
NOTES FOR 15 FEB (THURSDAY)

1. Recap

(1) Defined the torsion tensor (as a natural obstruction) and proved the LC connection has zero
torsion tensor.

(2) Wrote formulae for the Riemann curvature tensor and described its symmetries.
(3) Defined the Ricci tensor and the scalar curvature. Defined Einstein metrics. Stated the

Bonnet-Myers and Cheng rigidity theorems. Also stated the Yamabe problem.

2. Connections and curvature

One-manifolds do not have any curvature. On a surface the scalar curvature determines the full
Riemann curvature tensor. Indeed, Rabcd = −gaiRibcd = K(gacgdb − gadgcb) where 2K = S.

On a three manifold, the Ricci curvature determines it. From four manifolds onwards, these are
all different.

Note that if we are given an orthonormal X,Y in TpM , then exp(uX + vY ) is locally a surface in
the manifold. It has the induced metric and the induced curvature (all curvatures are the same on
a surface). This curvature turns out to be K(X,Y ) = g(R(X,Y )Y,X). These curvatures (for every
two orthonormal X,Y ) are called sectional curvatures of 2-planes. More generally, the sectional

curvature is defined as K(X,Y ) = g(R(X,Y )Y,X)
(X,X)(Y,Y )−(X,Y )2

. Define κ(X,Y ) = g(R(X,Y )Y,X). It turns

out (an easy calculation) that the sectional curvatures completely determine the Riemann curvature
tensor.

6g(R(x, y)z, w) = κ(x+ w, y + z)− κ(x, y + z)− κ(w, y + z)− κ(y + w, x+ z)

+κ(y, x+ z) + κ(w, x+ z)− κ(x+ w, y)− κ(x+ w, z)

+κ(x, y) + κ(w, y) + κ(x, z) + κ(w, z)

+κ(y + w, x) + κ(y + w, z)− κ(y, x)− κ(w, x)− κ(y, z)− κ(w, z)(2.1)

A manifold is said to have positive sectional curvature if all the sectional curvatures are positive (at
all points and all 2-planes) and likewise for negative sectional curvature, etc. Just as the metric has
the same symmetries as the Ricci tensor (and hence it makes sense to ask for Einstein metrics, which
are essentially “constant” Ricci curvature), the Riemann curvature tensor has the same symmetries
as gacgdb − gadgcb. It turns out that

Lemma 2.1. The sectional curvatures of all 2-planes are the same everywhere if and only if −gaiRibcd =
Rabcd = K(gacgdb − gadgcb) where K is a constant (equal to the sectional curvatures). Such a metric
is said to have constant sectional curvature.

Now we shall write some examples :

(1) Rn, Euc obviously has zero curvature.
(2) The torus S1 × S1 . . . , dθ1 ⊗ dθ1 + . . . also has 0 curvature (locally it is the same as Rn).
(3) The induced metric on Sn ⊂ Rn+1 is preserved under SO(n + 1) (because the Euclidean

metric is so and Sn itself is preserved). It is easy to see that if f : M → N is an isometry,
then f∗RiemannN = RiemannM . Therefore, the sectional curvatures are the same at every
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point. The constant K is positive because it is so at the north pole (where it can be calculated
easily).

(4) The product metric on S2×S2 has non-negative sectional curvature (but some 2-planes have
0 sectional curvature). It is an open problem (The Hopf conjecture) as to whether there is a
metric having strictly positive sectional curvature on S2 × S2.

(5) The Hyperbolic metric on Hn is g =
∑

(dxi)⊗(dxi)
(xn)2

. It is “conformal” to the Euclidean metric

(i.e., it is the Euclidean metric times a function). The curvature can be easily calculated
knowing how to compute the curvature of g = fg0. The Christoffel symbols are

Γijk =
(xn)2

2
(
∂f

∂xµ
δij +

∂f

∂xj
δiµ −

∂f

∂xi
δjµ)

= − 1

xn
(δnµδ

i
j + δnjδ

i
µ − δniδjµ)(2.2)

Now one easily calculate the Riemann curvature tensor to prove that the sectional curvatures
are constant equal to −1.

There are a number theorems about sectional curvature.

(1) Complete Riemannian manifolds with constant sectional curvature are an isometric quotient
of space forms : Hyperbolic space, or Euclidean space, or the Sphere. (Killing-Hopf theorem)

(2) If the sectional curvature of a complete manifold is non-positive, then the universal cover is
diffeomorphic to Rn (Cartan-Hadamard theorem).

(3) If a complete Riemannian manifold has negative sectional curvature, then every nontrivial
abelian subgroup of π1(M) must be Z (Preissman’s theorem).

(4) (Synge’s theorem) If a complete Riemannian manifold has positive sectional curvature, then
(a) If M is even-dimensional and orientable, then M is simply connected
(b) If M is odd-dimensional, it is orientable.

3. Divergence, Stokes’ theorem, and Laplacians

Suppose u : M → R is a function on a Riemannian manifold (M, g) whose tangent bundle is
equipped with the Levi-Civita connection. Then ∇u = ∂u

∂xj
gij ∂

∂xi
is called the gradient of u with

respect to g. It is just dual to du using the metric g. Suppose c is a regular value of u, then u−1(c) is
a submanifold of M of dimension m− 1. The gradient ∇u is normal to this submanifold. Indeed, if
~v is tangent to the submanifold, i.e., ~v = dγ

dt (0) where γ is a curve lying on u−1(c), i.e., u(γ(t)) = c,

then du
dt = 0, i.e., 0 = ∂u

∂xi
∂γi

∂t = (∇u)jgij
∂γi

∂t . Thus ∇u is perpendicular to ~v.
Suppose X is a smooth vector field. Define the divergence of X

Definition 3.1. div(X) = ∇iXi = ∂Xi

∂xi
+ΓiikX

k. So in normal coordinates, it is the usual divergence
at p. Note that div(fX) = X(f) + fdiv(X).
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