NOTES FOR 1 FEB (THURSDAY)

1. Recap

- (1) Proved the Hopf-Rinow theorem and gave examples of complete manifolds.
- (2) Made a few observations regarding the Christoffel symbols, the Riemann curvature tensor, and why we need a notion of parallel transport.

2. Connections and curvature

Here are a bunch of observations / questions :

- (1) In \mathbb{R}^n , you have the idea of a "constant" vector field. (Indeed, this is one way to prove that \mathbb{R}^n is parallelizable, i.e., it has trivial tangent bundle.) So you need to able to find the directional derivative $\nabla_V X$ of any vector field along a direction V. Note that if we manage to define this concept, then $\nabla_{\gamma'(t)} X(\gamma(t)) = 0$ amounts to parallel transporting the vector field along γ .
- (2) Suppose $(S, g_S) \subset (\mathbb{R}^n, Euc)$ is a submanifold with the induced metric. (Actually every Riemannian manifold is of this form by the Nash embedding theorem.) Suppose X is a tangent vector field along S. Suppose that $N_1, N_2 \ldots, N_k$ are local linearly independent unit normal vector fields on $U \subset S$ (where k = n - dim(S)). Assume that V is a tangent vector on S at p. How can we define the directional derivative $\nabla_V X(p)$? Clearly, the usual Euclidean directional derivative $D_V X = \frac{\partial \vec{X}}{\partial x^i} V^i$ is not the right one because it measures how fast X is changing perpendicular to S as well. So we need to project this back to S.

In other words, the "correct" way to define a directional derivative is $\nabla_V X = D_V X - \sum_{i=1}^k \langle D_V X, N_i \rangle_{Euc} N_i$. Now note that $\langle D_V X, N_i \rangle_{Euc} = D_V \langle X, N_i \rangle_{Euc} - \langle X, D_V N_i \rangle_{Euc} = -\langle X, D_V N_i \rangle_{Euc}$. In other words,

$$\nabla_V X = D_V X - \sum \langle X, D_V N_i \rangle_{Euc} N_i = D_V X + a \ term \ linear \ in \ X.$$

It turns out (miraculously) that the linear term is related to the Christoffel symbols and the Riemann curvature tensor of g_S that we defined before. This way of defining a directional derivative is called the Levi-Civita connection. In general, a "directional derivative" on a vector bundle is called a "connection".

- (3) The above definitions of directional derivative are important even for a general vector bundle. For example if we want to prove that there is a nowhere vanishing section of a certain vector bundle, ideally, we would want to take a "constant" section. But to even define that, we need to know the notion of a directional derivative.
- (4) The notion of "curvature" seems to depend on one derivative of the Christoffel symbol (or alternatively, two derivatives of the metric).

The above mentioned observations force us to define a connection $\nabla_W s$ on vector bundles. It is suppose to represent how fast a section s is changing along the tangent vector W. In fact, if W is a vector field, then $\nabla_W s$ better be a section of the vector bundle itself. So, we have **Definition 2.1.** Suppose V is a smooth rank-r real vector bundle (a similar definition holds for complex vector bundles) over a smooth manifold M. Suppose $\Gamma(V)$ is the (infinite-dimensional) vector space of smooth sections of V over M. Suppose X is a vector field on M. Then a connection (sometimes called an affine connection) ∇ on V is a map $\nabla_X : \Gamma(V) \to \Gamma(V)$ satisfying the following properties.

- (1) Tensoriality in X : If s is a smooth section of V, X_1, X_2 are two vector fields, and f_1, f_2 are two smooth functions, then $\nabla_{f_1X_1+f_2X_2}(s) = f_1\nabla_{X_1}s + f_2\nabla_{X_2}s$. In other words, the value of $\nabla_X s$ at p depends only on the value of X at p but not on the derivatives of X.
- (2) Linearity in s: If s_1, s_2 are two sections and c_1, c_2 are two real numbers, then $\nabla_X(c_1s_1 + c_2s_2) = c_1\nabla_X s_1 + c_2\nabla_X s_2$.
- (3) Leibniz rule : If f is a smooth function and s is a section, $\nabla_X(fs) = f\nabla_X s + df(X)s = f\nabla_X + X(f)s$.

The first assumption (tensoriality in X) can be stated in another nice way : Suppose we fix s. Then the map $(X, \alpha) \to \alpha(\nabla_X s)$ is a map from Vect fields $\times \Gamma(V^*) \to C^{\infty}$ functions which is multilinear (over functions). Therefore, by a theorem we proved the last semester, there exists a smooth section $T_s \in \Gamma(T^*M \otimes V^{**} \simeq V)$ such that $T_s(X, \alpha) = \alpha(\nabla_X s)$.

Thus ∇ can be thought of as a map $\Gamma(V) \to \Gamma(V \otimes T^*M)$ given by $s \to \nabla s$. The space $\Gamma(V \otimes T^*M)$ is commonly called "vector-valued 1-forms". Moreover, in this framework, a connection satisfies $\nabla(fs) = df \otimes s + f \nabla s$.

Locally, suppose e_1, \ldots, e_r is a frame (i.e. a collection of smooth local sections such that every point, they form a basis for the fibre) giving a local trivialisation of V. Then every smooth section is of the form, $s = s^{\mu}e_{\mu}$ where s^{μ} are smooth functions. Therefore,

(2.2)
$$\nabla(s^{\mu}e_{\mu}) = ds^{\mu} \otimes e_{\mu} + s^{\mu}\nabla e_{\mu} = ds^{\mu} \otimes e_{\mu} + s^{\mu}A^{\nu}_{,\mu} \otimes e_{\nu} = (ds^{\mu} + A^{\mu}_{,\nu}s^{\nu}) \otimes e_{\mu}$$

where A^{μ}_{ν} is an $r \times r$ matrix consisting of 1-forms. Note that $\nabla_X s = X(s^{\mu})e_{\mu} + A_{\nu}(X)^{\mu}s^{\nu}e_{\mu}$. Suppose we change our trivialisation to $\tilde{e}_1, \tilde{e}_2, \ldots$. Then of course the matrix of 1-forms A will change to \tilde{A} . Let us calculate this change. Suppose $\tilde{e}_{\mu} = g^{\nu}_{,\mu}e_{\nu}$, i.e., $\tilde{e} = eg$ where g is an invertible smooth matrix-valued function. Then since $s = \tilde{s}^{\mu}\tilde{e}_{\mu} = s^{\nu}e_{\nu}$, we see that $\tilde{e}\tilde{s} = eg\tilde{s} = es$. Hence $\tilde{s} = g^{-1}s$. Since $\nabla_X s$ is a section, $\nabla_X \tilde{s} = g^{-1}\nabla_X s$, i.e., $\nabla s = g^{-1}\nabla s$. Hence,

(2.3)
$$d\vec{s} + \tilde{A}\vec{s} = g^{-1}(d\vec{s} + A\vec{s}) \Rightarrow d(g^{-1}\vec{s}) + \tilde{A}g^{-1}\vec{s} = g^{-1}(d\vec{s} + A\vec{s})$$
$$-g^{-1}dgg^{-1}\vec{s} + \tilde{A}g^{-1}\vec{s} = g^{-1}A\vec{s} \Rightarrow \tilde{A} = g^{-1}Ag + g^{-1}dg$$

In more familiar terms, rewriting $\tilde{\vec{s}} = g\vec{s}$ where g are the transition functions (i.e., replacing g^{-1} by g), we see that $\tilde{A} = gAg^{-1} - dgg^{-1}$.

So A does not change like a tensor. However, the cool thing is that, suppose ∇_1 is one connection. Then, if ∇_2 is any other connection, $(\nabla_2 - \nabla_1)(fs) = f(\nabla_2 - \nabla_1)s$. In other words, the difference of any two connections is an Endomorphism of the vector bundle. Locally, $\tilde{A}_2 - \tilde{A}_1 = g(A_2 - A_1)g^{-1}$. In other words, $A_2 - A_1$ is a section of $End(V) \otimes T^*M$. So the space of connections is an affine space (a vector space without a preferred choice of an origin).