
NOTES FOR 6 MAR (TUESDAY)

1. Recap

(1) Proved the divergence theorem
(2) Defined the Hodge star and proved its properties.

2. Divergence, Stokes’ theorem, and Laplacians

Definition 2.1. Let α be a smooth k-form. Then d†α = (−1)m(k+1)+1 ∗d ∗α. Thus d†α is a smooth
k − 1-form depending on the first derivative of α (it is a first order differential operator).

The “codifferential” satisfies the following properties :

(1) d†f = 0 where f is a smooth function.
(2) d† ◦ d† = 0.

(3) (dα, β) =

∫
M
〈dα, β〉volg =

∫
M
〈α, d†β〉volg = (α, d†β). Thus, d† is formally speaking, the

adjoint of d.
(4) If X is a vector field and ωX is the dual 1-form, then d†ωX = −div(X). Hence, d†df = −∆f .

Proof. (1) Obvious because f is a 0-form.
(2) d† ◦ d† = ± ∗ d ∗2 d∗ = ± ∗ d ◦ d∗ = 0
(3) Suppose β is a k-form and α a k − 1 form.

(α, d†β) =

∫
M
α ∧ (−1)m(k+1)+1 ∗ ∗d ∗ β =

∫
M
α ∧ (−1)m(k+1)+1+(m−k+1)(m−(m−k+1))d ∗ β

=

∫
M

(−1)k(−1)k(d(α ∧ ∗β)− dα ∧ ∗β) =

∫
M
dα ∧ ∗β = (dα, β)(2.1)

(4) Note that

(d†ωX , f) = (ωX , df) =

∫
M
gij(ωX)i

∂f

∂xj
vol

=

∫
M
gijgikX

k ∂f

∂xj
vol = (X,∇f) = −(div(X), f)

⇒ (d†ωX + div(X), f) = 0 ∀ f ∈ C∞(M)(2.2)

The last equality implies the result because we can choose f to be a mollifier supported inside a
coordinate chart and take limits. �

The last equality motivates us to make the following definition :

Definition 2.2. Suppose α is a smooth k-form on a compact oriented Riemannian manifold (M, g).
Define the second order linear partial differential operator (the Hodge Laplacian or the Laplace-
Beltrami operator) as the k-form ∆dω = (dd† + d†d)ω.
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Let us calculate this on Rm with the Euclidean metric and the usual orientation. (Remember that
this Laplacian depends on the choice of a metric and an orientation.) Let η = ηIdx

I be a k-form
(where the sum is over all indices, whether increasing or not).

dη =
∂ηI
∂xj

dxj ∧ dxI

d†η = (−1)m(k+1)+1 ∗ d ∗ η = (−1)m(k+1)+1 ∗ d(ηI(−1)sgn(I)dxI
c
)

= (−1)m(k+1)+1+sgn(I) ∗ ∂ηI
∂xj

dxj ∧ dxIc = (−1)m(k+1)+1+sgn(I) ∂ηI
∂xj

(−1)sgn(j,Ic)dxi1 . . . dx
iaj(I)−1 ∧ ˆdxj . . .

= (−1)m(k+1)+1+sgn(I)+m−k+aj(I)−1+sgn(Ic) ∂ηI
∂xj

dxi1 . . . ∧ ˆdxj . . .

= (−1)m(k+1)+m−k+aj(I)+k(m−k) ∂ηI
∂xj

dxi1 . . . ∧ ˆdxj . . . = (−1)aj(I)
∂ηI
∂xj

dxi1 . . . ∧ ˆdxj . . .

∆dη = (dd† + d†d)η = d((−1)aj(I)
∂ηI
∂xj

dxi1 . . . ∧ ˆdxj) + d†
∂ηI
∂xk

dxk ∧ dxI

=
∑

I,k,j∈(i1,...,ik)

(−1)aj(I)
∂2ηI
∂xk∂xj

dxk ∧ dxi1 . . . ∧ ˆdxj +
∑

I,k,j∈(k,i1,...,ik)

(−1)aj(k,I)
∂2ηI
∂xk∂xj

dxk ∧ dxi1 . . . ˆdxj . . .

= −
∑
I,k

∂2ηI
∂(xk)2

dxI = −(∆ηI)dx
I

So, in particular, in Euclidean space, if we compute the principal symbol of the Hodge Laplacian,

i.e., we replace the highest order derivatives by a vector ~ζ, we get σ∆d
(~ζ) = −

 |ζ|
2 0 . . .

0 |ζ|2 . . .
...

. . . . . .

.

Hence this operator is elliptic with constant coefficients. This holds true even for the flat torus.
Before we proceed further with the analysis of the PDE ∆dη = α, we define a general notion of

a Laplacian (the so called Bochner Laplacian or the Rough Laplacian). To do so, suppose (E,∇, h)
is a vector bundle on a compact oriented Riemannian manifold (M, g) with a metric (h) compatible
connection ∇. Then we identify the formal adjoint ∇† : Γ(T ∗M ⊗ E) → Γ(E) of the connection
∇ : Γ(E)→ Γ(T ∗M ⊗ E) defined by the property

(∇†α, β) =

∫
M
〈∇†α, β〉hvolg =

∫
M
〈α,∇β〉g∗⊗hvolg = (α,∇β)(2.3)

We need to prove that such an operator is actually a differential operator by finding a formula for
it. (Such an operator is unique - Why ?) Suppose we choose an orthonormal normal trivialisation ei
for (E,∇, h) and normal coordinates xµ for g at p, then A(p) = 0, h(p) = Id, g = Id + O(x2) = g∗.
Let α = αiµdx

µ ⊗ ei, β = βjej . Then

〈α,∇β〉g∗⊗h(p) =
∑
µ,i

αiµ(p)
∂βi

∂xµ
(p) =

∑
µ,i

∂αiµβ
i

∂xµ
(p)−

∂αiµ
∂xµ

(p)βi(p)

= div(〈α, β〉])(p)−
∂αiµ
∂xµ

(p)βi(p)

Now the expression −∂αiµ
∂xµ (p)βi(p) can be written as −〈tr(∇α), β〉h(p) which is a globally defined

quantity. By the divergence theorem, ∇†α = −tr(∇α). So finally,
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Definition 2.3. Suppose (M, g) is a compact oriented Riemannian manifold (without boundary as
usual) and (E,∇, h) is a vector bundle with a metric h and a metric-compatible connection ∇. The
Bochner Laplacian (sometimes called the Rough Laplacian) is defined as ∇†∇ : Γ(E)→ Γ(E) where
∇†α = −tr(∇α).

Suppose we take E = Ωk(M), then potentially, we have two Laplacians, ∆d and ∇∗∇. It turns
out that

∆dη = ∇∗∇η + Curvature(η)(2.4)

where the last term is something that depends linearly on η with coefficients depending on the
Riemann tensor. This sort of an identity relating two different Laplacians is called a Bochner-
Weitzenböck identity. So, taking inner product with η and integrating,

(dη, dη) + (d†η, d†η) = (∇η,∇η) + (η, Curvature(η)) ≥ (η, Curvature(η))(2.5)

So if ∆dη = 0, i.e., η is Harmonic, and the curvature term is positive, we have a contradiction unless
η = 0. This sort of a conclusion turns out to be useful for topology. This method is called the
Bochner technique for proving non-existence of non-trivial Harmonic objects.
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