NOTES FOR 6 FEB (TUESDAY)

1. Recap

(1) Made more observations and concluded that we need a notion of directional derivative of a section of a vector bundle.
(2) Defined that notion (of a connection) $\nabla_{X} s$. It obeyed three properties (Tensoriality in X, linearity in s, Leibniz rule). ∇s can also be thought of a vector-valued 1-form.
(3) Looked at $\nabla s=(d+A) \vec{s}$ locally and saw how it transformed under change of a trivialisation. (Not like a tensor.) However, every connectio n is $\nabla_{0}+$ a section of $\operatorname{End}(V) \otimes T^{*} M$.

2. Connections and curvature

We prove a useful little lemma here
Lemma 2.1. If two smooth sections $s_{1}, s_{2}: M \rightarrow V$ satisfy $s_{1}=s_{2}$ on a neighbourhood U of p, then $\nabla s_{1}(p)=\nabla s_{2}(p)$. T(That is, the directional derivative at p depends only on local information about s near p.)

Proof. Taking $s=s_{1}-s_{2}$, we just have to show that $\nabla s(p)=0$ if $s=0$ on U. Indeed, taking a local trivialisation, $s=s^{i} e_{i}$ and hence $\nabla s(p)=\left(d s^{i}(p)+([A](p) \vec{s}(p))^{i}\right) e_{i}=0$.

In fact, the above observation shows that in order to know ∇s at p, it is enough to take any smooth section \tilde{s} on U, define $s=\rho \tilde{s}$ where ρ is a bump function vanishing outside U (and equal to 1 in a smaller neighbourhood of p), and find out $\nabla s(p)$ for all such sections.
Before going further, we prove a very very useful lemma. (This is like the existence of normal coordinates.)

Lemma 2.2. Suppose ∇ is a connection on V. Suppose $p \in M$. There exists a trivialisation such that $A(p)=0$ in this trivialisation.

Proof. Choose any trivialisation in a neighbourhood U of p. Assume that (x, U) is also a coordinate chart for M such that p corresponds to $x=0$. Let $\nabla=d+\tilde{A}$ on U. If we change the trivialisation using a transition function g, then $A=g \tilde{A} g^{-1}-d g g^{-1}$. Suppose $\tilde{A}(p)=B_{i} d x^{i}$ where B_{i} are real (or complex) $r \times r$ matrices. Define $g=I+x^{i} b_{i}$. For sufficiently small x, g is invertible. Now $g(p)=g^{-1}(p)=I$ and $d g=B_{i} d x^{i}=\tilde{A}(p)$. Thus $A(p)=\tilde{A}(p)-\tilde{A}(p)=0$.

Note that the trivial bundle $M \times \mathbb{R}^{r}$ has an obvious connection - the usual directional derivative. Indeed, there is a global trivialisation. Set $A=0$ and define $\nabla s=d \vec{s}$.

Another point : If $T: V_{1} \rightarrow V_{2}$ is a bundle isomorphism, and V_{2} has a connection ∇, we can define a connection on $V_{1}:\left(T^{*} \nabla\right) s=T^{-1}(\nabla T(s))$. This is called the pullback connection. Locally, the connection matrix of one-forms is $T^{-1} A T+T^{-1} d T$.

Theorem 2.3. Every vector bundle has a connection.

Proof. Suppose M is covered by a locally finite cover U_{α} of trivialisation open sets for V. Suppose $T_{\alpha}: \pi^{-1} U_{\alpha} \rightarrow U_{\alpha} \times \mathbb{R}^{r}$ is the trivialising isomorphism of bundles. As discussed, there is an obvious connection ∇_{α} on the trivial bundle $U_{\alpha} \times \mathbb{R}^{r}$. Define $\tilde{\nabla}_{\alpha}=T_{\alpha}^{*} \nabla_{\alpha}$ as a connection on V on the set U_{α}, i.e., if s is any local section on $U_{\alpha}, \tilde{\nabla}_{\alpha} s$ is a section of $T^{*} U_{\alpha} \times\left. V\right|_{U_{\alpha}}$. Suppose ρ_{α} is a partition-of-unity subordinate to U_{α}.

Now, define $\nabla s=\sum_{\alpha} \rho_{\alpha} \tilde{\nabla}_{\alpha} s$. The meaning of this statement is "Take s, restrict it to U_{α}, calculate $\tilde{\nabla}_{\alpha} s$ as a section over U_{α}, multiply by ρ_{α} and extend it to all of M by 0 outside U_{α}, and sum over all α. It is a finite sum at every point because of local finiteness of the cover. Thus we have a section of $V \otimes T^{*} M^{\prime \prime}$

We still have to prove that ∇ is a connection. Indeed,

$$
\begin{gather*}
\nabla(f s)=\sum_{\alpha} \rho_{\alpha} \tilde{\nabla}_{\alpha}(f s)=\sum_{\alpha} \rho_{\alpha}\left(d f \otimes s+f \tilde{\nabla}_{\alpha} s\right) \\
=d f \otimes s \sum_{\alpha} \rho_{\alpha}+f \nabla s=d f \otimes s+f \nabla s \tag{2.1}
\end{gather*}
$$

So every vector bundle can be equipped with a way to take directional derivatives. There can be more than one way (infinitely many in fact). We can now define the notion of a "constant", rather a "parallel" section.

Definition 2.4. A smooth section s is said to be parallel with respect to a connection ∇ if it satisfies $\nabla s=0$.

We can do better. Suppose $\gamma:[0,1] \rightarrow M$ is a smooth curve. Assume that s_{0} is a vector in $V_{\gamma(0)}$.
Definition 2.5. The parallel transport of s_{0} is a section s on a neighbourhood of the image of γ such that $\nabla_{\gamma^{\prime}(t)} s=0$ on the image of γ (where we are assuming that $\gamma^{\prime}(t)$ has been extended arbitrarily to a smooth vector field on a smaller open subset of the neighbourhood on which s is defined).

The neighbourhood does not make any difference in the above definition. The definition locally means this: If we choose a trivialisation and a coordinate chart on the manifold, we are required to solve an ODE : $\frac{d \vec{s}}{d t}+A_{\gamma(t)}\left(\gamma^{\prime}(t)\right) \vec{s}=0$ with $\vec{s}(0)=\vec{s}_{0}$. Of course this system of ODE has a unique smooth solution for a short period of time. In fact, it can be proven to have a solution for all time.

Now we turn to another notion arising from a connection. What if we want to take the second derivative ? There is a nice way to do this using a connection, but let us return to that later. For now, let us be very naive. Note that ∇ takes sections to vector-valued 1 -forms. What if we want to apply ∇ again ? Unfortunately, unless we have a way to differentiate 1-forms, there is no meaning to differentiating $\omega \otimes s$. But we actually do have a way to differentiate 1-forms using the exterior derivative $d!$ So, define the following map $d^{\nabla}: \Gamma\left(V \otimes T^{*} M\right) \rightarrow \Gamma\left(V \otimes \Omega^{2}(M)\right)$ given by $d^{\nabla}(\omega \otimes s)=d \omega \otimes s+\omega \wedge \nabla s$ and extending it linearly. Of course, $d^{\nabla}(f \omega \otimes s)=d f \wedge \omega \otimes s+f d^{\nabla}(\omega \otimes s)$. So indeed, tensoriality holds and hence the image of d^{∇} is a vector-valued 2-form. Actually, let's take this opportunity to define $d^{\nabla}: \Gamma\left(V \otimes \Omega^{r} M\right) \rightarrow \Gamma\left(V \otimes \Omega^{r+1} M\right)$ as $d^{\nabla}(s \otimes \omega)=\nabla s \wedge \omega+s \otimes d \omega$.

It is natural to ask whether $\left(d^{\nabla}\right)^{2}=0$ on sections (i.e. vector-valued 0 -forms). But this is not true ! Indeed, locally, $d^{\nabla} s=(d \vec{s}+A \vec{s})$. Thus $\left(d^{\nabla}\right)^{2} s=d(d \vec{s}+A \vec{s})+A \wedge(d \vec{s}+A \vec{s})=$ $0+d(A \vec{s})+A \wedge d \vec{s}+A \wedge A \vec{s}=d A \vec{s}-A \wedge d \vec{s}+A \wedge d \vec{s}+A \wedge A \vec{s}=(d A+A \wedge A) \vec{s}=F \vec{s}$ where F is locally a matrix of 2-forms called the curvature of (V, ∇). In other words, $\left(d^{\nabla}\right)^{2} s$ depends linearly on s and not on any derivative of it! More curiously, if we calculate how F changes when we change the
trivialisation, we see that $\tilde{F}=g F g^{-1}$. In other words, F is actually a section of $\operatorname{End}(V) \otimes \Omega^{2}(M)$. (We can do this calculation more invariantly by proving tensoriality, i.e., $\left(d^{\nabla}\right)^{2}(f s)=f\left(d^{\nabla}\right)^{2} s$.)

Definition 2.6. The curvature F of a connection ∇ is a section of $\operatorname{End}(V) \otimes \Omega^{2}(M)$ defined as $F s=\left(d^{\nabla}\right)^{2} s$. It locally has the formula, $F=d A+A \wedge A$.

If V is a line bundle, $A \wedge A=0$ and $F=d A$ is a global closed 2-form (because $\operatorname{End}(L)$ is a trivial bundle).

Here is an interesting observation :
Lemma 2.7. If (L, ∇) is a (real or complex) line bundle, then its curvature F is a globally defined closed 2-form whose De Rham cohomology class is independent of the connection chosen.

Proof. We already saw that F is a globally defined close 2-form. Suppose $\nabla_{1}, \nabla_{2}=\nabla_{1}+a$ are two connections where a is a section of $\operatorname{End}(L) \otimes T^{*} M$. Noting that $\operatorname{End}(L)$ is trivial, a is a globally defined 1-form. Now $F_{2}=d A_{2}=d A_{1}+d a=F_{1}+d a$. Therefore $\left[F_{2}\right]=\left[F_{1}\right]$.

