
NOTES FOR 1 FEB (THURSDAY)

1. Recap

(1) Proved the Hopf-Rinow theorem and gave examples of complete manifolds.
(2) Made a few observations regarding the Christoffel symbols, the Riemann curvature tensor,

and why we need a notion of parallel transport.

2. Connections and curvature

Here are a bunch of observations / questions :

(1) In Rn, you have the idea of a “constant” vector field. (Indeed, this is one way to prove
that Rn is parallelizable, i.e., it has trivial tangent bundle.) So you need to able to find the
directional derivative ∇VX of any vector field along a direction V . Note that if we manage
to define this concept, then ∇γ′ (t)X(γ(t)) = 0 amounts to parallel transporting the vector

field along γ.
(2) Suppose (S, gS) ⊂ (Rn, Euc) is a submanifold with the induced metric. (Actually every Rie-

mannian manifold is of this form by the Nash embedding theorem.) Suppose X is a tangent
vector field along S. Suppose that N1, N2 . . . , Nk are local linearly independent unit normal
vector fields on U ⊂ S (where k = n − dim(S)). Assume that V is a tangent vector on S
at p. How can we define the directional derivative ∇VX(p) ? Clearly, the usual Euclidean

directional derivative DVX = ∂ ~X
∂xi
V i is not the right one because it measures how fast X is

changing perpendicular to S as well. So we need to project this back to S.
In other words, the “correct” way to define a directional derivative is ∇VX = DVX −

k∑
i=1

〈DVX,Ni〉EucNi. Now note that 〈DVX,Ni〉Euc = DV 〈X,Ni〉Euc − 〈X,DVNi〉Euc =

−〈X,DVNi〉Euc. In other words,

∇VX = DVX −
∑
〈X,DVNi〉EucNi = DVX + a term linear in X.(2.1)

It turns out (miraculously) that the linear term is related to the Christoffel symbols and the
Riemann curvature tensor of gS that we defined before. This way of defining a directional
derivative is called the Levi-Civita connection. In general, a “directional derivative” on a
vector bundle is called a “connection”.

(3) The above definitions of directional derivative are important even for a general vector bundle.
For example if we want to prove that there is a nowhere vanishing section of a certain vector
bundle, ideally, we would want to take a “constant” section. But to even define that, we need
to know the notion of a directional derivative.

(4) The notion of “curvature” seems to depend on one derivative of the Christoffel symbol (or
alternatively, two derivatives of the metric).

The above mentioned observations force us to define a connection ∇W s on vector bundles. It is
suppose to represent how fast a section s is changing along the tangent vector W . In fact, if W is a
vector field, then ∇W s better be a section of the vector bundle itself. So, we have
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Definition 2.1. Suppose V is a smooth rank-r real vector bundle (a similar definition holds for
complex vector bundles) over a smooth manifold M . Suppose Γ(V ) is the (infinite-dimensional)
vector space of smooth sections of V over M . Suppose X is a vector field on M . Then a connection
(sometimes called an affine connection) ∇ on V is a map ∇X : Γ(V )→ Γ(V ) satisfying the following
properties.

(1) Tensoriality in X : If s is a smooth section of V , X1, X2 are two vector fields, and f1, f2 are
two smooth functions, then ∇f1X1+f2X2(s) = f1∇X1s+ f2∇X2s. In other words, the value of
∇Xs at p depends only on the value of X at p but not on the derivatives of X.

(2) Linearity in s : If s1, s2 are two sections and c1, c2 are two real numbers, then ∇X(c1s1 +
c2s2) = c1∇Xs1 + c2∇Xs2.

(3) Leibniz rule : If f is a smooth function and s is a section, ∇X(fs) = f∇Xs + df(X)s =
f∇X +X(f)s.

The first assumption (tensoriality in X) can be stated in another nice way : Suppose we fix s.
Then the map (X,α) → α(∇Xs) is a map from V ect fields × Γ(V ∗) → C∞ functions which is
multilinear (over functions). Therefore, by a theorem we proved the last semester, there exists a
smooth section Ts ∈ Γ(T ∗M ⊗ V ∗∗ ' V ) such that Ts(X,α) = α(∇Xs).

Thus ∇ can be thought of as a map Γ(V )→ Γ(V ⊗T ∗M) given by s→ ∇s. The space Γ(V ⊗T ∗M)
is commonly called “vector-valued 1-forms”. Moreover, in this framework, a connection satisfies
∇(fs) = df ⊗ s+ f∇s.

Locally, suppose e1, . . . , er is a frame (i.e. a collection of smooth local sections such that every
point, they form a basis for the fibre) giving a local trivialisation of V . Then every smooth section
is of the form, s = sµeµ where sµ are smooth functions. Therefore,

∇(sµeµ) = dsµ ⊗ eµ + sµ∇eµ = dsµ ⊗ eµ + sµAνµ ⊗ eν = (dsµ +Aµνs
ν)⊗ eµ(2.2)

where Aµν is an r × r matrix consisting of 1-forms. Note that ∇Xs = X(sµ)eµ + A ν(X)µsνeµ.
Suppose we change our trivialisation to ẽ1, ẽ2, . . .. Then of course the matrix of 1-forms A will
change to Ã. Let us calculate this change. Suppose ẽµ = gνµeν , i.e., ẽ = eg where g is an invertible

smooth matrix-valued function. Then since s = s̃µẽµ = sνeν , we see that ẽ~̃s = eg~̃s = e~s. Hence

~̃s = g−1~s. Since ∇Xs is a section, ~̃∇Xs = g−1 ~∇Xs, i.e., ~̃∇s = g−1 ~∇s. Hence,

d~̃s+ Ã~̃s = g−1(d~s+A~s)⇒ d(g−1~s) + Ãg−1~s = g−1(d~s+A~s)

−g−1dgg−1~s+ Ãg−1~s = g−1A~s⇒ Ã = g−1Ag + g−1dg(2.3)

In more familiar terms, rewriting ~̃s = g~s where g are the transition functions (i.e., replacing g−1 by

g), we see that Ã = gAg−1 − dgg−1.
So A does not change like a tensor. However, the cool thing is that, suppose ∇1 is one connection.

Then, if ∇2 is any other connection, (∇2−∇1)(fs) = f(∇2−∇1)s. In other words, the difference of

any two connections is an Endomorphism of the vector bundle. Locally, Ã2 − Ã1 = g(A2 − A1)g
−1.

In other words, A2−A1 is a section of End(V )⊗T ∗M . So the space of connections is an affine space
(a vector space without a preferred choice of an origin).
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