NOTES FOR 8 SEPT (FRIDAY)

1. Recap

(1) Proved that flows exist, are unique, and for compactly supported vector fields, they provide a one-parameter group of diffeomorphisms.

2. Vector fields, Tangent bundle, Cotangent bundle, etc

Theorem 2.1. Let X be a smooth vector field on M with $X(p) \neq 0$. Then there exists a coordinate system (x, U) around p so that $X=\frac{\partial}{\partial x^{1}}$ on U.

Proof. The idea is to simply flow along X and call the integral curves the x^{1}-coordinate "lines". Indeed, first choose a coordinate system (y, V) around p such that $X(0)=\frac{\partial}{\partial y^{1}}(0), X, \frac{\partial}{\partial y^{2}}, \frac{\partial}{\partial y^{3}}, \ldots$ form a basis for the tangents spaces on V, and p corresponds to $y=0$.

Define $h\left(x^{1}, \ldots, x^{m}\right)=\phi_{x^{1}}\left(0, x^{2}, \ldots, x^{m}\right)$. We claim that this is a local diffeomorphism around $(0, \ldots, 0)$ such that $h_{*}\left(\frac{\partial}{\partial x^{1}}=X\right.$. Therefore x^{i} provide a new coordinate system on a neighbourhood U of p and do the job. Indeed,

$$
\begin{gather*}
h_{*}\left(\frac{\partial}{\partial x^{1}}\right)(f)=\frac{\partial f\left(\phi_{x^{1}}\left(0, x^{2}, \ldots\right)\right)}{\partial x^{1}}=X f(h(x)) \\
h_{*}\left(\frac{\partial}{\partial x^{i}}\right)(f) \text { at } x=0=\frac{\partial f}{\partial x^{i}}(x=0) . \tag{2.1}
\end{gather*}
$$

Thus h is an immersion at p and by the inverse function theorem, it is a local diffeomorphism.
From now onwards, we denote $X f$ as $L_{X} f$ and call it "The Lie derivative of f along X ". The reason is that we can define the Lie derivative of other beasts like vector fields and one-forms. Indeed, define

$$
L_{X} Y(p)=\lim _{h \rightarrow 0} \frac{\left.Y(p)-\left(\left(\phi_{h}\right)_{*} Y\right)(p)\right)}{h}
$$

Likewise, if ω is a one-form, then define

$$
L_{X} \omega(p)=\lim _{h \rightarrow 0} \frac{\left(\phi_{h}^{*} \omega\right)(p)-\omega(p)}{h}
$$

Note that $\left.\left(\phi_{h}\right)_{*} Y\right)(p)=\left(\phi_{h}\right)_{*}\left(Y_{\phi_{-h}(p)}\right)$. The Lie derivative satisfies the following easy linearity properties.
(1) $L_{X}\left(\alpha_{1} Y_{1}+\alpha_{2} Y_{2}\right)=\alpha_{1} L_{X} Y_{1}+\alpha_{2} L_{X} Y_{2}$
(2) $L_{X}\left(\alpha_{1} \omega_{1}+\alpha_{2} \omega_{2}\right)=\alpha_{1} L_{X} \omega_{1}+\alpha_{2} L_{X} \omega_{2}$.

In addition, if $L_{X} Y, L_{X} \omega$ exist, then so do $L_{X}(f Y), L_{X}(f \omega)$ where f is smooth, and
(1) $L_{X}(f Y)=X f Y+f L_{X} Y$
(2) $L_{X}(f \omega)=X f \omega+f L_{X} \omega$

Proof. We will prove the first one. The second is similar.

$$
\begin{gather*}
L_{X}(f Y)(p)=\lim _{h \rightarrow 0} \frac{f(p) Y(p)-\left(\phi_{h}\right) *\left(f\left(\phi_{-h}(p)\right) Y_{\phi_{-h}(p)}\right)}{h} \\
=\lim _{h \rightarrow 0} \frac{f(p) Y(p)-f\left(\phi_{-h}(p)\right)\left(\phi_{h}\right) *\left(Y_{\phi_{-h}(p)}\right)}{h} \\
=X f(p) Y(p)+f(p) L_{X} Y(p), \tag{2.2}
\end{gather*}
$$

where the last equality follows by adding and subtracting $\frac{f(p)\left(\phi_{h}\right) *\left(Y_{\phi_{-h}(p)}\right)}{h}$, and by the easy fact that $\lim \left(\phi_{h}\right)_{*} Y_{\phi_{-h}(p)}=Y_{p}$.
Now we may compute the Lie derivative in local coordinates. Indeed, suppose $X=X^{i} \frac{\partial}{\partial x^{i}} \omega=\omega_{i} d x^{i}$, and likewise for Y, then

$$
\begin{align*}
& L_{X} Y=Y^{i} L_{X} \frac{\partial}{\partial x^{i}}+X\left(Y^{i}\right) \frac{\partial}{\partial x^{i}} \\
& L_{X} \omega=\omega_{i} L_{X} d x^{i}+X\left(\omega_{i}\right) d x^{i} \tag{2.3}
\end{align*}
$$

So we just have to evaluate L_{X} on the basis vector fields and 1-forms. Denote $e_{i}=\frac{\partial}{\partial x^{1}}$. Now $\left(\phi_{h}\right)_{*}\left(e_{i}\right)(p)\left(x^{j}\right)=\frac{\partial \phi_{h}^{j}}{\partial x^{i}}\left(\phi_{-h}(p)\right)$ and $\left(\phi_{h}\right)^{*} d x^{i}=\frac{\partial \phi_{h}^{i}}{\partial x^{j}} d x^{j}=e_{j}\left(\phi_{h}^{i}\right) d x^{j}$ Thus

$$
\begin{equation*}
L_{X} d x^{i}=\lim _{h \rightarrow 0} \frac{e_{j}\left(\phi_{h}\right)^{i} d x^{j}-d x^{i}}{h} \tag{2.4}
\end{equation*}
$$

By smoothness of $A(h, p)=x^{i}\left(\phi_{h}(p)\right)$, we can interchange derivatives and limits to get

$$
\begin{equation*}
L_{X} d x^{i}=d x^{j} e_{j} \lim _{h \rightarrow 0} \frac{\left(\phi_{h}\right)^{i}-x^{i}}{h}=d x^{j} e_{j}\left(X^{i}\right) \tag{2.5}
\end{equation*}
$$

Likewise,

$$
\begin{equation*}
L_{X} e_{i}\left(x^{j}\right)=\lim _{h \rightarrow 0} \frac{e_{i}\left(x^{j}\right)-e_{i}\left(\phi_{h}^{j}\right)\left(\phi_{-h}\right)}{h}=\lim _{h \rightarrow 0} \frac{e_{i}\left(x^{j}\right)\left(\phi_{-h}\right)-e_{i}\left(\phi_{h}^{j}\right)\left(\phi_{-h}\right)}{h}=e_{i} \lim _{h \rightarrow 0} \frac{x^{j}-\phi^{j}}{h}=-e_{i} X^{j} \tag{2.6}
\end{equation*}
$$

Thus $L_{X} Y=\left(e_{i}\left(Y^{j}\right) X^{i}-e_{i}\left(X^{j}\right) Y^{i}\right) e_{j}$. Note that the following is easily proven to be true :
Lemma 2.2. $L_{X} Y(f)=X(Y(f))-Y(X(f))=[X, Y](f)$

