
NOTES FOR 1 MAR (THURSDAY)

1. Recap

(1) Defined sectional curvature (determines the Riemann tensor completely) and the notions of
positive/negative/constant curvature.

(2) Wrote examples of manifolds with curvatures. Defined Space forms.
(3) Stated the Killing-Hopf, Cartan-Hadamard, Preissman, and Synge theorems.
(4) Defined divergence and gradient.

2. Divergence, Stokes’ theorem, and Laplacians

Theorem 2.1.

∫
M
div(X)volg =

∫
∂M

iXvolg where iXω(Y1, Y2, . . .) = ω(X,Y1, Y2, . . .). If ~N is a

unit outward pointing normal vector field on the boundary, then iXvolg = g(X, ~N)dvolg|∂M .

Proof. Choose oriented normal coordinates xi for g at p ∈M . Now

div(X)(p)volg(p) =
∑
i

∂Xi

∂xi
(p)dx1 ∧ dx2 . . . dxm(p) = d(

∑
i

Xi(−1)i−1dx1 ∧ . . . dxi−1dx̂i ∧ . . .)(p)

= d(iXvol)(p)(2.1)

Since the above equation is an equation of globally defined forms at p, it is independent of coordinates
chosen. Thus div(X)volg = d(iXvol). By the usual Stokes’ theorem,

∫
M div(X)volg =

∫
∂M iXvol.

Now if X = g(X, ~N) ~N +Y , then Y is tangent to the boundary. Choose oriented normal coordinates

such that x1 = 0 corresponds to the boundary (hence ~N(p) = ∂
∂x1 and Y is a linear combination

of ∂i where i ≥ 2)Then iXvol(p)|x1=0 = g(X, ~N)(p)i ~N(p)dx
1 ∧ dx2 . . . (p) + iY (p)dx

1 ∧ dx2 . . . (p) =

g(X, ~N)volg|∂M (p). As before, this equation holds globally. �

In particular, if M has no boundary, then
∫
M div(X) = 0. Now define

Definition 2.2. The Laplacian ∆u where u is a function on M is a function ∆u = div(∇u) =
∂
∂xi

(
gij ∂u

∂xj

)
+ Γi

ik
∂u
∂xj g

jk. So in normal coordinates, it is the usual Laplacian at p.

As an example, take the flat metric g = dθ1⊗dθ1+dθ2⊗dθ2+. . . on the torus. Then the Laplacian
is easily seen to be the Laplacian we studied earlier. Here is an observation using Stokes :∫

M
∆u =

∫
div(grad(u))dvolg = 0(2.2)

So if ∆u = f , a necessary condition is that
∫
fdvolg = 0 (just like the torus). If ∆u = f , then

observe that for any smooth function v,∫
M
v∆uvolg =

∫
M
vfvolg ⇒

∫
M

(div(v∇u)−∇v.∇u)volg = −
∫
M
∇v.∇uvolg =

∫
M
u∆vvolg(2.3)

So we can define a distributional solution of ∆u = f as an L2 function u such that the above holds
for all smooth v.

What about the curl of a vector field X ? Firstly, given a vector field X, we can produce its dual
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1-form ωX(Y ) = g(X,Y ). We can then define dωX as a 2-form. If there is a way to take a 2-form α
to an m − 2 form ∗α, then in 3-dimensions, ∗α will be a 1-form, whose dual is a vector field. This
should be the curl. So we need a notion called the Hodge star ∗ taking k-forms to m− k forms.

Definition 2.3. Given a k-form α on a compact oriented m-dimensional Riemannian manifold
(M, g), ∗α is a (m−k)-form such that α∧∗β = 〈α, β〉gvolg. Here the inner product on forms is defined
as follows : Suppose at p, normal coordinates are chosen, i.e., gij(p) = δij , then dxi1(p) ∧ dxi2 . . . ∧
dxik(p) form an orthonormal basis at p for k-forms. Note that vol(p) = dx1(p) ∧ dx2(p) . . . dxm(p).

Does such an operator ∗ : Γ(Ωk(M)) → Γ(Ωm−k(M)) exist ? Is it linear ? Yes to both. Suppose
ω1, ω2, . . . , ωm form an orthonormal frame on an open set U , i.e., ω1(p), ω2(p), . . . , ωm(p) form an

orthonormal basis of T ∗pM for all p ∈ U . Then, ∗(ωi1 ∧ωi2 . . . ωik) = (−1)sgn(I)ωik+1
∧ωik+2

. . .∧ωim

where sgn(I) is the sign of the permutation taking (1, 2, . . . ,m) to (i1, i2, . . . , im). Then extend ∗
linearly to all forms. We will see why it is well-defined later on. Here are some examples :

(1) Suppose (M, g) = R2, gEuc oriented in the usual way, then ∗1 = dx∧ dy. Also, ∗dx = dy and
∗dy = −dx. Finally, ∗(dx ∧ dy) = 1.

(2) If M = R3 (with the Euclidean metric) oriented in the usual way, then ∗1 = dx ∧ dy ∧ dz,
∗dx = dy ∧ dz, ∗dy = dz ∧ dx, ∗dz = dx ∧ dy.
If ~v = (v1, v2, v3) and ~w = (w1, w2, w3), form the dual 1-forms v = v1dx + v2dy + v3dz and
likewise for w. Then v ∧ w is a 2-form given by v ∧ w = (v1w2 − v2w1)dx ∧ dy + . . .. The
Hodge star acting on this gives a 1-form ∗(v ∧ w) = (v1w2 − v2w1)dz + . . . whose dual is
(v2w3 − v3w2, v3w1 −w3v1, v1w2 −w1v2) which are the components of ~v× ~w. Since the cross
product depends on the choice of orientation, it is called a “pseudovector”.

This ∗ operator (the so-called Hodge star) has the following properties :

(1) Suppose α, β are elements of Ωk
p(M) α ∧ ∗β = 〈α, β〉gvolg = β ∧ ∗α, i.e., it does satisfy the

definition.
(2) ∗ is well-defined, i.e., it does not depend on the choice of orthonormal basis.

(3) If you change the metric from g to g̃ = cg where c > 0 is a constant, then ∗g̃ω =
√
c
2k−m ∗g ω

(4) If you change the orientation, ∗ → −∗.
(5) ∗ ∗ η = (−1)k(m−k)η.
(6) 〈∗α, ∗η〉 = 〈α, η〉.

Proof. (1) Suppose we choose the orthonormal frame ωi. Suppose β = βIω
i1 ∧ ωi2 . . . where the

summation is over increasing indices i1 < i2 < . . ., we see that ∗β = βI(−1)sgn(I)ωik+1 ∧
ωik+2 . . .. Thus,

α ∧ ∗β = αJβI(−1)sgn(I)ωj1 ∧ ωj2 . . . ωjk ∧ ωik+1 ∧ . . .

= αIβI(−1)sgn(I)(−1)sgn(I)ω1 ∧ ω2 . . . = αIβIvolg = 〈α, β〉volg(2.4)

Note that this property does not depend on how we defined ∗ (i.e., we did not use the fact
that ∗ is well-defined)

(2) The above property α ∧ ∗β = 〈α, β〉volg defines ∗ uniquely because, if ∗1, ∗2 satisfy this
property, then α ∧ (∗1 − ∗2)β = 0 for all α, β. However, (a, b) → a ∧ b is a non-degenerate
pairing (Why? because (a, ∗1a)→ a ∧ ∗1a = |a|2volg ≥ 0). Hence ∗1β = ∗2β ∀ β.

(3) Suppose ω1, . . . , ωm is an orthonormal frame for g, then ωi√
c

is one for g̃. From this the result

follows trivially.
(4) Obvious.
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(5)

∗ ∗ (η) = ηI ∗ ∗(ωI) = ηI ∗ ((−1)sgn(I)ωIc) = ηI(−1)sgn(I)(−1)sgn(I
c)ωI = (−1)k(m−k)η(2.5)

(6) Suppose η is a k-form and α an m− k form.

〈∗α, ∗η〉vol = ∗α ∧ ∗ ∗ η = (−1)k(m−k) ∗ α ∧ η

= (−1)k(m−k)(−1)k(m−k)η ∧ ∗α = 〈η, α〉vol = 〈α, η〉vol(2.6)

�

Now we define an operator analogous of the curl ∇× ~F :

Definition 2.4. Let α be a smooth k-form. Then d†α = (−1)m(k+1)+1 ∗d ∗α. Thus d†α is a smooth
k − 1-form depending on the first derivative of α (it is a first order differential operator).
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