
NOTES FOR 25 JAN (THURSDAY)

1. Recap

(1) Proved that there are neighbourhoods (Wp, εp) such that every around every point q ∈ Wp,
the exponential map diffeomorphically maps the epsilon ball to an open set. Moreover, any
two points can be connected by a geodesic of length < εp.

(2) Defined the geodesic normal coordinates and proved that they are normal coordinates (the
metric is standard upto the first order). Discussed that they are usually not standard upto
higher orders because of curvature.

(3) Proved the Gauss lemma (radial geodesics are perpendicular to geodesic spheres) and used
it to prove that among some curves, geodesics have the shortest length.

2. Riemannian manifolds and metrics on vector bundles

Now we have a local length minimising property.

Corollary 2.1. Let Wp, εp be as in one of the earlier theorems. Let γ : [0, 1]→M be the geodesic of

length < ε joining q, q
′ ∈ W and let c : [0, 1]→ M be any piecewise smooth path from q to q

′
. Then

L(γ) ≤ L(c) with equality holding if and only if c is a reparametrisation of γ.

Proof. We can assume that q
′

= expq(rv) (otherwise break c up into smaller pieces). For δ > 0, the
path c must contain a segment which joins the spherical shell of radius δ to the spherical shell of
radius r and lies between them. So by the previous corollary, the length of this segment is at least
r − δ. So the length of c ≥ r. Hence c must be a reparametrisation of γ for equality to hold. �

A piece of terminology - A normal neighbourhood is the image of an open set V under the
exponential map on which it is a diffeomorphism. A totally normal neighbourhood is a normal
neighbourhood such that every two points can be connected by a unique length-minimising geodesic.
A geodescally convex neighbourhood is a totally normal neighbourhood where the length-minimising
geodesic stays completely within the neighbourhood.

Theorem 2.2. If p ∈M , there exists a geodesic ball Bεp(p) such that every two points in the ball can
be connected by a unique length minimising geodesic lying in the ball and such that the exponential
map is a diffeomorphism restricted to the ball. Such a ball is called a geodesically convex ball.

Proof. Of course there is a ball B (by the above) such that any two points can be connected by
length-minimising geodesic of length < ε̃p. The question is whether the geodesic lies completely
within the ball or not. Now we need the following lemma.

Lemma 2.3. For any p ∈ M , there is a number cp > 0 such that any geodesic in M tangent at
q ∈ M to the geodesic sphere Sr(p) of radius r < c, stays out of the geodesic ball Br(p) for some
neighbourhood of q.

Proof. Basically we take the distance F from p to a point on the geodesic and show that F achieves
a strict local minimum at q by calculating the second-derivative. This will do the job.

Let W be a totally normal neighbourhood of p. By rescaling we may assume that all the geodesics
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have speed 1. Let γ(t, q, v) : I = (−ε, ε)×TW →M be the geodesic that starts at q and points initially
along v. Define u(t, q, v) = exp−1

p (γ(t, q, v)). Define F : I × TW → R as F (t, q, v) = |u(t, q, v)|2.
Note that ∂F

∂t = 2〈∂u∂t , u〉 and ∂2F
∂t2

= 2〈∂2u
∂t2

, u〉+ 2|∂u∂t |
2.

Suppose r is small enough so that expp(Br(0)) ⊂ W . If γ is tangent to the geodesic sphere at

q = γ(0, q, v), then by the Gauss lemma, ∂F
∂t (0, q, v) = 0. Now note that for q = p, u = tv and hence

∂2F
∂t2

(0, p, v) = 2. Thus there is a neighbourhood V of p where this second derivative is positive. Let
c be such that expp(Bc(0)) ⊂ V . This will do the job. �

Let cp be the number as in the lemma. Choose (W, δ) to be a totally normal neighbourhood of p
(i.e. W is totally normal and the δ ball around every point in W is totally normal) and such that
δ <

cp
2 . Take β < δ such that Bβ(p) ⊂ W . We shall prove that Bβ(p) is convex. If q1, q2 ∈ ¯Bβ(p)

be connected by the unique length-minimising geodesic of length < 2δ < c. This curve γ ∈ Bc(p).
Indeed d(p, γ(t)) ≤ d(p, q1) + d(q1, γ(t)) < δ + δ < c (assuming q1 is closer to γ(t) than q2). If the
interior of γ is not in Bβ(p), then there is a point m in the interior of γ which is at the maximum
distance r from p. The points of γ in a neighbourhood of m remain in the closure of Br(p). This
contradicts the above lemma. �

In fact, using this (geodesic triangles) one can prove that any surface can be triangulated, i.e.,
piecewise linearly diffeomorphic to a simplicial complex.

Using the above corollary, we can determine the geodesics of some manifolds. Before that, we
introduce a definition : If (M, gM ), (N, gN ) are two Riemannian manifolds, then a smooth diffeo-
morphism f : M → N is called a Riemannian isometry if 〈v, w〉gM (p) = 〈f∗p(v), f∗p(w)〉gN (f(p)) for all
p ∈M , i.e., f∗gN = gM . There is a theorem called the Myers-Steenrod theorem saying that a metric
space isometry between two connected Riemannian manifolds is actually a Riemannian isometry.
(The converse is easy by observing that if c : [0, 1]→M is a smooth curve, then l(c) = l(f ◦ c) where
f is an isometry and that if c is a geodesic then so is f ◦ c.)

For example, reflection through a plane passing through the origin E2 ⊂ Rn+1 is an isometry
I : Sn → Sn.

(1) S2 : The fixed point set of I is a great circle C = S2 ∩E2. Take two points p, q ∈ C. If there

is a unique geodesic C
′

connecting p, q then I(C
′
) is the unique geodesic connecting I(p) = p

and I(q) = q. Thus C
′

= I(C
′
) and hence C

′ ⊂ C. Therefore, C is a geodesic. Since there
is a great circle through every point and every direction, all the geodesics of Sn are great
circles. Note that a portion larger than a semi-circle is not of minimal length even among
nearby paths. So geodesics stop minimising after some time.

(2) Z = S1 × R (the right circular infinite cylinder) : The geodesics are {p} × L, S1 × {q}, and
helices. Indeed, if L is a generating line, then I : Z − L → R2 given by rolling Z onto R2 is
an isometry. (This proves that these are the only geodesics.)

Now we wind up these things with the discussion of a very important concept : A Riemannian
manifold (M, g) is called geodesically complete if every geodesic γ : [a, b]→M can be extended to a
geodesic from R to M . We have the very important Hopf-Rinow theorem.

Theorem 2.4. Suppose (M, g) is a connected Riemannian manifold. Then the following are equiv-
alent.

(1) M is geodesically complete.
(2) (M,d) is a complete metric space.
(3) A set K ⊂M is compact if and only if it is closed and bounded.
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(4) There is a smooth exhaustion function ψ : M → R (i.e. ψ−1(−∞, c) is relatively compact in
M) such that |dψ|g ≤ 1.

(5) There exists an exhaustive sequence Kν of compact subsets of M (i.e. Kν ⊂ Int(Kν+1),
∪νKν = M) and functions ψν : M → R such that ψν = 1 in a neighbourhood of Kν ,
Supp(ψν) ⊂ Int(Kν+1), 0 ≤ ψν ≤ 1 and |dψν |g ≤ 2−ν .

Moreover, any two points in a geodesically complete manifold can be joined by a minimal length
geodesic.
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