## NOTES FOR 8 FEB (THURSDAY)

## 1. RECAP

(1) Proved that connections exist and proved existence of local normal trivialisations.
(2) Defined $d^{\nabla}$ and proved that $\left(d^{\nabla}\right)^{2} s=F s$ where $F \in \Gamma\left(\Omega^{2}(M) \otimes \operatorname{End}(V)\right)$ called the curvature. Locally, $F=d A+A \wedge A$.
(3) For a line bundle, we proved that $F$ is a globally defined closed 2 -form whose De Rham class is independent of $\nabla$.

## 2. Connections and curvature

Real line bundles are actually quite straightforward to study. They are either orientable (and hence trivial) or non-orientable. In either case, $L \otimes L$ has transition functions $g_{\alpha \beta}^{2}>0$. Thus $L \otimes L$ is always a trivial real line bundle.

Complex line bundles are much more complicated and interesting. The De Rham cohomology class $\left[\frac{\sqrt{-1}}{2 \pi} F\right]$ associated to a complex line bundle $L$ is denoted as $c_{1}(L)$ and is called the first Chern class of $L$. (The presence of $\sqrt{-1}$ and $2 \pi$ is technical. It is done so that whenever you integrate this cohomology class against a 1-dimensional submanifold, you get an integer as the answer.)

Given connections $\nabla^{v}, \nabla^{w}$ on vector bundles $V$ and $W$ respectively, there exists natural connections on $V \oplus W, V^{*}$ (for this you only need $\nabla^{v}$ ), and $V \otimes W$ -
(1) $V \oplus W: \nabla^{v \oplus w}(s \oplus t)=\nabla^{v} s \oplus \nabla^{w} t$. It is easy to verify that this satisfy all the definition of a connection. Locally, $A^{v \oplus w}=A^{v} \oplus A^{w}$ (a block diagonal matrix). Therefore, $F^{v \oplus w}=F^{v} \oplus F^{w}$.
(2) $V \otimes W: \nabla^{v \oplus w}(s \otimes t)=\nabla^{v} s \otimes t+s \otimes \nabla^{w} t$. Unfortunately, not every section of $V \otimes W$ is of the form $s \otimes t$. It is not obvious that it is even of the form $\sum c_{\alpha \beta} s_{\alpha} \otimes t_{\beta}$ where $s_{\alpha}, t_{\beta}$ are global sections.

However, given a $p$, it is easy to see that there exist global smooth sections $s_{\alpha}, t_{\beta}$ such that $\sum c_{\alpha \beta} s_{\alpha} \otimes t_{\beta}=s$ on a neighbourhood $U$ of $p$. Define $\nabla^{v \oplus w}\left(\sum c_{\alpha \beta} s_{\alpha} \otimes t_{\beta}\right)=\sum c_{\alpha \beta}\left(\nabla^{v} s_{\alpha} \otimes\right.$ $t_{\beta}+s_{\alpha} \otimes \nabla^{w} t_{\beta}$ ). We have to show that it is well-defined (independent of choices of $s_{\alpha}, t_{\beta}$ ) and is genuinely a connection. This will be given as a homework problem.

Locally, $A^{v \otimes w}=A^{v} \otimes I+I \otimes A^{w}$ where we are using the Kronecker product of the matrices. Moreover, $F^{v \otimes w}=F^{v} \otimes I+I \otimes F^{w}$.
(3) $V^{*}$ : Define $\nabla s^{*}$ to satisfy $d\left(s^{*}(t)\right)=\left(\nabla s^{*}\right)(t)+s^{*}(\nabla t)$ where $t$ is any section of $V$ and $s^{*}$ a section of $V^{*}$. This is indeed a connection (easy to see). Locally, suppose $e_{i}$ is a frame for $V$, then $e^{i *}$ defined by $e^{i *}\left(e_{j}\right)=\delta_{j}^{i}$ is a frame for $V^{*}$. In this frame, $\left(A^{*}\right)_{-i}^{j}=\left(\nabla e^{i *}\right)\left(e_{j}\right)=$ $d\left(e^{i *}\left(e_{j}\right)\right)-e^{i *}\left(\nabla e_{j}\right)=-A_{-j}^{i}$. Thus $A^{*}=-A^{T}$. Therefore $F^{*}=-F^{T}$.

In the case where $V=L$ is a line bundle, the curvature satisfies $F^{*}=-F$. Therefore, for a complex line bundle $c_{1}\left(L^{*}\right)=-c_{1}(L)$.
(4) If $E=S \oplus Q$, then given a connection $\nabla$ on $E$, we can define connections on $S$ and $Q$. Indeed, $\nabla^{S} s=\pi_{1} \circ \nabla s$ where $\pi_{1}$ is the projection to $S$. So, for example, since $V \otimes V=A l t \oplus S y m$, we see that, given a connection on $V$, we have a connection on the alternating tensors. (More generally, $V \otimes V \otimes V \ldots=$ Alt $\oplus$ other things including $\operatorname{Sym}(V)$.) Hence, if we are given a connection on $T M$, we have a connection on $T^{*} M$ and hence on $\Omega^{k}(M)$ for all $k$.

As a consequence, given a connection on $V$, we have a naturally defined connection on $V \otimes V \otimes V \ldots$. If $V=L$ is a line bundle equipped with a connection $\nabla$ with curvature $F$, then $L \otimes L \otimes \ldots$ has a connection whose curvature is $k F$. So for a complex line bundle, $c_{1}(L \otimes L \ldots)=k c_{1}(L)$. In fact, $c_{1}\left(L_{1} \otimes L_{2}\right)=c_{1}\left(L_{1}\right)+c_{1}\left(L_{2}\right)$.

Now we specialise further to more important connections.
Definition 2.1. Suppose $h$ is a metric on $V$. Then a connection $\nabla$ on $V$ is said to be metric compatible with $h$ if for any two sections $s_{1}, s_{2}, d\left(h\left(s_{1}, s_{2}\right)\right)=h\left(\nabla s_{1}, s_{2}\right)+h\left(s_{1}, \nabla s_{2}\right)$.

It turns out that this is equivalent to saying that parallel transport preserves dot products. Locally, choosing an orthonormal frame $e_{1}, \ldots, e_{r}$, (i.e. a collection of $r$ smooth local sections such that at every point there are orthonormal) we see that $d\left(h\left(e_{i}, e_{j}\right)\right)=0=h\left(\nabla e_{i}, e_{j}\right)+h\left(e_{i}, \nabla e_{j}\right)=$ $h\left(A_{-i}^{k} e_{k}, e_{j}\right)+h\left(e_{i}, A_{-j}^{k} e_{k}\right)=A_{-i}^{j}+A_{-j}^{i}$. Therefore $A$ is a skew-symmetric (skew-Hermitian in the complex case) matrix of 1-forms in a local orthonormal trivialisation. In that trivialisation, $F=$ $d A+A \wedge A$ is a skew-symmetric (or skew-Hermitian in the complex case) matrix of 2-forms.

Note that the trivial connection $\nabla=d$ on a trivial bundle is compatible with the trivial metric.
Theorem 2.2. On a vector bundle $V$ equipped with a metric $h$ (whether real or complex), there exists a metric compatible connection $\nabla$.

The proof of this theorem is very similar to the previous one (indeed, replace "trivialisation" with "orthonormal trivialisation" everywhere). Just as before, if we are given one metric compatible connection $\nabla_{0}$, every other metric compatible connection equals $\nabla_{0}+a$ where $a \in \Gamma\left(E n d(V) \otimes T^{*} M\right)$ is a skew-symmetric (or skew-Hermitian in the complex case) endomorphism-valued 1-form.

Note that suppose we are given a connection $\nabla^{m}$ on $T^{*} M$ and $\nabla^{v}$ on $V$, then we have a connection $\nabla^{m \otimes v}$ on $T^{*} M \otimes V$. Therefore, we can define the second derivative of a section $s$ of $V$ as $\nabla^{m \otimes v} \nabla^{v} s$. Likewise, we can define higher order derivatives.

Now we define a PDE on a manifold.
Definition 2.3. Suppose $V, W$ are smooth vector bundles. A $k^{\text {th }}$ order partial differential operator $L$ is a map $L: \Gamma(V) \rightarrow \Gamma(W)$ such that locally it is of the form $L s(x)=F\left(x, s, \partial s, \partial^{2} s, \ldots, \partial^{k} s\right)$ where $F$ is a smooth function. A PDE is an equation of the form $L u=f$ where $u \in \Gamma(V)$ and $f \in \Gamma(W)$.
A linear partial differential operator is one that satisfies $L\left(a_{1} u_{1}+a_{2} u_{2}\right)=a_{1} L\left(u_{1}\right)+a_{2} L\left(u_{2}\right)$ where $a_{1}, a_{2}$ are constants.

Note that the above notion is well-defined. Indeed, if you change trivialisations and coordinates, you will get a different $F$ but it will remain smooth and depend only on $k$ derivatives of $s$. We can finally come up with examples of PDE on manifolds :
(1) Any PDE in $\mathbb{R}^{n}$ does the job. More non-trivially, the Laplace equation $\Delta u=f$ on a torus is an example of a second-order linear PDE. A second order non-linear PDE on a torus is $\Delta u=e^{u}-f$. (If $f>0$ this PDE turns out to have a unique smooth solution. Note that if $f=1$, there is an obvious solution, i.e., $u=0$.)
(2) $L u=d u=f$ where $u$ is a $k$-form.
(3) $\nabla u=f$ where $f$ and $u$ are sections of $V$.
(4) $\nabla^{T^{*} M} d u=f$ where $u$ is a smooth function and $f$ is a ( 0,2 )-tensor. This is a second order linear PDE.
We now come to the a very special metric-compatible connection on $T M$ for a Riemannian manifold $(M, g)$. This connection is determined completely by the metric.

Theorem 2.4. Suppose $(M, g)$ is a Riemannian manifold. There exists a unique metric compatible connection $\nabla$ on $T M$ such that it is torsion-free, i.e., for any two smooth vector fields $X, Y$,

$$
\begin{equation*}
\nabla_{X} Y-\nabla_{Y} X=[X, Y] . \tag{2.1}
\end{equation*}
$$

This connection is called the Levi-Civita connection of the metric $g$. Commonly, its curvature is simply called the curvature of $g$.

Proof. We will do this in two ways :
(1) Using coordinates : Locally, $\nabla Y$ has components $(d+A) \vec{Y}=d Y^{i}+A_{-j}^{i} Y^{j}$ where $A$ is an $m \times m$ matrix of 1-forms. So $A_{-j}^{i}=\Gamma_{j k}^{i} d x^{k}$ where $\Gamma_{j k}^{i}$ are a bunch of locally defined functions (the Christoffel symbols). So $\nabla_{X} Y$ is locally $\frac{\partial Y^{i}}{\partial x^{j}} X^{j}+\Gamma_{j k}^{i} X^{k} Y^{j}$. Take $X=\frac{\partial}{\partial x^{a}}$ and $Y=\frac{\partial}{\partial y^{b}}$ (suitably extended to all of $M$ by a bump function). Now the torsion-free property implies that $\nabla_{X} Y-\nabla_{Y} X=0$. In other words, $\Gamma_{a b}^{i}=\Gamma_{b a}^{i}$. In any normal coordinate system, at $p$, metric compatibility means that $A(p)$ is a skew-symmetric matrix, i.e.,

$$
\Gamma_{a b}^{i}(p)=-\Gamma_{i b}^{a}(p)=-\Gamma_{b i}^{a}(p)=\Gamma_{a i}^{b}(p)=\Gamma_{i a}^{b}(p)=-\Gamma_{b a}^{i}(p)=-\Gamma_{a b}^{i}(p)
$$

which means that $\Gamma_{a b}^{i}(p)=0$. So if the LC connection exists, it is unique.
Define the Levi-Civita connection as : $\nabla Y_{X}(p)=\frac{\partial Y^{i}}{\partial x^{j}}(p) X^{j}(p)$ in any normal coordinate system at $p$. The fact that this is a connection is easy to see. (Linearly and tensoriality at $p$ are obvious. The Leibniz rule at $p$ is a consequence of the product rule for derivatives.)
(2) Invariantly:

$$
\begin{gathered}
g\left(\nabla_{X} Y, Z\right)=g\left([X, Y]+\nabla_{Y} X, Z\right) \\
=g([X, Y], Z)+Y(X, Z)-g\left(X, \nabla_{Y} Z\right)=g([X, Y], Z)+Y(X, Z)-g\left(X,[Y, Z]+\nabla_{Z} Y\right) \\
=g([X, Y], Z)+Y(X, Z)-g(X,[Y, Z])-Z(g(X, Y))+g\left(\nabla_{Z} X, Y\right) \\
=g([X, Y], Z)+Y(X, Z)-g(X,[Y, Z])-Z(g(X, Y))+g([Z, X], Y)+g\left(\nabla_{X} Z, Y\right) \\
=g([X, Y], Z)+Y(X, Z)-g(X,[Y, Z])-Z(g(X, Y))+g([Z, X], Y)+X(g(Z, Y))-g\left(Z, \nabla_{X} Y\right)
\end{gathered}
$$

$$
\begin{equation*}
\Rightarrow 2 g\left(\nabla_{X} Y, Z\right)=g([X, Y], Z)+Y(X, Z)-g(X,[Y, Z])-Z(g(X, Y))+g([Z, X], Y)+X(g(Z, Y)) \tag{2.3}
\end{equation*}
$$

This determines the connection completely (you can verify that this is indeed a connection) and is called Kozul's formula for the Levi-Civita connection.

Using the Kozul formula you can see that the Christoffel symbols have exactly the formula we wrote whilst studying geodesics. In fact, it is not hard to see that a geodesic is simply a curve $\gamma$ such that $\nabla_{\gamma^{\prime}}\left(\gamma^{\prime}\right)=0$.

The torsion-free condition appears mysterious but there is a physics way of looking at it involving carrying rods along geodesics which start rotating in the presence of torsion. Indeed, consider the connection $\nabla$ defined on $T \mathbb{R}^{3}$ as (suppose $X, Y, Z$ are coordinate vector fields - example on mathoverflow),

$$
\begin{align*}
& \nabla_{X} Y=Z, \nabla_{X} Y=-Z \\
& \nabla_{X} Z=-Y, \nabla_{Z} X=Y \\
& \nabla_{Y} Z=X, \nabla_{Z} Y=-X \tag{2.4}
\end{align*}
$$

A body undergoing parallel translation for this connection spins like an American football: around the axis of motion with speed proportional to its velocity. So the geodesics are straight lines, and this connection preserves the standard metric, but it has torsion and is thus not the Levi-Cevita connection.

