
NOTES FOR 4 JAN (THURSDAY)

1. Recap

(1) Proved that if f is smooth and periodic, then u
′′

= f can be solved for smooth periodic

function u if and only if
∫ 2π
0 fdx = 0. Recast it in the language of linear algebra. (If

T : V → V , then f ∈ Im(T ) if and only if f is orthogonal to Ker(T ∗).) Also, if f ∈ Ck,
then u ∈ Ck+2.

(2) Formally “proved” similar results using Fourier series.
(3) Wrote important theorems about Fourier series. The most important is that a smooth func-

tion has rapidly decaying Fourier coefficients (and the Fourier series converges uniformly).
Conversely, if ak is a rapidly decaying sequence, it corresponds to the Fourier coefficients of
a smooth function.

2. Poisson ODE (cont’d)..

Note that the theorems above imply that if f is smooth and f̂(0) = 0, then û(k) = − f̂(k)
k2

(with

û(0) being arbitrary) is also rapidly decaying (just as f̂(k) itself) and hence
∑
û(k)eikx converges

uniformly to a smooth function u such that u
′′

= f . Likewise, taking Fourier transform on both
sides, any solution to this ODE is of the above form.

3. The Poisson equation on a torus

Now consider the equation
∑n

i=1
∂2u
∂x2i

= f(x) where f(x+2π
∑
niei) = f(x) for a multiply-periodic

function u. This can be thought of as a PDE on a torus S1 × . . . S1.
Except for the Hölder continuity criterion, all the other theorems mentioned above hold verbatim

for Fourier series in higher dimensions, i.e., for û(~k) =
1

(2π)n

∫ ∫ ∫
. . . f(~x)e−i

~k.~xd~x. The same

proofs work.
If f is smooth and periodic, then its Fourier coefficients are rapidly decaying. In addition, if∫ ∫
. . . fdx = 0, then, û(~k) = − f̂(~k)

|~k|2
is rapidly decaying and hence

∑
~k
û(~k)ei

~k.~x (with û(0) being

arbitrary) converges uniformly to u(x) (and likewise for all its derivatives). Hence u is smooth,
periodic, and satisfies the Poisson equation. By taking Fourier series on both sides, it is unique up
to constants.

Another proof of uniqueness goes as follows : Suppose u1, u2 solve ∆u = f . Then ∆(u1−u2) = 0.
By multiplying by u1− u2 and integrating over [0, 2π]× [0, 2π]× . . . and integrating-by-parts we get

−
∫
|∇(u1 − u2)|2 = 0. Hence u1 = u2 + C.

4. Weak solutions and Sobolev spaces

The strange thing about using Fourier series to solve the Poisson equation is that even if f is

merely in L2 and satisfies
∫ ∫

f = 0, the expression û(k) = f̂(k)
~k|2

makes sense, is in l2 and hence the

corresponding Fourier series converges in L2 to a function u. So even if u is not differentiable, it
1
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makes sense to talk about a “solution” to ∆u = f ! Such a “solution” is called a “weak solution”.
An important strategy to solve PDE is to first come up with such a weak solution (which can be
done without too much difficulty using functional analysis or such “soft” techniques) and then prove
that the weak solution is in fact, secretly smooth and satisfies the PDE honestly.

To gain more insight into this weak solution we found, suppose we are dealing with the ODE, and φ
is a smooth periodic function, then by the Parseval-Plancherel theorem,

∫
φ

′′
u =

∑
k(−k2)φ̂(k)û(k) =∑

k φ̂(k)f̂(k) =
∫
φf for all such φ.

If u and f were actually smooth, then integration-by-parts implies that
∫
φ(u

′′ − f) = 0 for all

smooth φ. So choose φ = u
′′ − f to see that u

′′
= f . So indeed, for smooth solutions, this notion

of a weak solution is equivalent to the usual notion (of a “strong solution). This argument can be
easily generalised to higher dimensions.

The above arguments suggest that the following are important concepts

(1) Weak derivative : From now onwards, whenever we say “test function”, we mean a smooth
function with compact support. Suppose φ is a test function on a domain U ⊂ Rn. If
u, v ∈ L1

loc(U) and α = (α1, α2, . . . , αk) is a multiindex, then v is said to be the αth weak
derivative of u (written as v = Dαu) provided∫

U
uDαφdx = (−1)α1+α2+...

∫
U
vφdx

for all test functions φ.
Before we prove that weak derivatives are unique, let us state the following useful lemma

(we will do the proof a little later).

Lemma 4.1. If
∫
U vφdx = 0 for all test functions φ (where v is locally integrable), then

v = 0 almost everywhere.

Using this lemma we may prove the following theorem.

Theorem 4.2. If Dαu exists weakly, then it is uniquely defined upto a set of measure zero.

Proof. Suppose v1, v2 are two weak derivatives of u. Then

∫
U
v1φ =

∫
U
v2φ. Thus

∫
U (v1 −

v2)φ = 0 for all test functions φ. This means that v1 − v2 = 0 almost everywhere. �

Here are examples and non-examples of weak differentiability.
(a) Let U = (0, 2) ⊂ R. Suppose u = x if x ∈ (0, 1] and u = 1 if 1 ≤ x < 2. Define v = 1

if 0 < x ≤ 1and 0 if 1 < x < 2. Then u
′

= v in the weak sense. Indeed, if φ is a test

function, then −
∫ 2
0 φ

′
u = −

∫ 1
0 φ

′
u−

∫ 2
1 φ

′
u = −(φu)(1−)+(φu)(0)+

∫ 1
0 φu

′− (φu)(2)+

(φu)(1+) +
∫ 2
1 φu

′
=

∫ 1
0 φv.

(b) U = (0, 2). Now u(x) = x if 0 < x ≤ 1 and u(x) = 2 if 1 < x < 2. We claim that u is
not weakly differentiable. Suppose such a v exists. Then it is easy to see that on (0, 1)
v = 1 and on (1, 2) it is equal to 0 (by uniqueness of weak derivatives). Then the above
argument shows a contradiction because u(1−) 6= u(1+).

Now we prove lemma 4.1. Before doing so, we need to take a detour into the concept of
convolution and approximation. The slogan to keep in mind is “good convolved with bad is
good” (something that Prof. Ravi Raghunathan of IIT Bombay taught me when I was an
undergrad). From now onwards, Uε is the set of all x ∈ U whose distance from the boundary
of U is at least ε.

Suppose φ is any smooth function on R with compact support centred around 0. Let
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η(x) = Cφ(|x|) where C is chosen so that

∫
Rn

η(x)dx = 1. Define ηε(x) = 1
εn η(x/ε). Note

that these functions are smooth, their integral is 1, and their supports are in B(0, ε). (They
are supposed to be approximations of the Dirac delta.)

Suppose f : U → R is locally integrable. Define f ε on Uε (its “mollification”) to be

f ε = ηε ∗ f =

∫
U
ηε(x − y)f(y)dy =

∫
B(0,ε)

ηε(y)f(x − y)dy. This operation is something

like a weighted average of the values of f near x. So it “smooths out” f . The following are
important properties of mollifiers.
(a) f ε is smooth
(b) f ε → f a.e. as ε→ 0.
(c) If f ∈ C(U), then f ε → f uniformly on compact sets.
(d) If f ∈ Lploc(U) then f ε → f in Lploc(U) when 1 ≤ p <∞.
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