
NOTES FOR 30 JAN (TUESDAY)

1. Recap

(1) Proved the existence of geodesically convex balls and proved that geodesics are locally length
minimising.

(2) Defined isometries and stated the Myers-Steenrod theorem. Calculated geodesics for some
examples.

(3) Defined geodesic completeness.

2. Riemannian manifolds and metrics on vector bundles

Theorem 2.1. Suppose (M, g) is a connected Riemannian manifold. Then the following are equiv-
alent.

(1) M is geodesically complete.
(2) (M,d) is a complete metric space.
(3) A set K ⊂M is compact if and only if it is closed and bounded.
(4) There is a smooth exhaustion function ψ : M → R (i.e. ψ−1(−∞, c) is relatively compact in

M) such that |dψ|g ≤ 1.
(5) There exists an exhaustive sequence Kν of compact subsets of M (i.e. Kν ⊂ Int(Kν+1),
∪νKν = M) and functions ψν : M → R such that ψν = 1 in a neighbourhood of Kν ,
Supp(ψν) ⊂ Int(Kν+1), 0 ≤ ψν ≤ 1 and |dψν |g ≤ 2−ν .

Moreover, any two points in a geodesically complete manifold can be joined by a minimal length
geodesic.

Proof. Zeroethly, we recall that the metric d induces the same topology as the original one on the
manifold. In particular, d is continuous.

First we prove that 1 implies that any two points can be joined by a minimal geodesic. Suppose
p, q ∈M with d(p, q) = r > 0. Choose Up as in an earlier theorem. Let S ⊂ Up be the spherical shell
of radius δ < ε. There is a point p0 = expp(δv), ‖v‖ = 1 on S such that d(p0, q) ≤ d(s, q) for all
s ∈ S (by compactness of S). We claim that expp(rv) = q (thus proving what we want). To prove
this we prove that d(γ(t), q) = r − t for t ∈ [δ, r].

Indeed, firstly, since every curve from p to q must intersect S (Intermediate value theorem :
d(p, p) = 0, d(p, q) > δ) we see that d(p, q) = mins∈S(d(p, s) + d(s, q)) = δ+ d(p0, q). Thus d(p0, q) =
r − δ.

The set A of t ∈ [δ, r] satisfying the property that d(γ(t), q) = r − t is non-empty. It is closed by
continuity. If we prove that it is open, then by connectedness we will be done. If s0 < r ∈ A. Let
δ
′

be small. We want to show that δ
′
+ s0 ∈ A. Let Bδ′ (γ(s0)) be the geodesically convex ball with

boundary S
′
. Let x

′
0 be the point of minimum of d(x, q) on S

′
.

Note that r− s0 = d(γ(s0), q) ≤ δ
′
+ d(x

′
0, q). Actually, since there is a curve γε joining x

′
0, q such

that d(x
′
0, q) ≤ l(γε)

q

x
′
0

≤ d(x
′
0, q)+ε, we see that the curve consisting of the geodesic between s0, x

′
0 of

length δ
′

and then γε joining x
′
0, q is of length at most δ

′
+d(x

′
0, q)+ε. Thus d(γ(s0), q) = δ

′
+d(x

′
0, q)

(it is less than this quantity and there are curves whose length is arbitrarily close to this quantity).
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Now d(p, x
′
0) ≥ d(p, q) − d(q, x

′
0) = s0 + δ

′
. By the local minimising properties of geodesics, it is

clear that γ(s0 + δ
′
) = x

′
0. Thus d(γ(s0 + δ

′
), q) = r − (s0 + δ

′
).

(1) 1⇒ 3 : Of course compact sets are closed and bounded. Suppose K is closed and bounded.
Then there is a metric ball K ⊂ BR(p) where p ∈ K. By existence of length minimising
geodesics, there exists a ball Br(0) ∈ TpM such that BR(p) ⊂ ¯exp(Br(0)). Since the right
hand side is compact, so is K.

(2) 3 ⇒ 2 : If xn is a Cauchy sequence, then the set K = closure of {x1, x2, . . .} is certainly
closed and bounded. Thus it is compact. Hence xn has a convergent subsequence. Therefore
xn converges.

(3) 2⇒ 1 : Suppose (M, g) is not geodesically complete. Then there is an arc-length parametrised
geodesic γ defined on s < s0 but not at s0. Let sn < s0 → s0. For large n,m, d(γ(sn), γ(sm)) ≤
|sn − sm| < ε. Hence γ(sn) is Cauchy and converges to p0. Let Wp0 , δ be a geodesically con-
vex normal neighbourhood around p0. Assume that n,m are large so that |sm − sn| < δ.
There is a geodesic α connecting γ(sn), γ(sm) with length less than δ. Wherever γ is defined,
α = γ (by uniqueness). Suppose β is the geodesic connecting γ(sN ) and p0. Let M be so
large that d(γ(sm), p0) ≤ ε for all m ≥ M . Now L(γ)s0sN = |sN − s0| = limm→∞ |sN − sm| =
limm→∞ d(γ(sN ), γ(sm)) ≤ limm→∞(d(γ(sN ), p0)) + ε. Hence L(γ)s0sN ≤ d(γ(sN ), p0) + ε ∀ε.
Thus means that γ = β. Thus β extends γ past s0 to s0 + δ.

(4) 2 ⇒ 4 : Fix x0 ∈ M . Set ψ0(x) = 1
4d(x0, x). Of course ψ0(x) is smooth when x is close

to x0. In fact, it is Lipshitz with constant 1
4 . Since Lipshitz functions are differentiable

almost everywhere (Rademacher’s theorem), ψ0 is so and |dψ0| ≤ 1
4 almost everywhere. ψ0

is of course an exhaustion except that it is not smooth. If we manage to smooth it out to
ψ satisfying |ψ − ψ0| ≤ 1 and |dψ| ≤ 1, we will be done. This smoothing will be given as a
HW exercise. (Essentially, you take a locally finite cover by normal balls of a small enough
size so that the metric is close to being Euclidean. Let ρα be a partition-of-unity. Now
using mollification, you can approximate ραψ0 by a smooth function ψα uniformly and let
ψ =

∑
α ψα. You need to be clever in approximating so that the derivative of ψ is not too

big.)
(5) 4 ⇒ 5 : Choose a smooth function ρ : R → R such that ρ = 1 on (−∞, 1.1) and ρ = 0 on

[1.9,∞), 0 ≤ ρ′ ≤ 2 on [1, 2]. Then Kν = {x : ψ(x) ≤ 2ν+1} and ψν(x) = ρ(2−ν−1ψ(x)).

(6) 5⇒ 4 : Set ψ =
∑

2ν(1− ψν).

(7) 4 ⇒ 3 : The inequality |dψ|g ≤ 1 implies that |ψ(x) − ψ(y)| ≤ d(x, y) and hence all finite
closed balls are compact. (Indeed, if xk in a closed ball BR is sequence without a convergent
subsequence, then ψ(xk)→∞ because ψ is proper. But d(xk, y) is bounded.)

�

Here are examples of complete manifolds :

(1) Compact manifolds. In fact, as a corollary of the Hopf-Rinow theorem, we see that there is
always a minimal geodesic joining any two points on a compact manifold.

(2) Rn
(3) Hn. Indeed, one can write down the geodesics (they are vertical lines and semicircles) explic-

itly to see this.

3. Connections and curvature

Here are a bunch of observations / questions :
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(1) The Christoffel symbols Γijk = F (g, ∂g) do not transform like a tensor does upon change of

coordinates. (In english, this means, when I change coordinates, the new symbols are not
linearly dependent on the old ones.) This can be verified easily by calculation. So what kind
of objects are they ?

(2) In g.n.c, the second term in the Taylor expansion of the metric was a tensor (which we called
the Riemann curvature tensor) depending on two derivatives of the metric. Since this seems
to detect “curvature” in the english sense of the word (for example, it is 0 when the metric can
be made Euclidean), we need to see if there is a more invariant way to define this quantity.

(3) If one wants to follow the shortest path in a city, one follows “one’s nose”, i.e., the tangent
vector of the path is transported “parallel” to itself, i.e., there is no acceleration in any other
direction. So we need to define a notion of “parallel transport” along a curve.
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