′

that is Ck compatible
withA. It is almost unique (the correct statement is that it is unique upto diffeomorphism). So the
study of Ck manifolds for k ≥ 1 is reduced to that of C∞ manifolds. But the shocking thing is that
for k = 0 this is FALSE. In other words, there are examples of topological manifolds not admitting a
smooth structure, and yet others admitting more than one smooth structure ! (In fact R4 has more
than one smooth structure, i.e., more than one way to do calculus!) These exotic structures occur
in dimension ≥ 4. It is quite non-trivial to prove that this phenomenon does not occur in lower
dimensions. The first exotic structure was found on S7 by John Milnor (in a 7 page paper in the
Annals!). He was awarded the Fields medal for that discovery.

From now onwards, we will only study smooth manifolds. Also, in order to prove something is
a manifold, it is enough to provide one atlas. The unique maximal atlas containing it defines the
smooth structure. We will now define what it means for two smooth manifolds to be “essentially
the same” :

Definition 2.4. Two C∞ manifolds (M,A) and (N,B) are said to be diffeomorphic if there is a 1-1
onto function f : M→ N such that (V,ΦV) ∈ B ⇐⇒ ( f−1(V),ΦV ◦ f ) ∈ A
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It is clear that f is a diffeomorphism if and only if f−1 is so. It is also easy to see that f is a
homeomorphism (why?). Hence the dimensions of M and N are the same. Moreover, suppose
(U,ΦU) ∈ A and (V,ΦV) ∈ B. Then gVU = ΦV ◦ f ◦Φ−1

U : ΦU(U) ⊂ Rn
→ Rn is smooth (and its inverse

is smooth) because ( f−1V,ΦV ◦ f ) ∈ A and hence there gVU is actually a transition function for M
and hence is smooth (with its inverse being smooth as well). Conversely, any homeomorphism such
that when written in coordinates it is smooth and its inverse is smooth is a diffeomorphism.

Before we proceed to examples of smooth manifolds, here is a small observation : In the definition
of a manifold, we may (without loss of generality) require that Φα be a homeomorphism of Uα to all of
Rn as opposed to an open subset. Indeed, if it is so to an open subset, then surely we can find a cover
by smaller open sets Ũγ such that these are homeomorphic to open cubes inRn. Now any open cube
is homeomorphic by means of a linear map (so it is differentiable and its inverse is differentiable)
to (−π2 ,

π
2 ) × (−π2 ,

π
2 ) . . . which is in turn homeomorphic to Rn via f (x1, . . . , xn) = (tan(x1), tan(x2) . . .)

(this is a smooth map whose inverse is also smooth).

Here are some examples of smooth manifolds:

(1) Of course Rn and open subsets of the same are obvious examples that we discussed earlier.
(2) The sphere Sn. Indeed, x2

1 + . . . + x2
n+1 = 1 is the sphere. Cover it with open sets where

Ui = {xi > 0}, Vi = {xi < 0}. Indeed, every point (x1, . . . , xn+1) has at least one coordinate
xi non-zero and is hence in either in Ui or Vi. On Ui, choose the other coordinates xi =√

1 − x2
1 − . . . − x2

i−1 − x2
i+1 . . . and so on. Check that indeed on the intersections, the transition

functions are diffeomorphisms.
(3) Given two manifolds M, N, M×N is a manifold. (Why ?) So S1

×S1 . . . is a manifold. Another
example is the cylinder S1

×R.
(4) Quotients of manifolds need not always be manifolds. But here are two examples :

(a) Torus : T2 = R2

~x≡~x+

∑
niei

. Indeed, consider the open cover given by U1 = π((0, 1)×(0, 1)),

U2 = π((−1/2, 1/2)× (0, 1)), U3 = π((−1/2, 1/2)× (−1/2, 1/2)), U4 = π((0, 1)× (−1/2, 1/2)).
On U1, Φ1(π(x, y)) = (x, y), on U2, Φ2(π(x, y)) = (x + 1

2 , y), etc. It is clear that φ21(a, b) =

(a + 1
2 , b) is smooth. Likewise, the other transition functions are smooth. The same

argument may be generalised to the n-torus. (In fact, the n-torus is diffeomorphic to
S1
× S1 . . .. (Why ?)It is clearly homeomorphic to the same. If one wants, one can induce

a differential structure using the one on S1
×S1 . . .. It gives the same structure as the one

above.)
(b) Real projective space RPn : Motivated by perspective art of the 14th century, one

can study the set of all lines (light rays) passing through the origin (the eye) in Rn+1.
Each such line intersects the sphere Sn in exactly two (antipodal) points. Since they
correspond to the same line, they ought to be identified to produce RPn = Sn

~x≡−~x with a
quotient map π from Sn. This is a smooth manifold. Indeed, consider the open cover
Ui = π({xi > 0} ∩ Sn with Φi(π(~x)) = (x0, . . . , xi−1, xi+1, . . .). It is easy to see that this is a
C∞ atlas.

(c) Complex projective spaceCPn : Just as real lines through the origin inRn+1 are a natural
object to study, for the purposes of algebraic geometry, complex lines through the origin
in Cn+1 are useful. Thus we define CPn = Cn+1

−~0
~X≡λ~X where λ∈C∗

. The equivalence class of
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X0,X1, . . . is denoted as [X0 : X1 . . . : Xn]. Consider the open sets Ui = π({Xi , 0}). Define
Φi : Ui → C

n = R2n as Φi([X0 : X1 . . .]) = ( X0
Xi
, . . . , Xi−1

Xi
, Xi+1

Xi
, . . .). The transition functions

are easily seen to be smooth. (In fact, if you ever learn several complex variables, you
will see that they are biholomorphisms. This is a complex manifold.) Is CPn compact ?

(5) 1-manifolds : S1 is an example of a 1-dimensional manifold. The open interval (a, b) is another
example. It turns out that all 1-manifolds “look like” (i.e. are diffeomorphic to) these. This
is a non-trivial theorem proven in Milnor’s book.

(6) GL(n,R) and GL(n,C) : These are open subsets of Rn2
and Cn2

and are hence manifolds.
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