
NOTES FOR 18 JAN (THURSDAY)

1. Recap

(1) Constructed a parametrix for Lu = f when L is elliptic.
(2) Defined and proved a theorem characterising Fredholm operators between Hilbert spaces.

2. Constant-coefficient elliptic operators on the torus

We define the formal adjoint L∗form of L as follows.

Definition 2.1. If Lu =
∑
α,p

[A]p,αD
αu, then define the formal adjoint L∗formv =

∑
α,p

[A∗]p,α(−1)|α|Dαv.

It satisfies 〈Lu, v〉L2(S1×S1...) = 〈u, L∗formv〉L2(S1×S1... whenever u, v are smooth functions.

We have the following easy lemma.

Lemma 2.2. If L is elliptic, then so is L∗form.

Using the above theorems and some more work we conclude the following.

Theorem 2.3. If L is elliptic, then

(1) Im(L) ⊂ Hs is closed, and ker(L) ⊂ Hs+l and coker(L) = Hs

Im(L) are finite-dimensional

subspaces. (Fredholm’s alternative.)
(2) Ker(L) consists of smooth functions.
(3) Suppose L : H l → L2. Then Coker(L) ' Ker(L∗ : L2 → (H l)∗) consists of smooth functions

and Coker(L) = Ker(L∗form).

(4) If f is in Hs and u ∈ L2 is a distributional solution of Lu = f , then u is in Hs+l. (Elliptic
regularity.)

Proof. (1) By the above theorems, since there is a parametrix for elliptic operators, L : Hs+l →
Hs is Fredholm. Hence its kernel and cokernel are finite dimensional and its range is closed.

(2) This follows from the last result in this lemma.
(3) If u ∈ (L2)∗ ∩ ker(L∗). Then L∗u(v) = u(Lv) = 〈u, Lv〉L2 = 0 for all v ∈ H l. Thus, choosing

v to be a smooth function, we see that u is a distributional solution to L∗formu = 0. Since the
formal adjoint is also elliptic, by the previous part, its kernel consists of smooth functions.

(4) Suppose φ : S1 × S1 . . . is any smooth function. Since u ∈ L2 is supposedly a distributional
solution (by the way u need not be in L2 for this to be true, it need be only a distribu-
tion), 〈L∗formφ, u〉L2 = 〈φ, f〉L2 . This means that (by the Parseval-Plancherel theorem),∑
~k

φ̂T L̂formû = φ̂T
¯̂
f for all φ. Now choose φ to have Fourier series such that φ̂(k) = 1 if and

only if ~k = ~a and 0 otherwise. Then L̂form(~a)û(~a) = f̂(~a) ∀ ~a. This implies that û = ûapp
for N = 0. Hence, by the previous results, u ∈ Hs+l.
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Remark 2.4. The above implies that elliptic operators with constant coefficients on the torus are
Fredholm operators between Sobolev spaces. So their index is constant under small (arbitrary)
perturbations and under compact perturbations. This index turns out to be given by an integral
over the torus of some differential form (whose De Rham cohomology class depends only on the
principal symbol of L). This is a special case of the Atiyah-Singer index theorem which deals with
general elliptic operators on general manifolds.

3. Riemannian manifolds and metrics on vector bundles

In order to define ∆u = f on a manifold, unfortunately, we cannot do this locally by choosing

coordinates and saying
∑

i
∂2

∂(xi)2
u = f because if we change coordinates, then the PDE will not be

the same. So how can hope to even set up the Poisson PDE on a manifold ?
Another way of looking at the Laplacian is ∆ = ∇.∇. So if we can define a dot product on every

tangent space, and define the ∇ operation, then we can define the Laplacian. Why would we care
about defining the Laplacian ? Among other things, it gives insight into the De Rham cohomology
of the manifold.

Recall that a smooth vector bundle V over a smooth manifold M is a ”smoothly varying collection
of vector spaces parametrised by M”, i.e., locally, V ' U ×Rr (where instead of R, we can also have
C - such a beast is a complex vector bundle) via a trivialisation, i.e., a collection of smooth sections
e1, . . . , er : U ⊂ M → V such that e1(p), . . . , er(p) form a basis for Vp at all p ∈ U . Equivalently,
a vector bundle is simply a collection (Uα, gαβ : Uα ∩ Uβ → GL(r)) satisfying gαα = Id, gαβ =

g−1βα , gαβgβγgγα = Id. Fundamental examples of vector bundles are the tangent bundle TM , the

cotangent bundle T ∗M , and the bundles of differential forms Ωk(M). These can be defined using
transition functions as in the last semester. Just as before, we will be using the Einstein summation
convention. Repeated indices are summed over.

A metric g on a vector bundle V over M is a smooth section of V ∗ ⊗ V ∗ such that on each fibre
it is symmetric and positive-definite. In other words, suppose ei is a trivialisation of V over U and
ei∗ the dual trivialisation of V ∗ over U , then g(p) = gij(p)e

i∗ ⊗ ej∗ where gij : U ⊂ M → GL(r,R)
is a smooth matrix-valued function to symmetric positive-definite matrices. So a metric is simply a
smoothly varying collection of dot products, one for each fibre. Recall that we proved (in the last
semester)

Theorem 3.1. Every rank-r real vector bundle V over a manifold M admits a smooth metric g.

In the special case when V = TM , the metric is called a Riemannian metric on M . If (x, U) is
a coordinate chart, then g(x) = gij(x)dxi ⊗ dxj . By symmetry, gij = gji. Moreover, g is a positive

definite matrix. If one changes coordinates to yµ then gµν = gij
∂xi

∂yµ
∂xj

∂yν . Given a metric g on TM ,

we get one on T ∗M given by g∗ = gij ∂
∂xi
⊗ ∂

∂xj
. Now gikg

kj = δji .

If M is oriented, supposing (x, U) is an oriented coordinate chart, then vol =
√

det(gij)dx
1 ∧

dx2 . . . dxm is a well-defined top form. Indeed, if we changes coordinates, it transforms correctly as
seen in the linear algebra above. This is called the “volume” form of the metric.

Here are examples :

(1) Euclidean space Rn, gEuc =
∑
dxi ⊗ dxi. This is the usual metric. The length of a tangent

vector v is
∑

(vi)2.
(2) If we take the same Euclidean space R2 and use polar coordinates, x = r cos(θ), y = r sin(θ),

then dx = dr cos(θ)−r sin(θ)dθ, dy = dr sin(θ)+r cos(θ)dθ. Thus, gEuc = dr⊗dr+r2dθ⊗dθ.
(3) The circle S1 : g = dθ ⊗ dθ.
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(4) If M, gM , N, gN are two Riemannian manifolds, then M×N, gM×gN given by gM×gN (vM⊕
vN , wM ⊕ wN ) = gM (vM , wM ) + gN (vN , wN ). This gives a metric on the n-torus using the
circle metric.

(5) The Hyperbolic metric Hm, gHyp : gHyp =
∑
dxi⊗dxi
(xm)2

.

Recall the definition of an induced metric

Definition 3.2. If g is a metric on M and S ⊂ M is an embedded submanifold, then g induces a
metric g|S on S given by gp|S(vS , wS) = gp(i∗vS , i∗wS).

(1) S2 ⊂ R3. First write the metric in R3 in spherical coordinates z = r cos(θ), x = r sin(θ) cos(φ),
y = r sin(θ) sin(φ). Thus, gEuc = dr ⊗ dr + r2dθ ⊗ dθ + r2 sin2(θ)dφ ⊗ dφ. Now when
we restrict to the unit sphere, the tangent vectors do not include ∂

∂r . Thus, gSphere =

dθ ⊗ dθ + sin2(θ)dφ⊗ dφ
(2) Suppose z = f(x, y) is the graph of a function, then gInduced = dx⊗dx+dy⊗dy+ (∂f∂x )2dx⊗

dx+ (∂f∂y )2dy ⊗ dy + ∂f
∂x

∂f
∂y (dx⊗ dy + dy ⊗ dx).

Now we write down the volume forms of most of the above examples :

(1) volEuc = dx1 ∧ dx2 ∧ . . . dxn.

(2) In polar coordinates in R2, volEuc =
√

det(g)dr ∧ dθ = rdr ∧ dθ.
(3) For the circle, vol = dθ.

Suppose γ : [0, 1]→ M is a smooth path. Then, define its length as L(γ) =
∫ 1
0

√
g(dγdt ,

dγ
dt )dt. Since

the length has a square root, we consider the Energy E(γ) =
∫ 1
0 g(dγdt ,

dγ
dt )dt. a piecewise C1 curve

satisfying the following equation is called a geodesic. Every critical point of the energy is a geodesic.

d2γr

dt2
+ Γrij

dγi

dt

dγj

dt
= 0

Γrij = grl
1

2

(
∂gil
∂xj

+
∂gjl
∂xi
− ∂gij
∂xl

)
(3.1)

We proved that every geodesic is actually smooth. We also proved that every geodesic can be
parametrised by its arc-length and that arc-length parametrised geodesics are precisely the critical
points of the length functional. We also agreed that d(p, q) = inf L(p, q) over all the piecewise C1

paths joining p and q is a metric and that the topology induced by it is the same as the original
topology of the manifold. This is where we stopped in the last semester.

Now we note that geodesics exist locally, and that if γ is a geodesic, then so is γ(ct). In fact, we
have the following result.

Theorem 3.3. Let p ∈ M . Then there is a neighbourhood Uo of p and a number εp > 0 such
that for every q ∈ U and every tangent vector v ∈ TqM with ‖v‖ < εp there is a unique geodesic

γv : (−2, 2)→M satisfying γv(0) = q, dγv
dt (0) = v.

Proof. The fundamental existence and uniqueness theorem for ODE states that for a system of ODE
of the form y

′
= F (y, t), there is a solution for a short period of time, wherein the period depends on

the C1 norm of F (y, t) in a neighbourhood of the initial condition y(0). This is easily seen to imply
that there is a neighbourhood p ∈ Up and ε1p, ε2p > 0 so that for q inU and v ∈ TqM with ‖v‖ < ε1,
there is a unique smooth geodesic γv : (−2ε2, 2ε2)→M with the intial conditions. Choose ε < ε1ε2.
Then if ‖v‖ < ε and t < 2, then we can define γv(t) = γv/ε2(ε2t). �
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If v ∈ TqM is a vector for which there is a geodesic, γ : [0, 1] → M satisfying γ(0) = q and

γ
′
(0) = v then we define expq(v) = γv(1). The geodesic itself can be described as γ(t) = expq(tv) (by

the uniqueness theorem for ODE). By the smooth dependence on parameters of an ODE, expq(v)
depends smoothly on q and on v and defines a smooth map expq : TqM →M .
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