NOTES FOR 8 SEPT (FRIDAY)

1. Recap

(1) Proved that flows exist, are unique, and for compactly supported vector fields, they provide a one-parameter group of diffeomorphisms.

2. Vector fields, Tangent Bundle, Cotangent Bundle, etc

Theorem 2.1. Let X be a smooth vector field on M with $X(p) \neq 0$. Then there exists a coordinate system (x, U) around p so that $X = \frac{\partial}{\partial r^1}$ on U.

Proof. The idea is to simply flow along X and call the integral curves the x^1 -coordinate "lines". Indeed, first choose a coordinate system (y, V) around p such that $X(0) = \frac{\partial}{\partial y^1}(0)$, $X, \frac{\partial}{\partial y^2}, \frac{\partial}{\partial y^3}, \dots$ form a basis for the tangents spaces on V, and p corresponds to y = 0.

Define $h(x^1, ..., x^m) = \phi_{x^1}(0, x^2, ..., x^m)$. We claim that this is a local diffeomorphism around (0, ..., 0) such that $h_*(\frac{\partial}{\partial x^1} = X$. Therefore x^i provide a new coordinate system on a neighbourhood U of p and do the job. Indeed,

(2.1)
$$h_*(\frac{\partial}{\partial x^1})(f) = \frac{\partial f(\phi_{x^1}(0, x^2, \ldots))}{\partial x^1} = Xf(h(x))$$
$$h_*(\frac{\partial}{\partial x^i})(f) \text{ at } x = 0 = \frac{\partial f}{\partial x^i}(x = 0).$$

Thus *h* is an immersion at *p* and by the inverse function theorem, it is a local diffeomorphism. \Box

From now onwards, we denote Xf as L_Xf and call it "The Lie derivative of f along X". The reason is that we can define the Lie derivative of other beasts like vector fields and one-forms. Indeed, define

$$L_X Y(p) = \lim_{h \to 0} \frac{Y(p) - ((\phi_h)_* Y)(p))}{h}$$

Likewise, if ω is a one-form, then define

$$L_X \omega(p) = \lim_{h \to 0} \frac{(\phi_h^* \omega)(p) - \omega(p)}{h}$$

Note that $(\phi_h)_* Y(p) = (\phi_h)_* (Y_{\phi_{-h}(p)})$. The Lie derivative satisfies the following easy linearity properties.

(1) $L_X(\alpha_1 Y_1 + \alpha_2 Y_2) = \alpha_1 L_X Y_1 + \alpha_2 L_X Y_2$

(2) $L_X(\alpha_1\omega_1 + \alpha_2\omega_2) = \alpha_1L_X\omega_1 + \alpha_2L_X\omega_2.$

In addition, if $L_X Y$, $L_X \omega$ exist, then so do $L_X(fY)$, $L_X(f\omega)$ where *f* is smooth, and

- (1) $L_X(fY) = XfY + fL_XY$
- (2) $L_X(f\omega) = Xf\omega + fL_X\omega$

Proof. We will prove the first one. The second is similar.

(2.2)

$$L_X(fY)(p) = \lim_{h \to 0} \frac{f(p)Y(p) - (\phi_h)_*(f(\phi_{-h}(p))Y_{\phi_{-h}(p)})}{h}$$

$$= \lim_{h \to 0} \frac{f(p)Y(p) - f(\phi_{-h}(p))(\phi_h)_*(Y_{\phi_{-h}(p)})}{h}$$

$$= Xf(p)Y(p) + f(p)L_XY(p),$$

where the last equality follows by adding and subtracting $\frac{f(p)(\phi_h)_*(Y_{\phi_{-h}(p)})}{h}$, and by the easy fact that $\lim(\phi_h)_*Y_{\phi_{-h}(p)} = Y_p$.

Now we may compute the Lie derivative in local coordinates. Indeed, suppose $X = X^i \frac{\partial}{\partial x^i}$, $\omega = \omega_i dx^i$, and likewise for *Y*, then

(2.3)
$$L_X Y = Y^i L_X \frac{\partial}{\partial x^i} + X(Y^i) \frac{\partial}{\partial x^i} L_X \omega = \omega_i L_X dx^i + X(\omega_i) dx^i.$$

So we just have to evaluate L_X on the basis vector fields and 1-forms. Denote $e_i = \frac{\partial}{\partial x^i}$. Now $(\phi_h)_*(e_i)(p)(x^j) = \frac{\partial \phi_h^j}{\partial x^i}(\phi_{-h}(p))$ and $(\phi_h)^*dx^i = \frac{\partial \phi_h^i}{\partial x^j}dx^j = e_j(\phi_h^i)dx^j$ Thus (2.4) $L_X dx^i = \lim_{h \to 0} \frac{e_j(\phi_h)^i dx^j - dx^i}{h}$

By smoothness of $A(h, p) = x^i(\phi_h(p))$, we can interchange derivatives and limits to get

(2.5)
$$L_X dx^i = dx^j e_j \lim_{h \to 0} \frac{(\phi_h)^i - x^i}{h} = dx^j e_j (X^i).$$

Likewise,

(2.6)
$$L_X e_i(x^j) = \lim_{h \to 0} \frac{e_i(x^j) - e_i(\phi_h^j)(\phi_{-h})}{h} = \lim_{h \to 0} \frac{e_i(x^j)(\phi_{-h}) - e_i(\phi_h^j)(\phi_{-h})}{h} = e_i \lim_{h \to 0} \frac{x^j - \phi^j}{h} = -e_i X^j$$

Thus $L_X Y = (e_i(Y^j)X^i - e_i(X^j)Y^i)e_j$. Note that the following is easily proven to be true : **Lemma 2.2.** $L_X Y(f) = X(Y(f)) - Y(X(f)) = [X, Y](f)$