
NOTES FOR 8 FEB (THURSDAY)

1. Recap

(1) Proved that connections exist and proved existence of local normal trivialisations.
(2) Defined d∇ and proved that (d∇)2s = Fs where F ∈ Γ(Ω2(M)⊗End(V )) called the curvature.

Locally, F = dA+A ∧A.
(3) For a line bundle, we proved that F is a globally defined closed 2-form whose De Rham class

is independent of ∇.

2. Connections and curvature

Real line bundles are actually quite straightforward to study. They are either orientable (and
hence trivial) or non-orientable. In either case, L⊗ L has transition functions g2αβ > 0. Thus L⊗ L
is always a trivial real line bundle.

Complex line bundles are much more complicated and interesting. The De Rham cohomology

class [
√
−1
2π F ] associated to a complex line bundle L is denoted as c1(L) and is called the first Chern

class of L. (The presence of
√
−1 and 2π is technical. It is done so that whenever you integrate this

cohomology class against a 1-dimensional submanifold, you get an integer as the answer.)
Given connections ∇v,∇w on vector bundles V and W respectively, there exists natural connec-

tions on V ⊕W , V ∗ (for this you only need ∇v), and V ⊗W -

(1) V ⊕W : ∇v⊕w(s⊕ t) = ∇vs⊕∇wt. It is easy to verify that this satisfy all the definition of a
connection. Locally, Av⊕w = Av⊕Aw (a block diagonal matrix). Therefore, F v⊕w = F v⊕Fw.

(2) V ⊗W : ∇v⊕w(s ⊗ t) = ∇vs ⊗ t + s ⊗ ∇wt. Unfortunately, not every section of V ⊗W is
of the form s⊗ t. It is not obvious that it is even of the form

∑
cαβsα ⊗ tβ where sα, tβ are

global sections.
However, given a p, it is easy to see that there exist global smooth sections sα, tβ such that∑
cαβsα ⊗ tβ = s on a neighbourhood U of p. Define ∇v⊕w(

∑
cαβsα ⊗ tβ) =

∑
cαβ(∇vsα ⊗

tβ + sα ⊗ ∇wtβ). We have to show that it is well-defined (independent of choices of sα, tβ)
and is genuinely a connection. This will be given as a homework problem.

Locally, Av⊗w = Av⊗I+I⊗Aw where we are using the Kronecker product of the matrices.
Moreover, F v⊗w = F v ⊗ I + I ⊗ Fw.

(3) V ∗ : Define ∇s∗ to satisfy d(s∗(t)) = (∇s∗)(t) + s∗(∇t) where t is any section of V and s∗ a
section of V ∗. This is indeed a connection (easy to see). Locally, suppose ei is a frame for

V , then ei∗ defined by ei∗(ej) = δij is a frame for V ∗. In this frame, (A∗)ji = (∇ei∗)(ej) =

d(ei∗(ej))− ei∗(∇ej) = −Aij . Thus A∗ = −AT . Therefore F ∗ = −F T .
In the case where V = L is a line bundle, the curvature satisfies F ∗ = −F . Therefore, for

a complex line bundle c1(L
∗) = −c1(L).

(4) If E = S⊕Q, then given a connection ∇ on E, we can define connections on S and Q. Indeed,
∇Ss = π1 ◦ ∇s where π1 is the projection to S. So, for example, since V ⊗ V = Alt⊕ Sym,
we see that, given a connection on V , we have a connection on the alternating tensors. (More
generally, V ⊗ V ⊗ V . . . = Alt⊕ other things including Sym(V ).) Hence, if we are given a
connection on TM , we have a connection on T ∗M and hence on Ωk(M) for all k.
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As a consequence, given a connection on V , we have a naturally defined connection on V ⊗V ⊗V . . ..
If V = L is a line bundle equipped with a connection ∇ with curvature F , then L ⊗ L ⊗ . . . has a
connection whose curvature is kF . So for a complex line bundle, c1(L ⊗ L . . .) = kc1(L). In fact,
c1(L1 ⊗ L2) = c1(L1) + c1(L2).

Now we specialise further to more important connections.

Definition 2.1. Suppose h is a metric on V . Then a connection ∇ on V is said to be metric
compatible with h if for any two sections s1, s2, d(h(s1, s2)) = h(∇s1, s2) + h(s1,∇s2).

It turns out that this is equivalent to saying that parallel transport preserves dot products. Locally,
choosing an orthonormal frame e1, . . . , er, (i.e. a collection of r smooth local sections such that
at every point there are orthonormal) we see that d(h(ei, ej)) = 0 = h(∇ei, ej) + h(ei,∇ej) =

h(Akiek, ej) + h(ei, A
k
jek) = Aji + Aij . Therefore A is a skew-symmetric (skew-Hermitian in the

complex case) matrix of 1-forms in a local orthonormal trivialisation. In that trivialisation, F =
dA+A ∧A is a skew-symmetric (or skew-Hermitian in the complex case) matrix of 2-forms.

Note that the trivial connection ∇ = d on a trivial bundle is compatible with the trivial metric.

Theorem 2.2. On a vector bundle V equipped with a metric h (whether real or complex), there
exists a metric compatible connection ∇.

The proof of this theorem is very similar to the previous one (indeed, replace “trivialisation”
with “orthonormal trivialisation” everywhere). Just as before, if we are given one metric compatible
connection ∇0, every other metric compatible connection equals ∇0+a where a ∈ Γ(End(V )⊗T ∗M)
is a skew-symmetric (or skew-Hermitian in the complex case) endomorphism-valued 1-form.

Note that suppose we are given a connection ∇m on T ∗M and ∇v on V , then we have a connection
∇m⊗v on T ∗M ⊗V . Therefore, we can define the second derivative of a section s of V as ∇m⊗v∇vs.
Likewise, we can define higher order derivatives.

Now we define a PDE on a manifold.

Definition 2.3. Suppose V , W are smooth vector bundles. A kth order partial differential operator
L is a map L : Γ(V ) → Γ(W ) such that locally it is of the form Ls(x) = F (x, s, ∂s, ∂2s, . . . , ∂ks)
where F is a smooth function. A PDE is an equation of the form Lu = f where u ∈ Γ(V ) and
f ∈ Γ(W ).
A linear partial differential operator is one that satisfies L(a1u1 + a2u2) = a1L(u1) + a2L(u2) where
a1, a2 are constants.

Note that the above notion is well-defined. Indeed, if you change trivialisations and coordinates,
you will get a different F but it will remain smooth and depend only on k derivatives of s.
We can finally come up with examples of PDE on manifolds :

(1) Any PDE in Rn does the job. More non-trivially, the Laplace equation ∆u = f on a torus
is an example of a second-order linear PDE. A second order non-linear PDE on a torus is
∆u = eu − f . (If f > 0 this PDE turns out to have a unique smooth solution. Note that if
f = 1, there is an obvious solution, i.e., u = 0.)

(2) Lu = du = f where u is a k-form.
(3) ∇u = f where f and u are sections of V .
(4) ∇T ∗Mdu = f where u is a smooth function and f is a (0, 2)-tensor. This is a second order

linear PDE.

We now come to the a very special metric-compatible connection on TM for a Riemannian manifold
(M, g). This connection is determined completely by the metric.
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Theorem 2.4. Suppose (M, g) is a Riemannian manifold. There exists a unique metric compatible
connection ∇ on TM such that it is torsion-free, i.e., for any two smooth vector fields X,Y ,

∇XY −∇YX = [X,Y ].(2.1)

This connection is called the Levi-Civita connection of the metric g. Commonly, its curvature is
simply called the curvature of g.

Proof. We will do this in two ways :

(1) Using coordinates : Locally, ∇Y has components (d + A)~Y = dY i + AijY
j where A is an

m×m matrix of 1-forms. So Aij = Γijkdx
k where Γijk are a bunch of locally defined functions

(the Christoffel symbols). So ∇XY is locally ∂Y i

∂xj
Xj + ΓijkX

kY j . Take X = ∂
∂xa and Y = ∂

∂yb

(suitably extended to all of M by a bump function). Now the torsion-free property implies
that ∇XY −∇YX = 0. In other words, Γiab = Γiba. In any normal coordinate system, at p,
metric compatibility means that A(p) is a skew-symmetric matrix, i.e.,

Γiab(p) = −Γaib(p) = −Γabi(p) = Γbai(p) = Γbia(p) = −Γiba(p) = −Γiab(p)(2.2)

which means that Γiab(p) = 0. So if the LC connection exists, it is unique.

Define the Levi-Civita connection as :∇YX(p) = ∂Y i

∂xj
(p)Xj(p) in any normal coordinate

system at p. The fact that this is a connection is easy to see. (Linearly and tensoriality at p
are obvious. The Leibniz rule at p is a consequence of the product rule for derivatives.)

(2) Invariantly :

g(∇XY,Z) = g([X,Y ] +∇YX,Z)

= g([X,Y ], Z) + Y (X,Z)− g(X,∇Y Z) = g([X,Y ], Z) + Y (X,Z)− g(X, [Y,Z] +∇ZY )

= g([X,Y ], Z) + Y (X,Z)− g(X, [Y,Z])− Z(g(X,Y )) + g(∇ZX,Y )

= g([X,Y ], Z) + Y (X,Z)− g(X, [Y,Z])− Z(g(X,Y )) + g([Z,X], Y ) + g(∇XZ, Y )

= g([X,Y ], Z) + Y (X,Z)− g(X, [Y, Z])− Z(g(X,Y )) + g([Z,X], Y ) +X(g(Z, Y ))− g(Z,∇XY )

⇒ 2g(∇XY,Z) = g([X,Y ], Z) + Y (X,Z)− g(X, [Y,Z])− Z(g(X,Y )) + g([Z,X], Y ) +X(g(Z, Y ))

(2.3)

This determines the connection completely (you can verify that this is indeed a connection)
and is called Kozul’s formula for the Levi-Civita connection.

�

Using the Kozul formula you can see that the Christoffel symbols have exactly the formula we
wrote whilst studying geodesics. In fact, it is not hard to see that a geodesic is simply a curve γ
such that ∇γ′ (γ

′
) = 0.

The torsion-free condition appears mysterious but there is a physics way of looking at it involving
carrying rods along geodesics which start rotating in the presence of torsion. Indeed, consider
the connection ∇ defined on TR3 as (suppose X,Y, Z are coordinate vector fields - example on
mathoverflow),

∇XY = Z,∇XY = −Z
∇XZ = −Y,∇ZX = Y

∇Y Z = X,∇ZY = −X.(2.4)
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A body undergoing parallel translation for this connection spins like an American football: around
the axis of motion with speed proportional to its velocity. So the geodesics are straight lines, and
this connection preserves the standard metric, but it has torsion and is thus not the Levi-Cevita
connection.
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