
NOTES FOR 8 SEPT (FRIDAY)

1. Recap

(1) Proved that flows exist, are unique, and for compactly supported vector fields, they provide
a one-parameter group of diffeomorphisms.

2. Vector fields, Tangent bundle, Cotangent bundle, etc

Theorem 2.1. Let X be a smooth vector field on M with X(p) , 0. Then there exists a coordinate system
(x,U) around p so that X = ∂

∂x1 on U.

Proof. The idea is to simply flow along X and call the integral curves the x1-coordinate “lines”.
Indeed, first choose a coordinate system (y,V) around p such that X(0) = ∂

∂y1 (0), X, ∂
∂y2 ,

∂
∂y3 , . . . form

a basis for the tangents spaces on V, and p corresponds to y = 0.
Define h(x1, . . . , xm) = φx1(0, x2, . . . , xm). We claim that this is a local diffeomorphism around

(0, . . . , 0) such that h∗( ∂
∂x1 = X. Therefore xi provide a new coordinate system on a neighbourhood U

of p and do the job. Indeed,

h∗(
∂

∂x1
)( f ) =

∂ f (φx1(0, x2, . . .))
∂x1

= X f (h(x))

h∗(
∂

∂xi )( f ) at x = 0 =
∂ f
∂xi (x = 0).(2.1)

Thus h is an immersion at p and by the inverse function theorem, it is a local diffeomorphism. �

From now onwards, we denote X f as LX f and call it “The Lie derivative of f along X”. The reason
is that we can define the Lie derivative of other beasts like vector fields and one-forms. Indeed,
define

LXY(p) = lim
h→0

Y(p) − ((φh)∗Y)(p))
h

Likewise, if ω is a one-form, then define

LXω(p) = lim
h→0

(φ∗hω)(p) − ω(p)

h

Note that (φh)∗Y)(p) = (φh)∗(Yφ−h(p)). The Lie derivative satisfies the following easy linearity proper-
ties.

(1) LX(α1Y1 + α2Y2) = α1LXY1 + α2LXY2
(2) LX(α1ω1 + α2ω2) = α1LXω1 + α2LXω2.

In addition, if LXY, LXω exist, then so do LX( f Y), LX( fω) where f is smooth, and

(1) LX( f Y) = X f Y + f LXY
(2) LX( fω) = X fω + f LXω
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Proof. We will prove the first one. The second is similar.

LX( f Y)(p) = lim
h→0

f (p)Y(p) − (φh)∗( f (φ−h(p))Yφ−h(p))

h

= lim
h→0

f (p)Y(p) − f (φ−h(p))(φh)∗(Yφ−h(p))

h
= X f (p)Y(p) + f (p)LXY(p),(2.2)

where the last equality follows by adding and subtracting
f (p)(φh)∗(Yφ

−h(p))
h , and by the easy fact that

lim(φh)∗Yφ−h(p) = Yp. �

Now we may compute the Lie derivative in local coordinates. Indeed, suppose X = Xi ∂
∂xi , ω = ωidxi,

and likewise for Y, then

LXY = YiLX
∂

∂xi + X(Yi)
∂

∂xi

LXω = ωiLXdxi + X(ωi)dxi.(2.3)

So we just have to evaluate LX on the basis vector fields and 1-forms. Denote ei = ∂
∂xi . Now

(φh)∗(ei)(p)(x j) =
∂φ

j
h

∂xi (φ−h(p)) and (φh)∗dxi =
∂φi

h
∂x j dx j = e j(φi

h)dx j Thus

LXdxi = lim
h→0

e j(φh)idx j
− dxi

h
(2.4)

By smoothness of A(h, p) = xi(φh(p)), we can interchange derivatives and limits to get

LXdxi = dx je j lim
h→0

(φh)i
− xi

h
= dx je j(Xi).(2.5)

Likewise,

LXei(x j) = lim
h→0

ei(x j) − ei(φ
j
h)(φ−h)

h
= lim

h→0

ei(x j)(φ−h) − ei(φ
j
h)(φ−h)

h
= ei lim

h→0

x j
− φ j

h
= −eiX j(2.6)

Thus LXY = (ei(Y j)Xi
− ei(X j)Yi)e j. Note that the following is easily proven to be true :

Lemma 2.2. LXY( f ) = X(Y( f )) − Y(X( f )) = [X,Y]( f )
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