NOTES FOR 15 MAR (THURSDAY)

1. Recap

- (1) Defined Sobolev spaces in various ways and showed their equivalence (i.e., they are all quasiisometrically isomorphic).
- (2) The slogan is "Sections that are compactly supported on a trivialising coordinate neighbourhood can be thought of as sitting on a flat torus (and the Sobolev norms are equivalent)."

2. Sobolev embedding and compactness

Define $C^{k,\alpha}(M, E)$ as the space of C^k sections of E such that in local coordinates (and frames) they are $C^{k,\alpha}$. The norm on this space is $\|u\|_{C^{k,\alpha}} = \sum_{\mu} \|\vec{u}_{\mu}\|_{C^{k,\alpha}(\bar{U}_{\mu})}$. This is independent of choices

made and is a Banach space. This will be given as a $\mathop{\mathrm{HW}}^{\mu}$ problem.

Actually, this is equivalent to the norm $\sum \|\rho_{\mu}\vec{u}_{\mu}\|_{C^{k,\alpha}(\bar{U}_{\mu})}$:

Proof. Indeed, firstly, $\sup_{x} |f(x)g(x)| + \sup_{x,y} \frac{|f(x)g(x) - f(y)g(y)|}{|x-y|^{\alpha}} \le ||f||_{C^{0,\alpha}} ||g||_{C^{0,\alpha}}$. Hence $\sum ||\rho_{\mu}\vec{u}_{\mu}||_{C^{k,\alpha}(\bar{U}_{\mu})} \le C ||u||_{C^{k,\alpha}}$.

Next, if one changes coordinates and trivialisations, the resulting $C^{k,\alpha}$ norms are equivalent (a part of the the HW problem). Therefore, $\|\vec{u}_{\mu}\|_{C^{k,\alpha}(\bar{U}_{\mu})} \leq \sum_{\nu \neq \mu} \|\rho_{\nu}\vec{u}_{\mu}\| + \|\rho_{\mu}\vec{u}_{\mu}\|$. Now $\|\rho_{\nu}\vec{u}_{\mu}\|_{C^{k,\alpha}(\bar{U}_{\mu})} = \|g_{\nu\mu}\rho_{\nu}\vec{u}_{\nu}\|_{C^{k,\alpha}(\bar{U})_{\mu}} \leq C \|\rho_{\nu}\vec{u}_{\nu}\|_{C^{k,\alpha}(\bar{U}_{\nu})}$ where the last norm is in the ν coordinates. Hence we are done.

Firstly, we have the following compactness result :

Lemma 2.1. Suppose $k \leq l$. If k < l or $0 \leq \beta < \alpha < 1$, then $C^{l,\alpha} \subset C^{k,\beta}$ is a compact embedding.

Proof. The embedding part is trivial. We shall prove that $C^{0,\alpha} \subset C^0$ is compact (the general case is similar). Let ρ_{α} be a partition of unity. If $||f_n||_{C^{0,\alpha}} \leq C$, then $||\rho_{\mu}f_n||_{C^{0,\alpha}(\bar{U}_{\mu})} \leq C$. By the usual Arzela-Ascoli argument as we did earlier, there is a subsequence (which we shall denote by f_n still) such that $\rho_{\mu}f_n \to f_{\mu}$ on $C^{0,\alpha}(\bar{U}_{\mu})$ for some function $f_{\mu}: U_{\alpha} \to \mathbb{R}^r$. (For each μ there is a potentially different subsequence. We choose one for the first μ , then choose a further subsequence for the second μ and so on. There are only finitely many μ .) Clearly f_{μ} has compact support in U_{μ} and hence can be extended to a $C^{0,\alpha}$ section of E on M. Now $|| \sum_{\mu} f_{\mu} - f_n ||_{C^{0,\alpha}(M)} \leq C \sum_{\mu} ||f_{\mu} - \rho_{\mu}f_n||_{C^{0,\alpha}(\bar{U}_{\mu})} \to$ 0.

Now we prove Sobolev embedding plus compactness.

Theorem 2.2. The following inclusions are compact. (Sometimes, this along with the above theorem are referred to as the Sobolev embedding theorems.)

- (1) $H^{s}(E) \subset H^{l}(E)$ if l < s. (Rellich lemma.)
- (2) $H^{s}(E) \subset C^{a}(M, E)$ if $s \geq [\frac{n}{2}] + a + 1$. (Rellich-Kondrachov compactness.)
- Proof. (1) The inclusion part is clear. If f_n is a bounded sequence in $H^s(E)$, then $\rho_{\alpha} f_n \in H^s(S^1 \times S^1 \dots)$ is a bounded sequence and by the usual Rellich lemma, it has a convergent subsequence (which abusing notation as usual we still denote by the subscript n) $\rho_{\alpha} f_n \to f_{\alpha}$

in $H^s(S^1 \times S^1 \dots)$. Passing to a further subsequence (that converges a.e.) we see that f_α has support in U_α and hence can be thought of as being a global section on M. By equivalence of norms, $\rho_\alpha f_n \to f_\alpha$ in $H^s(M, E)$. Thus $\sum \rho_\alpha f_n = f_n \to \sum f_\alpha$.

of norms, $\rho_{\alpha}f_n \to f_{\alpha}$ in $H^s(M, E)$. Thus $\sum \rho_{\alpha}f_n = f_n \to \sum f_{\alpha}$. (2) If $f \in H^s(E)$ then $\rho_{\alpha}f \in H^s(S^1 \times S^1 \dots)$. Thus $\rho_{\alpha}f \in C^a(S^1 \times S^1 \dots)$ by the usual Sobolev embedding on the torus. Hence, $\rho_{\alpha}f \in C^a(M, E)$ by equivalence of norms. Thus $\sum_{\alpha} \rho_{\alpha}f = f \in C^a(M, E)$. Likewise, if $f_n \in H^s(E)$ is bounded, then a subsequence $\rho_{\alpha}f_n \to f_{\alpha}$ in $C^a(S^1 \times S^1 \dots)$. Since f_{α} is supported on U_{α} , as before $f_n = \sum \rho_{\alpha}f_n \to \sum f_{\alpha}$ in $C^a(M, E)$.

3. Elliptic operators - Regularity

Now we define the notion of a uniformly elliptic operator : Suppose $(E, h_E, \nabla_E), (F, h_F)$ are smooth bundles with metrics and a metric compatible connection for E on a compact oriented (M, g) where TM is equipped with the Levi-Civita connection. Whenever we use ∇ in what follows, it is made out of ∇_E, ∇_g (Fix h_E, h_F, ∇_E , and g in whatever follows.)

First we prove a "structure theorem" for linear PDOs.

Lemma 3.1. To every linear PDO L of order o with smooth coefficients, there exist smooth maps $a_k: T^*M \otimes T^*M \otimes \ldots T^*M \otimes E \to F$ (where T^*M is repeated k times) such that $L(u) = \sum_{k=0}^{o} a_k \nabla^k u$.

Proof. We prove this by induction on o. For o = 0, by tensoriality, there is such an endomorphism. Assume the result for $0, 1, \ldots, o - 1$. Then locally, in a trivialising coordinate chart, $L(u)_{\alpha} = \sum_{k=0}^{o} a_{k,\alpha}^{I} \partial_{I} \vec{u}_{\alpha}$. If we change the trivialising coordinate chart, then $\vec{u}_{\beta} = g_{\beta\alpha}\vec{u}_{\alpha}$, and $\frac{\partial}{\partial y^{i}} = \frac{\partial x^{j}}{\partial y^{i}} \frac{\partial}{\partial x^{i}}$ (and the tensor product version of this). The highest order term changes as $a_{0,\alpha}^{I} \partial_{x,I} \vec{u}_{\alpha} \rightarrow a_{o,\alpha}^{I} g_{\beta\alpha} \frac{\partial y^{J}}{\partial x^{I}} \partial_{y,J} \vec{u}_{\beta}$, i.e., a_{o} is a global section of $End(T^{*}M \otimes T^{*}M \ldots E, F)$. Hence $L(u) - a_{o} \nabla^{o} u$ is a linear PDO of order o - 1 and hence by induction we are done.

The formal adjoint L^*_{form} of L is defined as being a linear PDO of the same order given by $\sum_{k=0}^{o} (\nabla^k)^{\dagger} \circ a_k^{\dagger}$. It satisfies (and is equivalent to) $(L^*_{form}u, v) = (u, Lv)$ for smooth u, v.

Definition 3.2. The principal symbol of L is the Endomorphism $\sigma(L) : T^*M \otimes \ldots E \to F$ given by $\sigma(L) = a_o$.

Definition 3.3. A linear PDO L with smooth coefficients is called uniformly elliptic with ellipticity constants $\delta_1, \delta_2 > 0$ if $\delta_1 |v|_{h_E(p)}^2 \leq |\sigma_p(L)(\zeta, \zeta, \dots, \zeta)v|_{h_F(p)}^2 \leq \delta_2 |v|_{h_E(p)}^2 \quad \forall \ p \in M, \zeta \neq 0 \in T_p^*M$ and the principal symbol is invertibel. (Please note that δ_1, δ_2 depend on the fixed h_F, h_E obviously.) In particular, the ranks of E and F are required to be the same.

It is clear that L is uniformly elliptic (from now on, called "elliptic") if and only if L_{form}^* is so. The ellipticity constants may be chosen to be equal. (Again, the ranks of E and F being the same is important for this.)

Definition 3.4. Suppose f is an L^2 section of F. An L^2 section u is said to be a distributional solution of Lu = f if for every smooth section ϕ of F, $(u, L_{form}^*\phi) = (f, \phi)$. (Please note that we have not defined distributions in general. However, the notion of a distributional solution does not need distributions.)

Next we prove that distributional solutions of elliptic equations are smooth.

Theorem 3.5. If L is uniformly elliptic and f a smooth section of F. Then if $u \in L^2$ satisfies Lu = f in the sense of distributions then u is smooth. Moreover, if $f \in H^s$, then $u \in H^{s+l}$ and $\|u\|_{H^{s+o}} \leq C_s(\|f\|_{H^s} + \|u\|_{L^2})$ where C_s depends only on h_E, h_F, g, ∇_E , an upper bound on $\|a_k\|_{C^{s+o}}$, and on the ellipticity constants.

We claim that this theorem follows from

Theorem 3.6. If L is uniformly elliptic, u is a smooth section of E, then $||u||_{H^{s+o}} \leq C_s(||Lu||_{H^s} + ||u||_{L^2}).$

Indeed, assume this theorem. Then we shall prove theorem 3.5. Suppose u_n are smooth sections converging to u in L^2 . Then $||u_n||_{H^{s+o}} \leq C_s(||Lu_n||_{H^s} + ||u_n||_{L^2})$ according to theorem 3.5. Note that $(Lu_n, \phi) = (u_n, L_{form}^* \phi) \rightarrow (u, L_{form}^* \phi) = (f, \phi)_{L^2} \forall \phi$.