
NOTES FOR 6 FEB (TUESDAY)

1. Recap

(1) Made more observations and concluded that we need a notion of directional derivative of a
section of a vector bundle.

(2) Defined that notion (of a connection) ∇Xs. It obeyed three properties (Tensoriality in X,
linearity in s, Leibniz rule). ∇s can also be thought of a vector-valued 1-form.

(3) Looked at ∇s = (d+A)~s locally and saw how it transformed under change of a trivialisation.
(Not like a tensor.) However, every connectio n is ∇0+ a section of End(V )⊗ T ∗M .

2. Connections and curvature

We prove a useful little lemma here

Lemma 2.1. If two smooth sections s1, s2 : M → V satisfy s1 = s2 on a neighbourhood U of p, then
∇s1(p) = ∇s2(p). T(That is, the directional derivative at p depends only on local information about
s near p.)

Proof. Taking s = s1− s2, we just have to show that ∇s(p) = 0 if s = 0 on U . Indeed, taking a local
trivialisation, s = siei and hence ∇s(p) = (dsi(p) + ([A](p)~s(p))i)ei = 0 . �

In fact, the above observation shows that in order to know ∇s at p, it is enough to take any
smooth section s̃ on U , define s = ρs̃ where ρ is a bump function vanishing outside U (and equal to
1 in a smaller neighbourhood of p), and find out ∇s(p) for all such sections.
Before going further, we prove a very very useful lemma. (This is like the existence of normal
coordinates.)

Lemma 2.2. Suppose ∇ is a connection on V . Suppose p ∈ M . There exists a trivialisation such
that A(p) = 0 in this trivialisation.

Proof. Choose any trivialisation in a neighbourhood U of p. Assume that (x, U) is also a coordinate

chart for M such that p corresponds to x = 0. Let ∇ = d+ Ã on U . If we change the trivialisation
using a transition function g, then A = gÃg−1 − dgg−1. Suppose Ã(p) = Bidx

i where Bi are real
(or complex) r × r matrices. Define g = I + xibi. For sufficiently small x, g is invertible. Now

g(p) = g−1(p) = I and dg = Bidx
i = Ã(p). Thus A(p) = Ã(p)− Ã(p) = 0. �

Note that the trivial bundle M ×Rr has an obvious connection - the usual directional derivative.
Indeed, there is a global trivialisation. Set A = 0 and define ∇s = d~s.

Another point : If T : V1 → V2 is a bundle isomorphism, and V2 has a connection ∇, we can define
a connection on V1 : (T ∗∇)s = T−1(∇T (s)). This is called the pullback connection. Locally, the
connection matrix of one-forms is T−1AT + T−1dT .

Theorem 2.3. Every vector bundle has a connection.
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Proof. Suppose M is covered by a locally finite cover Uα of trivialisation open sets for V . Suppose
Tα : π−1Uα → Uα × Rr is the trivialising isomorphism of bundles. As discussed, there is an obvious
connection ∇α on the trivial bundle Uα×Rr. Define ∇̃α = T ∗α∇α as a connection on V on the set Uα,

i.e., if s is any local section on Uα, ∇̃αs is a section of T ∗Uα×V |Uα . Suppose ρα is a partition-of-unity
subordinate to Uα.

Now, define∇s =
∑

α ρα∇̃αs. The meaning of this statement is “Take s, restrict it to Uα, calculate

∇̃αs as a section over Uα, multiply by ρα and extend it to all of M by 0 outside Uα, and sum over all
α. It is a finite sum at every point because of local finiteness of the cover. Thus we have a section
of V ⊗ T ∗M”

We still have to prove that ∇ is a connection. Indeed,

∇(fs) =
∑
α

ρα∇̃α(fs) =
∑
α

ρα(df ⊗ s+ f∇̃αs)

= df ⊗ s
∑
α

ρα + f∇s = df ⊗ s+ f∇s(2.1)

�

So every vector bundle can be equipped with a way to take directional derivatives. There can be
more than one way (infinitely many in fact). We can now define the notion of a “constant”, rather
a “parallel” section.

Definition 2.4. A smooth section s is said to be parallel with respect to a connection ∇ if it satisfies
∇s = 0.

We can do better. Suppose γ : [0, 1]→M is a smooth curve. Assume that s0 is a vector in Vγ(0).

Definition 2.5. The parallel transport of s0 is a section s on a neighbourhood of the image of γ such
that ∇γ′ (t)s = 0 on the image of γ (where we are assuming that γ

′
(t) has been extended arbitrarily

to a smooth vector field on a smaller open subset of the neighbourhood on which s is defined).

The neighbourhood does not make any difference in the above definition. The definition locally
means this : If we choose a trivialisation and a coordinate chart on the manifold, we are required to
solve an ODE : d~s

dt + Aγ(t)(γ
′
(t))~s = 0 with ~s(0) = ~s0. Of course this system of ODE has a unique

smooth solution for a short period of time. In fact, it can be proven to have a solution for all time.
Now we turn to another notion arising from a connection. What if we want to take the second

derivative ? There is a nice way to do this using a connection, but let us return to that later.
For now, let us be very naive. Note that ∇ takes sections to vector-valued 1-forms. What if we
want to apply ∇ again ? Unfortunately, unless we have a way to differentiate 1-forms, there is no
meaning to differentiating ω ⊗ s. But we actually do have a way to differentiate 1-forms using the
exterior derivative d ! So, define the following map d∇ : Γ(V ⊗ T ∗M) → Γ(V ⊗ Ω2(M)) given by
d∇(ω⊗s) = dω⊗s+ω∧∇s and extending it linearly. Of course, d∇(fω⊗s) = df∧ω⊗s+fd∇(ω⊗s).
So indeed, tensoriality holds and hence the image of d∇ is a vector-valued 2-form. Actually, let’s
take this opportunity to define d∇ : Γ(V ⊗ΩrM)→ Γ(V ⊗Ωr+1M) as d∇(s⊗ω) = ∇s∧ω+ s⊗ dω.

It is natural to ask whether (d∇)2 = 0 on sections (i.e. vector-valued 0-forms). But this is
not true ! Indeed, locally, d∇s = (d~s + A~s). Thus (d∇)2s = d(d~s + A~s) + A ∧ (d~s + A~s) =
0 + d(A~s) + A ∧ d~s+ A ∧ A~s = dA~s− A ∧ d~s+ A ∧ d~s+ A ∧ A~s = (dA+ A ∧ A)~s = F~s where F is
locally a matrix of 2-forms called the curvature of (V,∇). In other words, (d∇)2s depends linearly on
s and not on any derivative of it ! More curiously, if we calculate how F changes when we change the
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trivialisation, we see that F̃ = gFg−1. In other words, F is actually a section of End(V )⊗ Ω2(M).
(We can do this calculation more invariantly by proving tensoriality, i.e., (d∇)2(fs) = f(d∇)2s. )

Definition 2.6. The curvature F of a connection ∇ is a section of End(V ) ⊗ Ω2(M) defined as
Fs = (d∇)2s. It locally has the formula, F = dA+A ∧A.

If V is a line bundle, A∧A = 0 and F = dA is a global closed 2-form (because End(L) is a trivial
bundle).

Here is an interesting observation :

Lemma 2.7. If (L,∇) is a (real or complex) line bundle, then its curvature F is a globally defined
closed 2-form whose De Rham cohomology class is independent of the connection chosen.

Proof. We already saw that F is a globally defined close 2-form. Suppose ∇1,∇2 = ∇1 + a are two
connections where a is a section of End(L) ⊗ T ∗M . Noting that End(L) is trivial, a is a globally
defined 1-form. Now F2 = dA2 = dA1 + da = F1 + da. Therefore [F2] = [F1]. �
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