
NOTES FOR 13 MAR (TUESDAY)

1. Recap

(1) Stated the Hodge theorem.
(2) Applied it to prove Poincarè duality and a sketch of the proof of the Kunneth formula.

2. Statement of the Hodge theorem and applications

For the flat torus, since we already proved that ∆d is a constant coefficient symmetric elliptic
operator, and that elliptic operators are Fredholm, we see that ∆dη = ω can be solved for η if and only
if ω is orthogonal to the space of harmonic forms (which we proved is finite dimensional). Moreover,
we can choose η to be the unique one having the smallest L2-norm. So we have η = G(ω). Thus, every
form ω can be uniquely written as H(ω) + ∆G(ω). Now ∆dd(Gω) = dd†dGω = d∆dGω = dω. This
does not yet show that d(Gω) = G(dω). We need to show that d(Gω) has the smallest L2-norm among
all such solutions, i.e., it is orthogonal to harmonic forms. But indeed, (d(Gω), α) = (Gω, d†α) = 0.
Likewise, G commutes with d†. As for the completeness of the eigenfunctions, one can explicitly
calculate these eigenfunctions as simply being of the form eikx. We know that the Fourier functions
are complete in L2 (Parseval-Plancherel).

Seeing how useful this Hodge theorem is, we want to prove it for general compact oriented (M, g).
There are several approaches to this. One is to prove such a result for general elliptic operators.
(However, that approach has the disadvantage that it does not say much about eigenvalues. So we
have to deal with that issue.)

3. Sobolev spaces on general manifolds

The theory of Sobolev spaces, Sobolev embedding, etc goes over to general manifolds. We will
focus on that now.

There are many ways of defining Hs(M,E) :

Definition 3.1. Suppose (E, h,∇) is a vector bundle with metric and connection on a compact
oriented (M, g) and s ≥ 0 is an integer. Suppose t is a smooth section of E. Define ‖t‖2Hs =∫
M

(|t|2 + |∇t|2 + . . . + |∇st|2)volg. Define Hs
∇,h,g to be the completion of this space (in the metric

space sense). Concretely, Hs consists of L2 sections t such that there exist smooth sections tn → t
in L2 and tn form a Cauchy sequence in the Hs norm.

The claim is that these spaces are equivalent. Indeed,

Lemma 3.2. The Sobolev norms are equivalent (on smooth sections) for different h,∇, g.

Proof. Suppose we choose h1,∇1, g1, h2,∇2, g2. First of all, just as in the exam, it is easy to
see that there exists a positive finite constant C so that 1

Ch1 ≤ h2 ≤ Ch2,
1
C g2 ≤ g1 ≤ Cg2

where the inequalities are in the sense of positive-definite matrices. Now ∇1 = ∇2 + B where B
is an endomorphism of E. Let |B|1, |B|2 ≤ C. Now 1

C2 |∇1t|h2⊗g2 ≤ |∇1t|2h1⊗g1 ≤ C2|∇1t|2h2⊗g2 .

Now |∇1t|h2⊗g2 ≤ |∇2t|2 + C|t|2. Moreover, |∇2t|2 ≤ |∇1t|2 + C|t|2. Hence, 1
K (|t|22 + |∇2t|22) ≤

|t|22 + |∇1t|22 ≤ K(|t|22 + |∇2t|22). By induction, we can show this for all derivatives. �
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Remark 3.3. Note that the above proof works even for open subsets U of a compact manifold M .

To make another definition, we need a lemma :

Lemma 3.4. If ~s : U ⊂ Rm → Rr is in L1
loc and weakly differentiable with weak derivatives ∂i~s = ~ti,

then for any smooth functions g : U → GL(r,R), diffeomorphisms y(x) : U → U , the function ~̃s = g~s

is weakly differentiable with weak derivative ∂~̃s
∂yi

= ∂g(x(y))
∂yi

g−1~̃s + g~tj
∂xj

∂yj
. (Note that this coincides

with what we expect if ~s is smooth.)

Proof. Indeed, if ~φ is a smooth function with compact support in U , then∫
U

(
〈∂g(x(y))

∂yi
g−1~̃s+ g~tj

∂xj

∂yj
, φ〉dy =

∫
U
〈∂g(x(y))

∂yi
g−1~̃s, φ〉+

∂xj

∂yj
〈~tj , gTφ〉

)
dy

=

∫
U
〈~̃s, (∂g(x(y))

∂yi
g−1)Tφ〉dy −

∫
U
〈~̃s, (g−1)T ∂

∂xj

(√
det
(∂~y
∂~x

)∂xj
∂yj

gTφ

)
〉

√
det
(∂~x
∂~y

)
dy

= −
∫
U
〈~̃s, ∂φ

∂yi
〉dy −

∫
U
〈~̃s, ∂

∂xj

(√
det
(∂~y
∂~x

)∂xj
∂yj

)
φ〉

√
det
(∂~x
∂~y

)
dy = −

∫
U
〈~̃s, ∂φ

∂yi
〉dy(3.1)

�

This shows that the notion of weak differentiability of an L1
loc section of a vector bundle is well-

defined in terms of coordinates and trivialisations.

Lemma 3.5. Suppose (E,∇, h) is a bundle with a metric and a compatible connection on (M, g)
where M is any orientable manifold (not necessarily compact). Let s ∈ L1

loc(M) be a weakly differ-
entiable section. Then the weak derivative ∇s is well-defined as an L1

loc section of T ∗M ⊗ E and

satisfies (∇s, φ)L2 = (s,∇†φ)L2 where φ is any compactly supported smooth section on M and ∇†
is given by the same formula as before. Conversely, if this property is satisfied, then s is weakly
differentiable (in the sense defined before).

Proof. Define ∇s locally as ∂ ~sα
∂xi

dxi + Aα~sα where the derivatives are weak derivatives. From the
previous lemma it is easily seen that it transforms like a section of T ∗M ⊗ E.

Suppose we cover M by a locally-finite cover Uα of charts which are also trivialising neighbour-
hoods, and we let ρβ be a partition-of-unity subordinate to it (Note that ρβ has compact support
in some Uβ but the indexing set need not be the same.) Then (∇s, φ) =

∑
β(∇s, ρβφ) (the sum

is finite because φ has compact support). Now (∇s, φ) = −
∑

β(s, d†(ρβφ)) +
∑

β(s,A†ρβφ) =

−
∑

β(s,∇†(ρβφ)) = −
∑

β(s,∇†φ) (where we used the property that ∇† is a first order differential

operator and d(
∑
ρβ) = 0).

The converse part follows by taking φ to be supported in a coordinate trivialising open set. �

Now we define the Sobolev space in another way.

Definition 3.6. Suppose (E,∇, h) is a bundle with a metric and a compatible connection on a

compact oriented (M, g). Let s ≥ 0 be an integer. Then the space H̃s
∇,h,g consists of s times weakly

differentiable sections ∈ L2 with inner product (a, b) =

∫
〈a, b〉volg + 〈∇a,∇b〉volg + . . . where the

derivatives are weak derivatives.

Lemma 3.7. H̃s
∇,h,g is a Hilbert space and smooth sections are dense in it. Hence it coincides with

Hs
∇,h,g.
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Proof. Hilbert space : If fn is a Cauchy sequence, then ρfn is also a Cauchy sequence for any smooth
function ρ. Assume that ρ is compactly supported in a coordinate trivialising neighbourhood U . Thus
ρfn can be extended smoothly to S1 × S1 . . . (by simply taking a large cube in Rm containing its
support and periodically extending it). Moreover, it is also clear that ρfn is Cauchy inHs(S1×S1 . . .).
Hence, ρfn → u for some u ∈ Hs(S1 × S1 . . .). This function u has support in the previously chosen
large rectangle and hence can be extended to all of M . Moreover, since the Sobolev norms are
equivalent, this convergence happens in Hs

∇,h,g. fn =
∑
ραfn →

∑
uα in Hs where ρα is a partition-

of-unity.
Smooth functions are dense : Suppose ρα ≥ 0 is such that

∑
ρ2α = 1 and these are subordinate

to a finite trivialising coordinate cover Uα. Suppose f ∈ Hs
∇,h,g. Then there are sequences of

smooth functions fn,α → ραf in Hs(S1 × S1 . . .). Now ραfn,α is well-defined on M . Moreover,
‖
∑
ραfn,α − ραραf‖Hs

∇,h,g
≤ C

∑
α ‖
∑
fn,α − ραραf‖Hs(S1×S1...) → 0. �

There is yet another way to define the Sobolev space.

Definition 3.8. Choose a finite cover of trivialising coordinate neighbourhoods (Uα, x
i
α, ej,α) and

a partition-of-unity subordinate to it. The space H ‘s is the space of all L1
loc sections a such that

‖a‖2 = ‖ρα~aα‖Hs(S1×S1...) <∞. The inner product between a and b is
∑
α

(ρal~aα, ρα~bα)Hs

Lemma 3.9. The space H ‘s is well-defined independent of choices. It is a Hilbert space and smooth
sections are dense in it. On smooth functions the H ‘s norm is equivalent to the Hs

∇,h,g norm with
respect to any connection and hence it is homeomorphically isomorphic to Hs

∇,h,g.

The proof is very similar to the earlier ones and is left as an exercise.

Remark 3.10. One can define the W k,p spaces and the Ck,α spaces too.
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