
NOTES FOR 5 APR (THURSDAY)

1. Recap

(1) Proved that coercive elliptic symmetric operators are diagonalisable and as a consequence,
the Hodge theorem.

(2) Stated the Schauder and the Lp estimates.

2. The Riemannian uniformisation theorem

The curvature K depends on the second derivatives of a metric. So saying K = constant is asking
us to solve a PDE for g. It is easier to solve an equation with one unknown than with several (Of
course, even in linear algebra, we have a formula for the former but not for the latter). So given a
single function f and a metric g0, how do you come up with a new metric ? Of course, you rescale
the old one to g = e−fg0. Computing the new curvature we get (See list of formulas in Riemannian
geometry on wikipedia to get the correct formula),

∆f = Ke−f −K0,(2.1)

where K0 is the Gaussian curvature of g0, K is the new curvature, ∆f is locally, at a point where we

choose coordinates such that g0(p) is the Euclidean metric up to the second order, ∆f(p) = ∂2f
∂x2

+ ∂2f
∂y2

.

The question is - Can we solve this equation ? If so, is the solution unique ? The answer (which is
supposedly blowing in the wind) is provided by the Riemannian uniformisation theorem -

Theorem 2.1. In every conformal class of metrics [g] on a compact oriented surface, there exists a
unique (up to rescalings by positive constants) metric of constant curvature.

Proof. It is actually quite hard to prove (shockingly enough) this theorem for genus g = 0, i.e., for a
sphere ! (Of course there is one metric of positive constant curvature that even children (who do not
believe the flat-earth theory) know about. The issue is that are there other conformal classes ? (There
aren’t) If there are, how do you prove that they have such metrics ? The technique we are going to
describe below will run into serious challenges for g = 0.) In fact, this is no coincidence. It turns
out that one generalisation of this observation has been proven recently by Chen-Donaldson-Sun
(and apparently independently by Tian). It is called the Yau-Tian-Donaldson conjecture. Another
generalisation called the Yamabe problem was solved earlier.
Let us take the next case of g = 1. Note that by the Gauss-Bonnet theorem,

∫
KdA =

∫
M K0dA0 =

2π(2− 2g) = 0. Therefore we want K = 0. This means we have to solve

∆f = −K0.

Let’s prove uniqueness first. Indeed, if f1, f2 are two solutions, then ∆(f1 − f2) = 0. Multiplying by
f1 − f2 and integrating-by-parts we get

−
∫
M
|∇(f1 − f2)|2 = 0.

Therefore f1− f2 is a constant. The point of this calculation is “If you want to prove that the kernel
of some operator is trivial, multiply by something and integrate-by-parts”. Since the Laplacian is
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elliptic, the Fredholm alternative shows that we are done for g = 1.
For higher genus, we want K < 0. Now we are faced with a nonlinear PDE. Here is a beautiful
method (originally due to Bernstein) to handle such PDE. It is called the method of continuity.
Consider the following family of PDE indexed by a number 0 ≤ t ≤ 1.

∆ft = −e−ft − tK0 + (1− t).(2.2)

At t = 0 there is obviously a solution φ0 = 0. If we prove that the set of t for which there exists a
smooth solution is both open and closed, then by connectedness, the set is [0, 1].

(1) Openness : Basically, given a solution at t = t0, we need to prove that there are solutions
nearby. Consider the following map,

T (t, f) = ∆f + e−f + tK0 − (1− t).(2.3)

Naively speaking, if this was a map between finite dimensional things, then by implicit func-
tion theorem, if its derivative with respect to f is surjective then we will be done. Indeed,
there is an implicit function theorem on Banach spaces.

Theorem 2.2. Suppose X,Y, Z are Banach spaces, C ⊂ X × Y is open, and f : C → Z is
C1. Suppose (a, b) ∈ C and v → Df(a,b)(0, v) is a Banach space isomorphism from Y onto

Z. Then locally, z = f(x, y) can be solved for to yield a C1 function g such that y = g(x, z).

Remark 2.3. In fact, there is one for Banach manifolds, i.e., Hausdorff topological spaces
equipped with a maximal atlas consisting of open sets isomorphic to a open subsets of Banach
spaces with the transition functions being smooth, i.e., the Fréchet derivatives (in the usual
sense) exist as multilinear bounded maps. Typically they are required to be separable and
metrisable. In fact a theorem of Henderson states that such beasts are diffeomorphic to open
subsets of the separable Hilbert space.

Remark 2.4. The theorem follows from the inverse function theorem on Banach spaces,
whose proof is exactly word-to-word the same as the finite-dimensional one. (The contraction
mapping principle.) You may look at Lang’s book for it.

The appropriate Banach spaces to consider are R × Ck+2,α and Ck,α for a given integers
k ≥ 0 and α > 0. Why the α? (Hölder space) It is for a technical reason as we shall see in a
moment. The “derivative” with respect to f being surjective is the same as saying, for every
v ∈ Ck,α there exists a u

∫
Ck+2,α such that

d

ds
|s=0T (t0, ft0 + su) = v

⇒ ∆u− e−ft0u = v.(2.4)

Borrowing from our intuition from linear algebra (it is easy to verify that the above equation
for u is self-adjoint), i.e., using the Fredholm alternative, we simply need to show that the
kernel is trivial. Indeed if u is in the kernel, then

∆u = e−ft0u

⇒ −
∫
M
|∇u|2dA0 =

∫
M
u2e−ft0dA0.

which means that u = 0.
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(2) Closedness : This is usually the harder part of any method of continuity. What does it mean
for the set to be closed ? It means that for any sequence tn → t such that ftn exist, there
exists a solution ft at t. In other words, if we can prove that a subsequence ftnk → ft in

C2,α then we will be done. Beautifully enough, the Arzela-Ascoli theorem implies that (do
this as an exercise) if β > α and a sequence wn is bounded independent of n in C2,β, then a
subsequence converges in C2,α! Thus, to show closedness, it is enough to prove that solutions
to equation 2.2 have a uniform C2,β estimate independent of t.

Indeed, such estimates are proven by improving upon lower order estimates -

Let’s see if we can at least prove that ‖ft‖C0 ≤ C. Indeed, at the maximum of ft, easy

calculus shows that ∆ft ≤ 0. (Second derivative test.) Therefore −e−ft(max)−tK0+(1−t) ≤
0. This means that ft(max) ≤ C. Likewise ft(min) ≥ c.

Actually, now we have some standard results in PDE theory (read Kazdan’s notes for
instance) that say effectively the following : If the right hand side of ∆f = h is bounded
in Lp for all large p, then f is actually bounded in C1,α for some α > 0 (It is basically
Lp regularity + Sobolev embedding). There is another result (Schauder’s estimates) that
implies that if the right hand side of ∆f = h is bounded in C0,α and ‖f‖C0 ≤ C, then
actually ‖f‖C2,α ≤ C. So combining all of these, we get our desired estimates. (These are
called “a priori” estimates.)

As for uniqueness, suppose f1, f2 satisfy the equation for K < 0. Then

∆(f1 − f2) = K(e−f1 − e−f2)

⇒ −
∫
M
|∇(f1 − f2)|2 = K

∫
M

(f1 − f2)(e−f1 − e−f2).(2.5)

This means that f1 − f2 is a constant.
Actually, uniqueness is quite easy for all three cases K = 0, > 0, < 0 assuming the Killing-
Hopf theorem of the next section.

By the way, for K > 0, here is a way to prove some things : Firstly, in the conformal class
of the usual round metric, there exists a constant curvature metric (the round one). Then
assuming one knows complex geometry one proves that there is only one complex structure
on the sphere. (This involves a little bit of algebraic geometry.) Thus there is only one
conformal class and we are done.

�

3. Killing-Hopf theorem

So what if we find a constant Gaussian curvature metric on a surface ? Big deal! Actually, there
is an old theorem called the Killing-Hopf theorem that implies (in the special case of surfaces) that
a constantly curved surface is isometric to a quotient of one of the following :

(1) R2 with the Euclidean metric. (Flat earth according to some idiots.)
(2) S2 with the standard round metric.

(3) H2, i.e. the upper half-plane with the metric g = dx2+dy2

y2
.

In other words,
Given a conformal class of metrics [g] on a compact oriented surface, there is a unique representative
in the conformal class of unit volume such that it is isometric to a quotient of one of the things
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above. In other words, if you care only about measuring angles (and not distances), you are always
a quotient of the standard spaces. Already it looks like complex analysis might play a role here.
(Recall that a biholomorphism preserves angles, and vice-versa in the complex plane.)

4. Complex manifolds

Seeing that we are quickly entering complex analysis, let us define complex manifolds. A complex
manifold M of dimension n is a smooth manifold of dimension 2n such that it is locally diffeomorphic
to an open set of Cn and such that the transition maps are biholomorphisms.
Hold on! What is the meaning of a holomorphic map from Cn to C ? It is simply holomorphic on
each of the coordinates, i.e., the complex partial derivatives exist.

Anyway, the simplest complex manifolds are those of dimension 1. They are called Riemann sur-
faces. What are examples of Riemann surfaces ? Well C is one. Any quotient of C by a lattice, i.e.,
a torus C

Z2 is one. A famous one is CP1, i.e., C2 − {(0, 0)} quotiented out by : (X0, X1) identified
with λ(X0, X1) where λ 6= 0 is complex. It is not hard to see that this is the same as the sphere. The
upper half-plane is one such example. Actually, it is a nice exercise to prove that any isometry of the
upper half-plane is actually a biholomorphism. Another nice exericse is to show that every complex
manifold is orientable. (Just calculate the Jacobian and you will see....) A third nice exercise is to
show that if you quotient out a complex manifold by a group of biholomorphisms in such a way that
the quotient is a smooth manifold, then the quotient is also a complex manifold.

So, the Riemannian uniformisation theorem implies that given a conformal class of metrics [g] on
a compact oriented surface M of genus ≥ 1, one can treat (M, [g]) as a Riemann surface by simply
treating the manifold as a quotient of either the plane or the upper half-plane. The real question
is, does every compact Riemann surface of genus ≥ 1 arise this way and is every genus 0 compact
Riemann surface always CP1?

5. The uniformisation theorem for Riemann surfaces

The answer to the previous question is yes. Indeed,

Theorem 5.1. Every Riemann surface (even the noncompact ones) arises as a quotient of the plane,
the upper half-plane, or CP1.

We can prove this for compact Riemann surfaces using the Riemannian uniformisation theorem.
All we need to so is somehow relate conformal classes of metrics to complex structures. To do this,
we need to understand a simple question :
In what way can we relate C and R2 ?
This question sounds silly, but what we mean is the following - If I give you R2, what information
would you need to call it C ? You would have to somehow make it a complex vector space. So you
would need to know what multiplication of (a, b) with

√
−1 means. Indeed, usually, z = x +

√
−1y

and therefore
√
−1z =

√
−1x − y.=, i.e.,

√
−1(1, 0) = (0, 1) and

√
−1(0, 1) = (−1, 0). So multipli-

cation by
√
−1 is simply a linear map J : R2 → R2 such that J2 = −I. (Exercise : Prove that if

J : V → V where V is a real vector space is such that J2 = −I, then indeed V is 2n dimensional
and that there is a real basis e1, w1, e2, w2, . . . of V such that Jei = wj , Jwi = −ei.) This is known
as an almost complex structure.
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So naively speaking, if we have a linear map J from the tangent bundle of a surface M to itself
such that J2 = −I, then we can treat M as a complex manifold such that locally indeed there exist
coordinates (x, y) so that J ∂

∂x = ∂
∂y and J ∂

∂y = − ∂
∂x ? The answer is yes. But in higher dimen-

sions, it is NO. (There is an additional condition called Integrability. It is a deep theorem called the
Newlander-Nirenberg theorem.)

Anyway, what does all of this have to do with what we were discussing ? If you give me a
conformal class of metrics, I can come up with an almost complex structure. Indeed, J is simply
“rotate “anticlockwise” (with respect to the given orientation) by ninety degrees”. Likewise, if you
give me a Riemann surface, then here is a conformal class of metrics : Choose any Hermitian metric
h on the complex tangent bundle (spanned locally by ∂

∂z ). This defines a Riemannian metric if you
identify the complex tangent bundle with the real one as above. You can even prove that an isometry
of a metric induces a biholomorphism between the corresponding Riemann surfaces. This along with
the Riemannian uniformisation theorem proves the Riemann surface uniformisation theorem.
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