## NOTES FOR 1 MAR (THURSDAY)

## 1. Recap

(1) Defined sectional curvature (determines the Riemann tensor completely) and the notions of positive/negative/constant curvature.
(2) Wrote examples of manifolds with curvatures. Defined Space forms.
(3) Stated the Killing-Hopf, Cartan-Hadamard, Preissman, and Synge theorems.
(4) Defined divergence and gradient.

## 2. Divergence, Stokes' theorem, and Laplacians

Theorem 2.1. $\int_{M} \operatorname{div}(X)$ vol $_{g}=\int_{\partial M} i_{X}$ vol $_{g}$ where $i_{X} \omega\left(Y_{1}, Y_{2}, \ldots\right)=\omega\left(X, Y_{1}, Y_{2}, \ldots\right)$. If $\vec{N}$ is a unit outward pointing normal vector field on the boundary, then $i_{X} v o l_{g}=g(X, \vec{N})$ dvol $_{\left.g\right|_{\partial M}}$.

Proof. Choose oriented normal coordinates $x^{i}$ for $g$ at $p \in M$. Now

$$
\begin{align*}
& \operatorname{div}(X)(p) \operatorname{vol}_{g}(p)=\sum_{i} \frac{\partial X^{i}}{\partial x^{i}}(p) d x^{1} \wedge d x^{2} \ldots d x^{m}(p)=d\left(\sum_{i} X^{i}(-1)^{i-1} d x^{1} \wedge \ldots d x^{i-1} d \hat{x^{i}} \wedge \ldots\right)(p) \\
& =d\left(i_{X} \operatorname{vol}\right)(p) \tag{2.1}
\end{align*}
$$

Since the above equation is an equation of globally defined forms at $p$, it is independent of coordinates chosen. Thus $\operatorname{div}(X)$ vol $_{g}=d\left(i_{X}\right.$ vol $)$. By the usual Stokes' theorem, $\int_{M} \operatorname{div}(X) \operatorname{vol}_{g}=\int_{\partial M} i_{X} v o l$. Now if $X=g(X, \vec{N}) \vec{N}+Y$, then $Y$ is tangent to the boundary. Choose oriented normal coordinates such that $x^{1}=0$ corresponds to the boundary (hence $\vec{N}(p)=\frac{\partial}{\partial x^{1}}$ and $Y$ is a linear combination of $\partial_{i}$ where $\left.i \geq 2\right)$ Then $\left.i_{X} \operatorname{vol}(p)\right|_{x^{1}=0}=g(X, \vec{N})(p) i_{\vec{N}(p)} d x^{1} \wedge d x^{2} \ldots(p)+i_{Y(p)} d x^{1} \wedge d x^{2} \ldots(p)=$ $g(X, \vec{N})$ vol $_{\left.g\right|_{\partial M}}(p)$. As before, this equation holds globally.

In particular, if $M$ has no boundary, then $\int_{M} \operatorname{div}(X)=0$. Now define
Definition 2.2. The Laplacian $\Delta u$ where $u$ is a function on $M$ is a function $\Delta u=\operatorname{div}(\nabla u)=$ $\frac{\partial}{\partial x^{i}}\left(g^{i j} \frac{\partial u}{\partial x^{j}}\right)+\Gamma_{i k}^{i} \frac{\partial u}{\partial x^{j}} g^{j k}$. So in normal coordinates, it is the usual Laplacian at $p$.

As an example, take the flat metric $g=d \theta^{1} \otimes d \theta^{1}+d \theta^{2} \otimes d \theta^{2}+\ldots$ on the torus. Then the Laplacian is easily seen to be the Laplacian we studied earlier. Here is an observation using Stokes :

$$
\begin{equation*}
\int_{M} \Delta u=\int \operatorname{div}(\operatorname{grad}(u)) d v o l_{g}=0 \tag{2.2}
\end{equation*}
$$

So if $\Delta u=f$, a necessary condition is that $\int f d v o l_{g}=0$ (just like the torus). If $\Delta u=f$, then observe that for any smooth function $v$,

$$
\begin{equation*}
\int_{M} v \Delta u v o l_{g}=\int_{M} v f v o l_{g} \Rightarrow \int_{M}(\operatorname{div}(v \nabla u)-\nabla v \cdot \nabla u) \operatorname{vol}_{g}=-\int_{M} \nabla v \cdot \nabla u v o l_{g}=\int_{M} u \Delta v v o l_{g} \tag{2.3}
\end{equation*}
$$

So we can define a distributional solution of $\Delta u=f$ as an $L^{2}$ function $u$ such that the above holds for all smooth $v$.

What about the curl of a vector field $X$ ? Firstly, given a vector field $X$, we can produce its dual

1-form $\omega_{X}(Y)=g(X, Y)$. We can then define $d \omega_{X}$ as a 2-form. If there is a way to take a 2 -form $\alpha$ to an $m-2$ form $* \alpha$, then in 3 -dimensions, $* \alpha$ will be a 1 -form, whose dual is a vector field. This should be the curl. So we need a notion called the Hodge star $*$ taking $k$-forms to $m-k$ forms.

Definition 2.3. Given a $k$-form $\alpha$ on a compact oriented $m$-dimensional Riemannian manifold $(M, g), * \alpha$ is a $(m-k)$-form such that $\alpha \wedge * \beta=\langle\alpha, \beta\rangle_{g} v o l_{g}$. Here the inner product on forms is defined as follows : Suppose at $p$, normal coordinates are chosen, i.e., $g_{i j}(p)=\delta_{i j}$, then $d x^{i_{1}}(p) \wedge d x^{i_{2}} \ldots \wedge$ $d x^{i_{k}}(p)$ form an orthonormal basis at $p$ for $k$-forms. Note that $\operatorname{vol}(p)=d x^{1}(p) \wedge d x^{2}(p) \ldots d x^{m}(p)$.

Does such an operator $*: \Gamma\left(\Omega^{k}(M)\right) \rightarrow \Gamma\left(\Omega^{m-k}(M)\right)$ exist? Is it linear ? Yes to both. Suppose $\omega_{1}, \omega_{2}, \ldots, \omega_{m}$ form an orthonormal frame on an open set $U$, i.e., $\omega_{1}(p), \omega_{2}(p), \ldots, \omega_{m}(p)$ form an orthonormal basis of $T_{p}^{*} M$ for all $p \in U$. Then, $*\left(\omega_{i_{1}} \wedge \omega_{i_{2}} \ldots \omega_{i_{k}}\right)=(-1)^{\operatorname{sgn}(I)} \omega_{i_{k+1}} \wedge \omega_{i_{k+2}} \ldots \wedge \omega_{i_{m}}$ where $\operatorname{sgn}(I)$ is the sign of the permutation taking $(1,2, \ldots, m)$ to $\left(i_{1}, i_{2}, \ldots, i_{m}\right)$. Then extend $*$ linearly to all forms. We will see why it is well-defined later on. Here are some examples :
(1) Suppose $(M, g)=\mathbb{R}^{2}, g_{\text {Euc }}$ oriented in the usual way, then $* 1=d x \wedge d y$. Also, $* d x=d y$ and $* d y=-d x$. Finally, $*(d x \wedge d y)=1$.
(2) If $M=\mathbb{R}^{3}$ (with the Euclidean metric) oriented in the usual way, then $* 1=d x \wedge d y \wedge d z$, $* d x=d y \wedge d z, * d y=d z \wedge d x, * d z=d x \wedge d y$.
If $\vec{v}=\left(v_{1}, v_{2}, v_{3}\right)$ and $\vec{w}=\left(w_{1}, w_{2}, w_{3}\right)$, form the dual 1-forms $v=v_{1} d x+v_{2} d y+v_{3} d z$ and likewise for $w$. Then $v \wedge w$ is a 2-form given by $v \wedge w=\left(v_{1} w_{2}-v_{2} w_{1}\right) d x \wedge d y+\ldots$ The Hodge star acting on this gives a 1 -form $*(v \wedge w)=\left(v_{1} w_{2}-v_{2} w_{1}\right) d z+\ldots$ whose dual is $\left(v_{2} w_{3}-v_{3} w_{2}, v_{3} w_{1}-w_{3} v_{1}, v_{1} w_{2}-w_{1} v_{2}\right)$ which are the components of $\vec{v} \times \vec{w}$. Since the cross product depends on the choice of orientation, it is called a "pseudovector".
This $*$ operator (the so-called Hodge star) has the following properties :
(1) Suppose $\alpha, \beta$ are elements of $\Omega_{p}^{k}(M) \alpha \wedge * \beta=\langle\alpha, \beta\rangle_{g} v o l_{g}=\beta \wedge * \alpha$, i.e., it does satisfy the definition.
(2) $*$ is well-defined, i.e., it does not depend on the choice of orthonormal basis.
(3) If you change the metric from $g$ to $\tilde{g}=c g$ where $c>0$ is a constant, then $*_{\tilde{g}} \omega=\sqrt{c}^{2 k-m} *_{g} \omega$
(4) If you change the orientation, $* \rightarrow-*$.
(5) $* * \eta=(-1)^{k(m-k)} \eta$.
(6) $\langle * \alpha, * \eta\rangle=\langle\alpha, \eta\rangle$.

Proof. (1) Suppose we choose the orthonormal frame $\omega_{i}$. Suppose $\beta=\beta_{I} \omega^{i_{1}} \wedge \omega_{i_{2}} \ldots$ where the summation is over increasing indices $i_{1}<i_{2}<\ldots$, we see that $* \beta=\beta_{I}(-1)^{\operatorname{sgn}(I)} \omega^{i_{k+1}} \wedge$ $\omega^{i_{k+2}} \ldots$.. Thus,

$$
\begin{gather*}
\alpha \wedge * \beta=\alpha_{J} \beta_{I}(-1)^{\operatorname{sgn}(I)} \omega^{j_{1}} \wedge \omega^{j_{2}} \ldots \omega^{j_{k}} \wedge \omega^{i_{k+1}} \wedge \ldots \\
=\alpha_{I} \beta_{I}(-1)^{\operatorname{sgn}(I)}(-1)^{\operatorname{sgn}(I)} \omega_{1} \wedge \omega_{2} \ldots=\alpha_{I} \beta_{I} v o l_{g}=\langle\alpha, \beta\rangle \text { vol }_{g} \tag{2.4}
\end{gather*}
$$

Note that this property does not depend on how we defined $*$ (i.e., we did not use the fact that $*$ is well-defined)
(2) The above property $\alpha \wedge * \beta=\langle\alpha, \beta\rangle$ vol $_{g}$ defines $*$ uniquely because, if $*_{1}, *_{2}$ satisfy this property, then $\alpha \wedge\left(*_{1}-*_{2}\right) \beta=0$ for all $\alpha, \beta$. However, $(a, b) \rightarrow a \wedge b$ is a non-degenerate pairing (Why? because $\left(a, *_{1} a\right) \rightarrow a \wedge *_{1} a=|a|^{2} v^{2} l_{g} \geq 0$ ). Hence $*_{1} \beta=*_{2} \beta \forall \beta$.
(3) Suppose $\omega_{1}, \ldots, \omega_{m}$ is an orthonormal frame for $g$, then $\frac{\omega_{i}}{\sqrt{c}}$ is one for $\tilde{g}$. From this the result follows trivially.
(4) Obvious.
(5)

$$
\begin{equation*}
* *(\eta)=\eta_{I} * *\left(\omega^{I}\right)=\eta_{I} *\left((-1)^{\operatorname{sgn}(I)} \omega^{I^{c}}\right)=\eta_{I}(-1)^{\operatorname{sgn}(I)}(-1)^{\operatorname{sgn}\left(I^{c}\right)} \omega^{I}=(-1)^{k(m-k)} \eta \tag{2.5}
\end{equation*}
$$

(6) Suppose $\eta$ is a $k$-form and $\alpha$ an $m-k$ form.

$$
\begin{gather*}
\langle * \alpha, * \eta\rangle \text { vol }=* \alpha \wedge * * \eta=(-1)^{k(m-k)} * \alpha \wedge \eta \\
=(-1)^{k(m-k)}(-1)^{k(m-k)} \eta \wedge * \alpha=\langle\eta, \alpha\rangle \text { vol }=\langle\alpha, \eta\rangle \text { vol } \tag{2.6}
\end{gather*}
$$

Now we define an operator analogous of the curl $\nabla \times \vec{F}$ :
Definition 2.4. Let $\alpha$ be a smooth $k$-form. Then $d^{\dagger} \alpha=(-1)^{m(k+1)+1} * d * \alpha$. Thus $d^{\dagger} \alpha$ is a smooth $k-1$-form depending on the first derivative of $\alpha$ (it is a first order differential operator).

