
NOTES FOR 22 MAR (THURSDAY)

1. Recap

(1) Proved elliptic regularity for L2 distributional solutions.

2. Elliptic operators-Fredholmness

We shall prove that

Theorem 2.1. If L : Ho → L2 is elliptic, then

(1) Im(L) ⊂ L2 is closed, and the kernel and cokernel are finite-dimensional.
(2) The kernel consists of smooth functions.
(3) The Cokernel ' ker(L∗) : L2 → (Ho)∗ consists of smooth functions and Coker(L) '

ker(L∗form).

Proof. (1) This will follow from the construction of parametrices.
Firstly, we have the following lemma :

Lemma 2.2. If Uµ is a coordinate trivialising open cover of M , ρ2µ is a partition-of-unity

subordinate to it, and Kµ : Hs(S1 × S1 . . . ,Rr) → Hs(S1 × . . . ,Rr) are compact operators,

then K : Hs(M,E) → Hs(M,E) given by K(u) =
∑
µ

ρµKµ(ρµu) is also compact where

we secretly extend functions supported on Uµ to S1 × S1 . . . and conversely, functions on
S1 × S1 . . . having support in the image of Uµ are extended by 0 to the manifold.

Proof. Indeed, if un is bounded sequence in Hs, then ρµun is bounded in Hs(S1 × . . .) and
hence there is a convergent subsequence of Kµ(ρµun) (depending on µ which we will as usual
denote by the subscript n shamelessly) converging to uµ. Since ρµuµ has compact support, it
can be extended to all of M and the convergence happens in the Sobolev norm on M . Thus
K(un) =

∑
µ ρµKµ(ρµun)→

∑
µ ρµuµ in Hs. Hence K is compact. �

Another small observation is that if TG1− I = K1, G2T − I = K2, then T +h is Fredholm
for all h satisfying ‖h‖ < δ where δ depends only on upper bounds for ‖G1‖, ‖G2‖. Lastly,
going over the construction of the parametrices on the Torus, their norms are bounded above
depending only on the ellipticity constants and upper bounds on the coefficients.

First we prove that elliptic operators with variable coefficients (on a trivial bundle) on a
flat unit torus are Fredholm. Indeed, cover the torus with fine enough open sets Uµ, take
a partition-of-unity ρ2µ, and choose points pµ. We will decide how many such sets we need

later on. Let Gµ be the parametrices from L2(S1 × S1 . . .) → Hs(S1 × S1, . . .) for L(pµ).
Note that the norms of Gµ depend solely on the ellipticity constants and upper bounds for
the coefficients, and therefore are independent of the size of the open cover Uµ (By the way,
we fix these unit tori once and for all corresponding to some fixed open cover. All finer open
covers contain are subordinate to the fixed one. Hence, the equivalence between the norms of
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functions supported on Uµ is also fixed. That is, we may freely move between Hs(S1×S1 . . .)
and Hs(M,E).). Now define G =

∑
µ ρµGµρµ. Note that LG(u) : L2(M,E)→ L2(M,E) as

LG(u) =
∑
µ

[L, ρµ]Gµρµu+ ρµ(L− Lµ)Gµ(ρµu) + ρ2µu+ ρµKµρµu

= u+ Compact u+
∑
µ

ρµ(L− Lµ)Gµ(ρµu)(2.1)

Note that (by Cauchy-Schwarz)

‖
∑
µ

ρµ(L− Lµ)Gµ(ρµu)‖L2 ≤
(∑

µ

‖L− Lµ‖2Ho(Uµ)→L2(Uµ)
‖Gµ‖2L2(S1×...)→Ho(S1×...)‖ρµu‖

2
L2

)1/2
≤ ‖u‖L2

2
(2.2)

if the cover is chosen fine enough. Hence I+
∑

µ ρµ(L−Lµ)Gµρµ is invertible and thus there

exists a G̃1 so that LG̃1 − I = Compact. This proves that the cokernel (as a subset of L2) is
finite dimensional.

To find a right parametrix G̃2, i.e., G̃2L = I + K2, we need distributions because it is
easier to do it for G̃2 : H−o → L2 rather than G̃2 : L2 → Ho.

So we develop the necessary theory : The space of distributions of order s H−s(M,E)
is defined to be the metric space completion of L2 under the norm ‖v‖H−s = ‖Fv‖ =

supu∈Hs
|(u,v)L2 |
‖u‖Hs

. It is not hard to prove using functional analysis that (Hs)∗ ' H−s. Note

that if v ∈ L2, then ‖v‖−s ≤ ‖v‖L2 . Also, if v ∈ H−s, then |v(u)| ≤ ‖v‖−s‖u‖s. It is not
hard to see that the isomorphism (Hs)∗ ' H−s is an isometry and hence H−s is a Hilbert
space. Some easy functional analysis also allows one to conclude that given G ∈ (H−s)∗,
there is a unique u ∈ Hs such that G(v) = (u, v)L2 . As in the case of a torus, we define
the derivative of a distribution through “integration-by-parts”. The Sobolev inclusion and
Rellich compactness still hold.

In fact, we claim that v ∈ H−s if and only if ρµv ∈ H−s(S1 × S1 . . . ,Rr) (where ρµv(u) =
v(ρµu)) where Uµ is a trivialising coordinate cover and ρµ is a partition-of-unity). Moreover,
the H−s norm is equivalent to

∑
µ ‖ρµv‖H−s(S1×S1...). This will be part of a HW. [Actually,

using the above technique one can prove elliptic regularity estimates in these more general
norms (using the corresponding results for the torus).]

Now we return to elliptic operators. Note that L can be extended using distributional
derivatives. In fact, if u ∈ L2 and v ∈ Ho, then L(u) ∈ H−o and 〈L(u), v〉 = (u, L∗formv)L2 .

In other words, it coincides with L∗†form : L2 → H−o. Now Gµ can be easily extended from

H−o(S1 × . . .)→ L2(S1 × . . .) and it is still a parametrix (whose norm is bounded above de-
pending only on the ellipticity constants and upper bounds on the coefficients). The definition
G =

∑
ρµGµρµ by the “HW results” makes sense as a map from H−o(M,E) → L2(M,E).

We need to then prove that ‖
∑

µ ρµGµ(L − Lµ)(ρµu)‖L2 ≤ 1
2‖u‖L2 to be done. Indeed (by

Cauchy-Schwarz),

‖
∑
µ

ρµGµ(L− Lµ)(ρµu)‖L2 ≤
(
‖Gµ‖2H−o→L2‖L− Lµ‖2L2→H−o‖ρµu‖2L2

)1/2
≤ 1

2
‖u‖L2(2.3)
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for a fine enough cover. This proves that the kernel of L (as a subset of L2) is finite dimen-
sional. By the regularity theorem for L2 distributional solutions, every element of the kernel
is actually smooth (and is hence in Ho as well). So L : Ho → L2 has finite dimensional kernel
and cokernel. Thus it is Fredholm (and hence its range is closed). This means that if f is
smooth, Lu = f has a smooth solution if and only if f is L2 orthogonal to the kernel of L∗

(which by the next two results corresponds to being L2 orthogonal to the kernel of L∗form).

(2) This follows from elliptic regularity that we proved earlier.
(3) If u ∈ ker(L∗), then L∗u(v) = u(Lv) = 〈u, Lv〉L2 = 0 ∀ v ∈ Ho. Choosing v to be smooth,

u is a distributional solution of L∗formu = 0. By elliptic regularity u is smooth (the formal

adjoint is also elliptic).
�

3. Elliptic operators - Diagonalisability

Suppose L is elliptic and symmetric of order 2o satisfying Garding’s coercivity inequality : (Lu, u)L2+
λ(u, u)L2 ≥ δ(u, u)2Ho (for some positive λ) for all smooth functions. Also assume that C‖u‖2Ho ≥
B[u, u] = (Lu, u)L2 + λ(u, u)L2 ≥ δ‖u‖2Ho . Note that B[u, v] makes sense when u is smooth and
v ∈ L2. Fix v ∈ Ho. By approximation with smooth functions, B[, v] extends to Ho. It continues
to be symmetric. By Riesz representation, B[u, v] = (Au, v)Ho where the unique A : Ho → Ho is
bounded. It can be seen that A is self-adjoint. Indeed, (Au, v) = B[u, v] = B[v, u] = (Av, u). Of
course A coincides with L on smooth functions.

Clearly, B still satisfies the above inequalities. Suppose f ∈ L2. Since B is symmetric, B[u, v] is
a new inner product on Ho which is equivalent to the Sobolev norm and hence Riesz representation
implies that for every f ∈ L2, there is a u ∈ Ho such that B[u, v] = (f, v) ∀ v ∈ Ho. In particular, u
is a solution to Au = f . Thus, if v is smooth, then (Au, v) = (u,Av) = (u, Lv + λv) = (f, v). Thus,
u ∈ Ho is a distributional solution to Lu+ λu = f . Hence it is smooth if f is so.
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