
NOTES FOR 3 APR (TUESDAY)

1. Recap

(1) Proved that elliptic operators are Fredholm (from H l → L2).
(2) For coercive 2o order operators we proved existence of weak solutions.

2. Elliptic operators - Diagonalisability

Define the operator f ∈ L2 → uf ∈ Ho ⊂ L2. This is a compact operator.

Lemma 2.1. The operator K(f) = uf is self-adjoint.

Proof.

(v,Kf) = B[Kv,Kf ] = B[Kf,Kv] = (f,Kv)(2.1)

�

Hence by the spectral theorem, its spectrum consists only of countably many eigenvalues, each
eigenspace is finite dimensional, and its eigenvalues are bounded above with 0 as the only accumu-
lation point and its eigenvectors span all of L2. Moreover, K − µI is an isomorphism unless µ is an
eigenvalue. Also, by Fredholm theory, (K − µI)u = f has a solution if and only if f is orthogonal
to the kernel of K − µI. Now Au− λu = f has a solution if and only if u solves Au = λu+ f , i.e.,
u = K(λu+ f) and hence if and only if f is orthogonal to the kernel of Au− λu which is the kernel
of Lu (because of regularity). Also, the spectrum of L consists only of eigenvalues (going off to ∞)
such that the eigenspaces are finite dimensional and span all of L2.

In the case of the Hodge Laplacian, in normal coordinates one can easily see that ∆d = ∇∗∇ +
lower order terms. Thus, (∆du, u) = (∇u,∇u)+(loweru, u). Now |(loweru, u)| ≤ C‖∇u‖L2‖u‖L2 ≤
1
2‖∇u‖

2
L2 +C1‖u‖2L2 . Hence, (∆du, u)+(C1+ 1

2)(u, u) ≥ 1
2(‖∇u‖2L2 +‖u‖2L2). This proves the Garding

coercivity inequality and hence the Hodge theorem. (Actually, all we need is the diagonalisability
part because the rest of Hodge follows from the Fredholmness of the elliptic operator ∆d.)

Actually, since lower order terms do not make a difference to Fredholmness, this also proves that
the above kind of operators plus lower order terms are still Fredholm.

3. Schauder and W k,p estimates

As in the case ofHs and Ck,α we can define theW k,p(M,E) spaces either globally using connections
(using either weak derivatives or as the completion of smooth sections) or by partitions-of-unity and
the local definition.

If L is elliptic (with smooth coefficients) and u ∈ Lp is a distributional solution of Lu = f where
f ∈ W k,p, then u ∈ W k+o,p with ‖u‖Wk+o,p ≤ Ck,p(‖f‖Wk,p + ‖u‖Lp). Likewise, if f ∈ Ck,α and

u ∈ Co,α is a solution, then u ∈ Ck+o,α with ‖u‖Ck+o,α ≤ Ck,α(‖f‖Ck,α + ‖u‖C0) (the Schauder
estimates). (These things are in L. Nicolaescu’s lectures on the geometry of manifolds.) We shall
not prove these results. The Schauder estimates are not too hard to prove but the W k,p estimates
require some heavy harmonic analysis (the Calderon-Zygmund inequality).
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We prove a small special related result just to see what the proofs look like. (This is from Gilbarg-
Trudinger.)

Lemma 3.1. Let B(r) be the open r-ball in Rm and B̄(r) be the closed one. Suppose Γ(x) = 1
2π ln(|x|)

if n = 2 and Γ(x) = 1
n(2−n)ωn

|x|2−n if n > 2 (where ωn is the volume of the unit ball). Then the

function u(x) =

∫
B̄(1)

Γ(x− y)f(y)dy is in C2(B̄(r)) (r < 1) if f ∈ C0,α(B̄(1)), and ∆u = f .

Proof. See Gilbarg-Trudinger (chapter 4). �

Actually, the Schauder estimates hold under weaker assumptions : If L is a second order operator
with C0,α coefficients on Ω acting on functions (as opposed to sections), then the (interior) Schauder
estimates still hold. This sort of a thing is extremely useful. For instance, if we have a C2,α solution
such that D2u > 0 of det(D2u) = f on Ω where f is smooth, then u is actually smooth. Indeed,
differentiate and use the Schauder theory to bootstrap.
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