
NOTES FOR 16 JAN (TUESDAY)

1. Recap

(1) Proved the compactness theorems about Sobolev and Hölder spaces.
(2) Defined constant-coefficient linear elliptic operators on the torus (the principal symbol is

invertible).

2. Constant-coefficient elliptic operators on the torus

Even for elliptic operators, the above equation for Fourier coefficients cannot always be inverted.
However, for sufficiently large |k|, it can be inverted to produce an “approximate” solution ~uapp

whose Fourier coefficients are 0 for |k| ≤ N and ~̂uapp(~k) = L̂−1~k
~̂f(~k). We claim that

Theorem 2.1. If ~f is in Hs and L is elliptic, then

(1) ~uapp is in Hs+l.

(2) The map G : Hs → Hs+l given by G(f) = ~uapp is a bounded linear map (with the bound
depending on the ellipticity constants, s, l, and coefficients of the lower order terms).

(3) L◦G− I : Hs → Hs and G◦L− I : Hs+l → Hs+l are compact operators. (In simple english,
G is an “almost” inverse of L. It is called a parametrix for L.)

(4) If ~u ∈ Hs+l satisfies L(~u) = ~f , then ‖u‖Hs+l ≤ C(‖f‖Hs + ‖u|L2) where C depends only on
the ellipticity constants, s, l, and bounds on the other coefficients (the lower order terms).

Proof. (1) Note that |~̂uapp(~k)| ≤ C ‖
~̂f(~k)‖
‖~k‖l

if |~k| ≥ N where N is sufficiently (depending on the

ellipticity constants and the coefficients of the lower order terms) large. Indeed, the magnitude

of the lower order terms is less than C(‖~k‖l−1 + ‖~k‖l−2 + . . . ≤ C‖~k‖l−1) if ‖~k‖ > 1. Now

‖[σ~k + lower][~v]‖ ≥ (δ1‖~k‖l −C‖~k‖l−1)‖~v‖. Of course if |~k| ≥ N is large, then ‖L̂[~v]‖ ≥ c‖~v‖
where c > 0. Hence ‖L̂−1[~v]‖ ≤ C‖~k‖−l‖~v‖ for large N .

The above easily implies that ~uapp ∈ Hs+l. Moreover, ‖~uapp‖Hs+l ≤ C‖f‖Hs .
(2) The last inequality implies this result.

(3) K(f) = L ◦ G(f) − f = L(uapp) − f = −
∑
|k|<N

~̂f(~k)ei
~k.~x. Now K(f) is smooth and is

hence in Ha ∀ a. By the Rellich compactness lemma, K(f) : Hs → Hs is compact. Now

G(L(u))−u = −
∑
|k|<N

û(k)ei
~k.~x. As before this is a smooth function and hence by the Rellich

lemma, G ◦ L− I is compact.

(4) Taking Fourier series on both sides, L̂~̂u(~k) = ~̂f(~k). Of course, for large |k|, u coincides with
uapp. For small |k| < N , (1 + |k|)s+l ≤ (1 +N)s+l ≤ C where C depends only on N, s, l and
hence only on the ellipticity constants, s, l, and the bounds on the lower order coefficients.
This proves the result.

�

Now we define a useful notion in functional analysis.
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Definition 2.2. Suppose H1, H2 are Hilbert spaces. A bounded linear operator T : H1 → H2 is
called Fredholm if ker(T ), Coker(T ) are finite-dimensional.

We prove the following useful theorem about Fredholm operators. (These results are in https://

ocw.mit.edu/courses/mathematics/18-965-geometry-of-manifolds-fall-2004/lecture-notes/

lecture16_17.pdf) In these results, we use the easy fact that if T is a bounded linear operator and
K is compact, then T ◦K and K ◦ T are compact. We also use a slightly more difficult fact that if
K is compact, then K∗ is so as well.

Theorem 2.3. (1) If the range of T is closed, then Coker(T )∗ ' Ker(T ∗) where T ∗ : H∗2 → H∗1 .
(2) If ker(T ), Coker(T ) are finite dimensional, then the range is closed.
(3) T is Fredholm if and only if T ∗ is so.
(4) T is Fredholm if and only if there exist bounded linear maps G1, G2 : H2 → H1, such that

G1 ◦ T − I, T ◦G2 − I are compact operators.
(5) The set of Fredholm operators S ⊂ B(H1, H2) is open.
(6) Suppose I ⊂ R is a connected set. If F (t) : I ⊂ R → S is a continuous map, then the index

Ind(F (t)) = dim(Ker(F (t)))− dim(Coker(F (t))) is a constant.
(7) If K : H1 → H2 is a compact operator and T is Fredholm, then T +K is Fredholm with the

same index.

Proof. (1) Take ρ ∈ ker(T ∗) to λ ∈ Coker(T )∗ where λ(y + TX) = ρ(y). This is well-defined.
Since the range is closed, Coker(T ) is a Hilbert space (the orthogonal complement of the
image). λ is a bounded linear functional on this space. Therefore, ρ : H2 → Coker(T )→ R
is a bounded linear functional. This inverts the previous construction.

(2) Take T : X = ket(T )⊥ → H2. This is injective. Now let C = Ran(T )⊥. Define S : X ⊕C →
H2 as S(x, c) = T (x) + c. Now this is a bounded linear isomorphism. Hence by the open
mapping theorem it is a topological isomorphism. Hence S(X ⊕ {0}) = Ran(T ) is closed.

(3) If Ker(T ∗) ' Coker(T )∗ and Coker(T ∗)∗ = Ker(T ∗∗) = Ker(T ). This gives the result.
(4) If T is Fredholm, then T : ker(T ) ⊕ ker(T )⊥ → Coker(T ) ⊕ Im(T ) is bounded linear

and defines an injective map T1 : ker(T )⊥ → H2. Define G(a ⊕ b) = T−11 (b). Clearly,
G ◦ T − I is a projection onto a finite dimensional subspace and hence compact. Now
T ◦ G(a ⊕ b) − a ⊕ b = T (T−11 (b)) − a ⊕ b = −a ⊕ 0 which is another projection and hence
compact.
Conversely, if there exists such G1, G2, then G1T = I+K. Therefore Ker(T ) ⊂ Ker(G1T ) =
Ker(I + K) which we claim is finite-dimensional. Indeed, if vi is a bounded sequence in
Ker(I +K), then Kvi = −vi has a convergent subsequence. But the unit ball is compact in
a Banach space if and only if the space is finite-dimensional (Riesz’s lemma). Thus ker(T )

is finite dimensional. Likewise, Coker(T ) = Im(T )⊥ is finite dimensional from TG2 = I + K̃
and the fact that if K is compact, so is K∗. Thus T is Fredholm.

(5) If F is Fredholm, there exists a G so that FG = I + K1 and GF = I + K2. Now if F
were invertible, then (F + p)−1 = F−1(1 + F−1p)−1 = F−1

∑
(−1)i(F−1p)i which makes

sense if ‖p‖ is small. Now, define Gp = G(1 + Gp)−1 for small p. Now (F + p)Gp =
FG(I + Gp)−1 + pG(I + Gp)−1 = (I + Gp)−1 + K1(I + Gp)−1 + pG(I + Gp)−1 = Hp + K
where H = (I +Gp)−1 + pG(I +Gp)−1. Clearly when p is small, then Hp is invertible.

Thus (F + p)Gp = (I +KH−1p )Hp. Now define G̃p = GpH
−1
p . So (F + p)G̃p = I + compact.

Likewise we can find another G̃′
p which is an approximate left inverse for small p. Thus F +p

is Fredholm for all small p if F is so.

https://ocw.mit.edu/courses/mathematics/18-965-geometry-of-manifolds-fall-2004/lecture-notes/lecture16_17.pdf
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(6) If we prove that Ind(F +p) = Ind(F ) for all small p, we will be done because I is connected.
First we prove that for small p, there is a linear transformation Ap : Ker(T )→ Coker(T ) so
that Ker(T + p) = Ker(Ap) and Coker(T + p) = Coker(Ap). For operators between finite-
dimensional spaces, the index equals the difference in dimensions and is hence a constant.

Indeed, writing T : Ker(T )⊥ ⊕Ker(T )→ Im(T )⊕Coker(T ) as T =

[
T

′
0

0 0

]
where T

′
is

an isomorphism. Write p =

[
a b
c d

]
. Take Ap = −c(T ′

+ a)−1b+ d. It can be verified that

Ap does the job.
(7) If G1T = I +K1 and TG2 = I +K2, then G1(T +K) = I +K1 +G1K = I + compact and

likewise. Thus T +K is Fredholm. Now T + sK has locally constant index where s ∈ [0, 1].
Hence Ind(T +K) = Ind(T ).
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