NOTES FOR 1 MAR (THURSDAY)

1. Recap

- (1) Defined sectional curvature (determines the Riemann tensor completely) and the notions of positive/negative/constant curvature.
- (2) Wrote examples of manifolds with curvatures. Defined Space forms.
- (3) Stated the Killing-Hopf, Cartan-Hadamard, Preissman, and Synge theorems.
- (4) Defined divergence and gradient.

2. Divergence, Stokes' theorem, and Laplacians

Theorem 2.1. $\int_{M} div(X)vol_g = \int_{\partial M} i_X vol_g$ where $i_X \omega(Y_1, Y_2, \ldots) = \omega(X, Y_1, Y_2, \ldots)$. If \vec{N} is a unit outward pointing normal vector field on the boundary, then $i_X vol_g = g(X, \vec{N}) dvol_{g|_{\partial M}}$.

Proof. Choose oriented normal coordinates x^i for g at $p \in M$. Now

$$div(X)(p)vol_g(p) = \sum_i \frac{\partial X^i}{\partial x^i}(p)dx^1 \wedge dx^2 \dots dx^m(p) = d(\sum_i X^i(-1)^{i-1}dx^1 \wedge \dots dx^{i-1}d\hat{x^i} \wedge \dots)(p)$$

$$(2.1) = d(i_X vol)(p)$$

Since the above equation is an equation of globally defined forms at p, it is independent of coordinates chosen. Thus $div(X)vol_g = d(i_Xvol)$. By the usual Stokes' theorem, $\int_M div(X)vol_g = \int_{\partial M} i_Xvol$. Now if $X = g(X, \vec{N})\vec{N} + Y$, then Y is tangent to the boundary. Choose oriented normal coordinates such that $x^1 = 0$ corresponds to the boundary (hence $\vec{N}(p) = \frac{\partial}{\partial x^1}$ and Y is a linear combination of ∂_i where $i \ge 2$)Then $i_Xvol(p)|_{x^1=0} = g(X, \vec{N})(p)i_{\vec{N}(p)}dx^1 \wedge dx^2 \dots (p) + i_{Y(p)}dx^1 \wedge dx^2 \dots (p) =$ $g(X, \vec{N})vol_{g|_{\partial M}}(p)$. As before, this equation holds globally.

In particular, if M has no boundary, then $\int_M div(X) = 0$. Now define

Definition 2.2. The Laplacian Δu where u is a function on M is a function $\Delta u = div(\nabla u) = \frac{\partial}{\partial x^i} \left(g^{ij} \frac{\partial u}{\partial x^j}\right) + \Gamma^i_{ik} \frac{\partial u}{\partial x^j} g^{jk}$. So in normal coordinates, it is the usual Laplacian at p.

As an example, take the flat metric $g = d\theta^1 \otimes d\theta^1 + d\theta^2 \otimes d\theta^2 + \ldots$ on the torus. Then the Laplacian is easily seen to be the Laplacian we studied earlier. Here is an observation using Stokes :

(2.2)
$$\int_{M} \Delta u = \int div(grad(u))dvol_{g} = 0$$

So if $\Delta u = f$, a necessary condition is that $\int f dvol_g = 0$ (just like the torus). If $\Delta u = f$, then observe that for any smooth function v,

$$(2.3) \quad \int_{M} v \Delta u vol_{g} = \int_{M} v f vol_{g} \Rightarrow \int_{M} (div(v\nabla u) - \nabla v \cdot \nabla u) vol_{g} = -\int_{M} \nabla v \cdot \nabla u vol_{g} = \int_{M} u \Delta vvol_{g}$$

So we can define a distributional solution of $\Delta u = f$ as an L^2 function u such that the above holds for all smooth v.

What about the curl of a vector field X? Firstly, given a vector field X, we can produce its dual

1-form $\omega_X(Y) = g(X, Y)$. We can then define $d\omega_X$ as a 2-form. If there is a way to take a 2-form α to an m-2 form $*\alpha$, then in 3-dimensions, $*\alpha$ will be a 1-form, whose dual is a vector field. This should be the curl. So we need a notion called the Hodge star * taking k-forms to m-k forms.

Definition 2.3. Given a k-form α on a compact oriented m-dimensional Riemannian manifold $(M,g), *\alpha$ is a (m-k)-form such that $\alpha \wedge *\beta = \langle \alpha, \beta \rangle_g vol_g$. Here the inner product on forms is defined as follows : Suppose at p, normal coordinates are chosen, i.e., $g_{ij}(p) = \delta_{ij}$, then $dx^{i_1}(p) \wedge dx^{i_2} \dots \wedge dx^{i_k}(p)$ form an orthonormal basis at p for k-forms. Note that $vol(p) = dx^1(p) \wedge dx^2(p) \dots dx^m(p)$.

Does such an operator $*: \Gamma(\Omega^k(M)) \to \Gamma(\Omega^{m-k}(M))$ exist? Is it linear? Yes to both. Suppose $\omega_1, \omega_2, \ldots, \omega_m$ form an orthonormal frame on an open set U, i.e., $\omega_1(p), \omega_2(p), \ldots, \omega_m(p)$ form an orthonormal basis of T_p^*M for all $p \in U$. Then, $*(\omega_{i_1} \wedge \omega_{i_2} \dots \omega_{i_k}) = (-1)^{sgn(I)}\omega_{i_{k+1}} \wedge \omega_{i_{k+2}} \dots \wedge \omega_{i_m}$ where sgn(I) is the sign of the permutation taking $(1, 2, \ldots, m)$ to (i_1, i_2, \ldots, i_m) . Then extend * linearly to all forms. We will see why it is well-defined later on. Here are some examples :

- (1) Suppose $(M, g) = \mathbb{R}^2$, g_{Euc} oriented in the usual way, then $*1 = dx \wedge dy$. Also, *dx = dy and *dy = -dx. Finally, $*(dx \wedge dy) = 1$.
- (2) If M = R³ (with the Euclidean metric) oriented in the usual way, then *1 = dx ∧ dy ∧ dz, *dx = dy ∧ dz, *dy = dz ∧ dx, *dz = dx ∧ dy.
 If v = (v₁, v₂, v₃) and w = (w₁, w₂, w₃), form the dual 1-forms v = v₁dx + v₂dy + v₃dz and likewise for w. Then v ∧ w is a 2-form given by v ∧ w = (v₁w₂ v₂w₁)dx ∧ dy + The Hodge star acting on this gives a 1-form *(v ∧ w) = (v₁w₂ v₂w₁)dz + ... whose dual is (v₂w₃ v₃w₂, v₃w₁ w₃v₁, v₁w₂ w₁v₂) which are the components of v × w. Since the cross product depends on the choice of orientation, it is called a "pseudovector".

This * operator (the so-called Hodge star) has the following properties :

- (1) Suppose α, β are elements of $\Omega_p^k(M) \ \alpha \wedge *\beta = \langle \alpha, \beta \rangle_g vol_g = \beta \wedge *\alpha$, i.e., it does satisfy the definition.
- (2) * is well-defined, i.e., it does not depend on the choice of orthonormal basis.
- (3) If you change the metric from g to $\tilde{g} = cg$ where c > 0 is a constant, then $*_{\tilde{g}}\omega = \sqrt{c}^{2k-m} *_{q}\omega$
- (4) If you change the orientation, $* \to -*$.
- (5) $**\eta = (-1)^{k(m-k)}\eta$.
- (6) $\langle *\alpha, *\eta \rangle = \langle \alpha, \eta \rangle.$
- Proof. (1) Suppose we choose the orthonormal frame ω_i . Suppose $\beta = \beta_I \omega^{i_1} \wedge \omega_{i_2} \dots$ where the summation is over increasing indices $i_1 < i_2 < \dots$, we see that $*\beta = \beta_I (-1)^{sgn(I)} \omega^{i_{k+1}} \wedge \omega^{i_{k+2}} \dots$ Thus,

$$\alpha \wedge *\beta = \alpha_J \beta_I (-1)^{sgn(I)} \omega^{j_1} \wedge \omega^{j_2} \dots \omega^{j_k} \wedge \omega^{i_{k+1}} \wedge \dots$$
$$= \alpha_I \beta_I (-1)^{sgn(I)} (-1)^{sgn(I)} \omega_1 \wedge \omega_2 \dots = \alpha_I \beta_I vol_q = \langle \alpha, \beta \rangle vol_q$$

Note that this property does not depend on how we defined * (i.e., we did not use the fact that * is well-defined)

- (2) The above property $\alpha \wedge *\beta = \langle \alpha, \beta \rangle vol_g defines *$ uniquely because, if $*_1, *_2$ satisfy this property, then $\alpha \wedge (*_1 *_2)\beta = 0$ for all α, β . However, $(a, b) \to a \wedge b$ is a non-degenerate pairing (Why? because $(a, *_1a) \to a \wedge *_1a = |a|^2 vol_g \ge 0$). Hence $*_1\beta = *_2\beta \forall \beta$.
- (3) Suppose $\omega_1, \ldots, \omega_m$ is an orthonormal frame for g, then $\frac{\omega_i}{\sqrt{c}}$ is one for \tilde{g} . From this the result follows trivially.
- (4) Obvious.

(5)

(2.5)
$$**(\eta) = \eta_I * *(\omega^I) = \eta_I * ((-1)^{sgn(I)} \omega^{I^c}) = \eta_I (-1)^{sgn(I)} (-1)^{sgn(I^c)} \omega^I = (-1)^{k(m-k)} \eta_I (-1)^{sgn(I^c)} \omega^I = (-1)^{k(m-k)} \eta_I (-1)^{sgn(I^c)} \omega^I = (-1)^{k(m-k)} \eta_I (-1)^{sgn(I^c)} \omega^I = (-1)^{sgn(I^c)} \omega^I = (-1)^{sgn(I^c)} (-1)^{sgn(I^c)} \omega^I = (-1)^{sgn(I^c)} (-1$$

(6) Suppose η is a k-form and α an m - k form.

(2.6)
$$\langle *\alpha, *\eta \rangle vol = *\alpha \wedge **\eta = (-1)^{k(m-k)} *\alpha \wedge \eta$$
$$= (-1)^{k(m-k)} (-1)^{k(m-k)} \eta \wedge *\alpha = \langle \eta, \alpha \rangle vol = \langle \alpha, \eta \rangle vol$$

Now we define an operator analogous of the curl $\nabla\times\vec{F}$:

Definition 2.4. Let α be a smooth k-form. Then $d^{\dagger}\alpha = (-1)^{m(k+1)+1} * d * \alpha$. Thus $d^{\dagger}\alpha$ is a smooth k-1-form depending on the first derivative of α (it is a first order differential operator).