
NOTES FOR 8 NOV (WEDNESDAY)

1. Recap

(1) Proved Stokes’ theorem. Saw that deducing the usual Green theorem from our Stokes theorem
requires some effort.

(2) Compact orientable manifolds are not contractible.
(3) Defined fibre integration. Saw that a theorem implies Poincaré ’s lemma as corollary.

2. Closed and exact forms

Theorem 2.1. For any smooth k-form α on M × [0, 1], we have

i∗1α− i∗0α = d(Kα) +K(dα)

Proof. Choose a coordinate chart (x, U) near p. Then, α = αI(x, t)dt ∧ dxI + α̃J(x, t)dxJ . Now

Kα = (

∫ 1

0
αI(x, t)dt)dx

I . Thus

d(Kα) +K(dα) = dx(

∫ 1

0
αI(x, t)dt)dx

I + (

∫ 1

0
((dx + dt)α)K(x, t)dt)dxK

= (

∫ 1

0
(dxαI(x, t) ∧ dxI)dt) + (−

∫ 1

0
(dxαI) ∧ dxIdt) +

∫ 1

0

∂α̃J
∂t

dtdxJ

= α̃J(p, 1)− α̃J(p, 0) = i∗1α− i∗0α(2.1)

�

3. De Rham cohomology

Since we saw that it is important to know which closed forms are exact in order to detect non-trivial
topology of manifolds, we define the following vector spaces :

Definition 3.1. Suppose Ck(M) is the vector space of all smooth closed k-forms on M and Ek(M)

the space of all exact k-forms, then the quotient space Hk(M) = Ck

Ek is called the kth De Rham
cohomology group of M .

It turns out that for compact manifolds, the De Rham cohomology is finite dimensional. (But
proving this is quite non-trivial.) Let us compute a few of these groups.
H0(M): Z0 is empty and C0(M) is smooth f satisfying df = 0, i.e., f is a constant on each

component. Therefore H0(M) = Rc where c is the number of connected components of M .
If M is contractible and connected, H0(M) = R and all other Hk are 0 (by Poincaré). If M is

compact and oriented, then Hm(M) is at least one dimensional. (It turns out to be exactly one-
dimensional as we shall see later on.)

Given a map f : M → N , we have the pullback f∗ : Ωk(N) → Ωk(M). Since the pullback
commutes with d, it descends to a map f∗ : Hk(N) → Hk(M). Moreover, since (f ◦ g)∗ = g∗ ◦ f∗,
if f is a diffeomorphism, then Hk(N) ' Hk(M). So the De Rham cohomology is a diffeomorphism
invariant. (It turns out that it is actually a homeomorphism, or even better, a homotopy invariant.)
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2 NOTES FOR 8 NOV (WEDNESDAY)

Before we go ahead, we define a different cohomology group (De Rham with compact support)
: Hk

c (M) = Ckc (M)/Ekc (M) where the forms have compact support. If M is compact, then this
coincides with the usual De Rham groups. Note that EkcM does not consist of all exact forms with
compact support. For example, if on Rm, ω = fdx1 ∧ . . . dxm, where f has compact support, then it
is exact (Poincaré). But if ω = dη where η also has compact support, then

∫
ω =

∫
dη = 0 but that

is not the case if f ≥ 0 (and > 0 on an open set). So Hk
c (Rm) 6= 0. In fact,

Theorem 3.2. If M is a connected orientable m-manifold, then the map T [ω] =

∫
M
ω gives an

isomorphism Hm
c (M) ' R.

Proof. We know that T is surjective. Indeed, if ω is an orientation form, and f is a bump function
with compact support, then

∫
M fω > 0. Thus fω is not exact.

Suppose

∫
M
ω = 0. We need to prove that ω = dη where η has compact support.

We shall prove the theorem in three steps (induction - True for R, True for Rm assuming it is true
for m− 1 folds, true for general m folds assuming it is true for Rm.)

(1) True on R and S1 : If ω is a 1-form with compact support on R such that
∫
R ω = 0, then define

a function f(x) =

∫ x

−∞
ω. Note that df = ω by the FTC. f has compact support because

f(−a) = 0 for a large positive a and since
∫
R ω =

∫ b
−a ω for all b ≥ a, we see that f(x) = 0

for x > a. Hence the theorem holds for R. Likewise, if ω = g(θ)dθ where g(0) = g(2π), then

f(θ) =
∫ θ
0 g(θ)dθ satisfies df = ω and f(0) = 0 = f(2π). Thus the theorem holds for the

circle too.

TO BE CONT’D.... �
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