NOTES FOR 8 NOV (WEDNESDAY)

1. Recap

- (1) Proved Stokes' theorem. Saw that deducing the usual Green theorem from our Stokes theorem requires some effort.
- (2) Compact orientable manifolds are not contractible.
- (3) Defined fibre integration. Saw that a theorem implies Poincaré 's lemma as corollary.

2. CLOSED AND EXACT FORMS

Theorem 2.1. For any smooth k-form α on $M \times [0,1]$, we have

$$i_1^*\alpha - i_0^*\alpha = d(K\alpha) + K(d\alpha)$$

Proof. Choose a coordinate chart (x, U) near p. Then, $\alpha = \alpha_I(x, t)dt \wedge dx^I + \tilde{\alpha}_J(x, t)dx^J$. Now $K\alpha = (\int_0^1 \alpha_I(x, t)dt)dx^I$. Thus

$$d(K\alpha) + K(d\alpha) = d_x \left(\int_0^1 \alpha_I(x,t)dt\right) dx^I + \left(\int_0^1 ((d_x + d_t)\alpha)_K(x,t)dt\right) dx^K$$
$$= \left(\int_0^1 (d_x \alpha_I(x,t) \wedge dx^I)dt\right) + \left(-\int_0^1 (d_x \alpha_I) \wedge dx^I dt\right) + \int_0^1 \frac{\partial \tilde{\alpha}_J}{\partial t} dt dx^J$$
$$= \tilde{\alpha}_J(p,1) - \tilde{\alpha}_J(p,0) = i_1^* \alpha - i_0^* \alpha$$
$$(2.1)$$

3. DE RHAM COHOMOLOGY

Since we saw that it is important to know which closed forms are exact in order to detect non-trivial topology of manifolds, we define the following vector spaces :

Definition 3.1. Suppose $C^k(M)$ is the vector space of all smooth closed k-forms on M and $E^k(M)$ the space of all exact k-forms, then the quotient space $H^k(M) = \frac{C^k}{E^k}$ is called the kth De Rham cohomology group of M.

It turns out that for compact manifolds, the De Rham cohomology is finite dimensional. (But proving this is quite non-trivial.) Let us compute a few of these groups.

 $H^0(M)$: Z^0 is empty and $C^0(M)$ is smooth f satisfying df = 0, i.e., f is a constant on each component. Therefore $H^0(M) = \mathbb{R}^c$ where c is the number of connected components of M.

If M is contractible and connected, $H^0(M) = \mathbb{R}$ and all other H^k are 0 (by Poincaré). If M is compact and oriented, then $H^m(M)$ is at least one dimensional. (It turns out to be exactly one-dimensional as we shall see later on.)

Given a map $f: M \to N$, we have the pullback $f^*: \Omega^k(N) \to \Omega^k(M)$. Since the pullback commutes with d, it descends to a map $f^*: H^k(N) \to H^k(M)$. Moreover, since $(f \circ g)^* = g^* \circ f^*$, if f is a diffeomorphism, then $H^k(N) \simeq H^k(M)$. So the De Rham cohomology is a diffeomorphism invariant. (It turns out that it is actually a homeomorphism, or even better, a homotopy invariant.) Before we go ahead, we define a different cohomology group (De Rham with compact support) : $H_c^k(M) = C_c^k(M)/E_c^k(M)$ where the forms have compact support. If M is compact, then this coincides with the usual De Rham groups. Note that $E_c^k M$ does not consist of all exact forms with compact support. For example, if on \mathbb{R}^m , $\omega = f dx^1 \wedge \ldots dx^m$, where f has compact support, then it is exact (Poincaré). But if $\omega = d\eta$ where η also has compact support, then $\int \omega = \int d\eta = 0$ but that is not the case if $f \ge 0$ (and > 0 on an open set). So $H_c^k(\mathbb{R}^m) \ne 0$. In fact,

Theorem 3.2. If M is a connected orientable m-manifold, then the map $T[\omega] = \int_M \omega$ gives an isomorphism $H^m_c(M) \simeq \mathbb{R}$.

Proof. We know that T is surjective. Indeed, if ω is an orientation form, and f is a bump function with compact support, then $\int_M f\omega > 0$. Thus $f\omega$ is not exact.

Suppose $\int_{M} \omega = 0$. We need to prove that $\omega = d\eta$ where η has compact support.

We shall prove the theorem in three steps (induction - True for \mathbb{R} , True for \mathbb{R}^m assuming it is true for m-1 folds, true for general m folds assuming it is true for \mathbb{R}^m .)

(1) True on \mathbb{R} and S^1 : If ω is a 1-form with compact support on \mathbb{R} such that $\int_{\mathbb{R}} \omega = 0$, then define a function $f(x) = \int_{-\infty}^{x} \omega$. Note that $df = \omega$ by the FTC. f has compact support because f(-a) = 0 for a large positive a and since $\int_{\mathbb{R}} \omega = \int_{-a}^{b} \omega$ for all $b \ge a$, we see that f(x) = 0

f(-a) = 0 for a large positive a and since $\int_{\mathbb{R}} \omega = \int_{-a}^{b} \omega$ for all $b \ge a$, we see that f(x) = 0 for x > a. Hence the theorem holds for \mathbb{R} . Likewise, if $\omega = g(\theta)d\theta$ where $g(0) = g(2\pi)$, then $f(\theta) = \int_{0}^{\theta} g(\theta)d\theta$ satisfies $df = \omega$ and $f(0) = 0 = f(2\pi)$. Thus the theorem holds for the circle too.

TO BE CONT'D....