
NOTES FOR 23 JAN (MONDAY)

1. Recap

(1) Proved Fredholm’s alternative and Elliptic regularity.
(2) Recalled the definitions of vector bundles, metrics, geodesics and some properties. Defined

the exponential map.

2. Riemannian manifolds and metrics on vector bundles

This section is largely from Spivak’s book. Note that (expq)v∗ : Tv(TqM) ' TqM → Texpq(v)M is

its pushforward. We claim that

Theorem 2.1. (expq)0∗ = Id and hence expq is a local diffeomorphism around ~0.

Proof. Clearly the first statement and the inverse function theorem imply the second. Now if v ∈
TqM , we need to obtain a curve c(t) ∈ TqM such that c(0) = 0, and

d expq(c(t))

dt |t=0 = v. Let c(t) = tv.
Then expq(c(t)) = expq(tv) which is the time-t geodesic starting at q pointing along v at t = 0. Thus
we are done. �

In fact, we can say more.

Theorem 2.2. For every p ∈M there is a neighbourhood Wp and a number εp > 0 such that

(1) Any two points of W are joined by a unique geodesic in M of length < εp.

(2) Let v(q, q
′
) denote the unique vector v ∈ TqM such that expq(v) = q

′
. Then (q, q

′
)→ v(q, q

′
)

is smooth.
(3) For each q ∈Wp, the map expq maps the open ε-ball in TqM diffeomorphically onto an open

set Uq ⊂W .

Proof. Let (x1, . . . , xn, v1, . . . , vn) be coordinates on TM near (p, 0) where p corresponds to the ori-
gin. A previous theorem states the exponential map is well-defined in a neighbourhood V of (p, 0)
in TM . Define F : V →M ×M as F (w) = (π(w), expπ(w)(w)). This is smooth.

If we prove that F(p,0)∗ is invertible, then by the inverse function theorem, F is a local diffeomor-

phism. Now choose W to be a smaller neighbourhood of p such that F−1 exists and is smooth on
W ×W .

To prove the invertibility of the derivative, we use coordinates.

∂F

∂xi
|(0,0) = (δij ,

∂ expx(v)

∂xi
|(0,0)) = (δij , δij)

∂F

∂vi
|(0,0) = (0,

∂ expx(v)

∂xi
|(0,0)) = (0, Id)(2.1)

This is obviously invertible. �

Now we make a definition of a useful coordinate system.

Definition 2.3. Given q ∈ M , the coordinate system defined by expq : U ⊂ TqM → M is called a
geodesic normal coordinate system at q (after choosing coordinates on U that is).
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This set of coordinates is extremely useful. In fact,

Theorem 2.4. There is a geodesic normal coordinate system v at p, gij(p) = δij and
∂gij
∂vk

(p) = 0.

Proof. Choose coordinates xµ so that gµν(p) = δµν . (This can be easily accomplished by taking any
coordinate system and rotating it so as to diagonalise g.) Let vi be coordinates in TpM . Now exp is a
local diffeomorphism. So xµ(vj) = xµ ◦ exp(vj) is a change of coordinates in a small neighbourhood.

Note that since exp0∗ = Id, ∂xµ

∂vj
|v=0 = δµj . Now g̃ij = gµν

∂xµ

∂vi
∂xν

∂vj
. So it is easy to see that

g̃ij(0) = δij . Since the geodesics through p are linear in this coordinate system, we see that the

Christoffel symbols Γ̃rij(0) = 0. It is easy to see that if the Christoffel symbols are 0, then so are all
first partial derivatives of the metric. �

More generally, any coordinate system in which the metric at p is standard upto first order is
called a normal coordinate system at p.

Actually, we can prove the existence of normal coordinates in much simpler manner even without
reference to geodesics.

Theorem 2.5. There is a normal coordinate system y at p.

Proof. Choose any coordinate system at x at p such that x = 0 is p. Using a linear map, we may
diagonalise g at p. So without loss of generality, g̃µν = δµν+aµναx

α+O(x2). (Note that aµνα = aνµα.)

Change the coordinates to y such that x(y)i = yi + bijky
jyk where bijk = bikj . Now

gij = g̃µν
∂xµ

∂yi
∂xν

∂yj
= (δµν + aµναy

α +O(y2))(δµi + bµiky
k)(δνj + bνjky

k)

= δij + aijky
k + (bijk + bjik)y

k +O(y2)(2.2)

So we just need to choose b so that aijk = −bijk − bjik ∀ k. So take b = −a
2 . �

It is natural to ask if there is a geodesic normal coordinate system to the second order. Shockingly
enough, there isn’t (in general). In fact,

Theorem 2.6. There exists a (0, 4) tensor (called the Riemann curvature tensor of g) which is
locally Rµναβ such that in geodesic normal coordinates,

gµν = δµν −
1

3
Rµανβ(0)xµxν +O(x3)(2.3)

where in these coordinates, Rijkl(0) = 1
2
∂2gjk
∂xi∂xl

(0) + 1
2

∂2gil
∂xj∂xk

(0) − 1
2
∂2gjl
∂xi∂xk

(0) − 1
2
∂2gik
∂xj∂xl

(0). In fact,
all the other terms in the Taylor expansion depend only on R and its derivatives. So there is a
change of coordinates such that g is Euclidean everywhere, then, since the Euclidean coordinates are
geodesically normal, the Riemann curvature tensor is identically 0.

So one can prove that one cannot draw a map of any part of Bangalore on a piece of paper such
that distances are to scale, by calculating the curvature of the sphere with the metric induced from
the Euclidean space. It turns out to be a non-zero tensor. We will return to curvature later on in a
different way. This theorem is to show you that the notion of curvature is “forced” upon us. (It is
not an artificial definition.)

Now we need to know that geodesics are locally length minimising. For this we need to prove the
folllowing lemma due to Gauss.

Lemma 2.7. In Uq, the geodesics through q are perpendicular to the hypersurfaces {expq(v) : ‖v‖ =
c < ε}
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Proof. Let v : R → TqM be a smooth curve with ‖v(u)‖ = k < ε ∀ u. Define β(u, t) = expq(tv(u)).
Now β is a variation of the geodesic γ(t) = expq(tv(0)) (but the endpoints are not fixed). By the
first variation formula,

dE(β)

du
|u = 0 = −〈∂β

∂u
(0, 1),

dγ

dt
(1)〉 − 〈∂β

∂u
(0, 0),

dγ

dt
(0)〉 = −〈∂β

∂u
(0, 1),

dγ

dt
(1)〉(2.4)

But each curve β(u) has energy E(β(u)) =

∫ 1

0

∂β(u)(t)

∂t
‖2dt =

∫ 1

0
k2dt = k2. Hence 0 = ∂E

∂u =

−〈∂β∂u (0, 1), dγdt (1)〉. This proves the result. �

As a corollary we see that

Corollary 2.8. Let c : [a, b] → Uq − {q} be a piecewise smooth curve c(t) = expq(u(t)v(t)) for

0 < u(t) < ε and ‖v(t)‖ = 1. Then Lbac ≥ |u(b) − u(a)| with equality holding if and only if u is
monotonic and v a constant, so that c is a radial geodesic joining two concentric spherical shells
around q.

Proof. Let α(s, t) = expq(sv(t)). Then c(t) = α(u(t), t). Now dc
dt = ∂α

∂uu
′
+ ∂α

∂t .

Since 〈∂α∂s ,
∂α
∂t 〉 = 0 (Gauss lemma) and ‖∂α∂s ‖ = 1 (this is true at s = 0 and hence true for all s

because geodesics preserve length), we see that ‖c′‖2 ≥ |u′ |2 with equality if and only if ∂α
∂t = 0 and

hence v
′
(t) = 0. This is easily seen to complete the proof. �
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