
NOTES FOR 9 JAN (TUESDAY)

1. Recap

(1) Solved the Poisson equation on the torus rigorously using multidimensional Fourier series.
The same linear algebra intuition holds.

(2) Saw that even if f is in L2, we can find a C1 function u satisfying u
′′

= f in some sense (in
the sense of Fourier series). We also defined a distributional solution and saw that u satisfied
it in the sense of distributions.

(3) Defined weak derivatives and gave examples/non-examples.
(4) Defined mollification of a function.

2. Weak solutions and Sobolev spaces

(1) Weak solutions :
Suppose f : U → R is locally integrable. Define f ε on Uε (its “mollification”) to be

f ε = ηε ∗ f =

∫
U
ηε(x − y)f(y)dy =

∫
B(0,ε)

ηε(y)f(x − y)dy. This operation is something

like a weighted average of the values of f near x. So it “smooths out” f . The following are
important properties of mollifiers.
(a) f ε is smooth
(b) f ε → f a.e. as ε→ 0.
(c) If f ∈ C(U), then f ε → f uniformly on compact sets.
(d) If f ∈ Lploc(U) then f ε → f in Lploc(U) when 1 ≤ p <∞.
The proofs are as follows.

(a) f ε =

∫
U
ηε(x − y)f(y)dy. If we can take the derivatives inside the integral sign, then

indeed f ε will be smooth. We can do so by the dominated convergence theorem. Indeed,

limh1→0 f
ε(x+(h1, 0, . . .))−f ε(x) = limh1→0

∫
U

ηε(x+ (h1, 0, 0..))− y)− ηε(x− y)

h
f(y)dy.

If we choose any sequence h1n → 0, then since |ηε(x+(h1,0,0..))−y)−ηε(x−y)
h | ≤ C (by the

mean value theorem), we see by DCT that the limit can be taken inside the integral.
This argument proves that all the partial derivatives exist. By DCT we can show that
these partials are also continuous. Continuing inductively, this shows that f ε is smooth.

(b) The key trick behind all these convergence proofs in mollification is this : f(x) =∫
B(0,ε)

ηε(y)f(x)dy. So

|f ε(x)− f(x)| = |
∫
B0,ε

ηε(y)(f(x− y)− f(x))dy| ≤
∫
B0,ε

|ηε(y)(f(x− y)− f(x))|dy

1
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Now |ηε(y)| ≤ C
εn . Moreover, vol(Bε) = Cεn. Therefore,

|f ε(x)− f(x)| ≤ C

∫
B(0,ε)

|f(x− y)− f(x)|dy

vol(B(0, ε))
= C

∫
B(x,ε)

|f(z)− f(x)|dz

vol(B(x, ε))

. By the Lebesgue differentiation theorem, the right hand side goes to 0 almost every-
where as ε → 0. This so-called Lebesgue differentiation theorem holds even in Lp (i.e.

as ε→ 0, if f ∈ Lploc(U) (1 ≤ p <∞), then

∫
B(x,ε)

|f(z)− f(x)|pdz

vol(B(x,ε)) → 0 a.e. in x). This

is a generalisation of the fundamental theorem of calculus.
(c) Suppose K is a compact set in U . Since f ∈ C(U), it is uniformly continuous on K.

Therefore, for every given ε > 0, there is a δ > 0 such that K ⊂ U δ and if |y| < δ, then
|f(x− y)− f(x)| < ε ∀ x ∈ K. As before,

|f δ(x)− f(x)| ≤
∫
B0,δ

|ηδ(y)(f(x− y)− f(x))|dy < ε ∀ x ∈ K(2.1)

This means that f δ(x) converges uniformly to f(x).
(d) This proof is omitted and is there in an appendix of Evans.

(2) Sobolev norm : Note that if f is a multiply periodic function such that f ∈ L2 and

f̂(0) = 0, then u ∈ L2 defined by û = − f̂
k2

is much better than L2. In fact,
∞∑

k=−∞
(1 +

|k|2)2|û|2 ≤ C(
∑
|f̂ |2 +

∑
|û|2) = C(‖f‖2L2 + ‖u‖2L2). If we are in 1-dimension, then ac-

tually,
∑

k 6=0 |û| ≤
∑
|kû| =

∑
| f̂|k| ≤

√∑ 1
k2

√∑
|f̂ |2 < ∞. So by the Weierstrass M -test,

u ∈ C1 and the Fourier series of u, u
′

converge uniformly to them.

In other words, the estimate
∞∑

k=−∞
(1 + |k|2)2|û|2 ≤ C(‖f‖2L2 + ‖u‖2L2) seems to imply that

u is much nicer than simply being L2.

Definition 2.1. So we define a norm called the Hs (s > 0 is a real number) Sobolev norm

for functions u ∈ L2(S1 × S1 . . .) as ‖u‖Hs = ‖(1 + |k|2)s/2û‖l2 .

We have the following useful lemma.

Lemma 2.2. On the subspace of smooth and periodic functions, the following norm is equiv-
alent to the Sobolev norm (whenever s is a non-negative integer) :

‖u‖2W s,2 =

∫ 2π

0

∫ 2π

0
. . . (|u|2 + |Du|2 + |D2u|2 + . . .+ |Dsu|2)

where |Dsu|2 =
∑

I |
∂i1i2...isu
∂xi1∂xi2 ...

|2

Proof. Note that for smooth functions, (̂Dαu) = iα1+α2+...kα1
1 kα2

2 . . . û. Using this and the
Parseval-Plancherel theorem the result is easily seen. �

Remark 2.3. We might find it useful for later purposes to define theW k,p (where 1 ≤ p <∞)
norm on smooth functions defined on an arbitrary open set U ⊂ Rn (even if they are not
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periodic) : ‖u‖p
Wk,p =

∫
U
. . . (|u|p + |Du|p + |D2u|p + . . . + |Dsu|p). The space W k,p(U)

is defined as the space of all locally integrable functions with p weak derivatives such that
‖u‖Wk,p <∞. It turns out that it is a Banach space and that smooth functions are dense in
it.

Not every L2 function has finite Sobolev norm.

Definition 2.4. We define the Sobolev space Hs as the subspace of L2(S1 × S1 . . . S1) of
functions having finite Sobolev norm. Equip this subspace with the Sobolev inner product :

〈u, v〉Hs =
∑
~k∈Zn

(1 + |k|2)sû(~k)v̂(~k).

It is clear that Cs ⊂ Hs.

Theorem 2.5. Assume s ≥ 0.
(a) Hs is a Hilbert space.
(b) Smooth functions are dense in Hs in the Sobolev norm.

Proof. (a) If fn is a Cauchy sequence in Hs, then (1 + |k|2)s/2f̂n is Cauchy in l2. Therefore,
by completeness of l2, it converges to ak in l2. The sequence bk = ak

(1+|k|2)s/2
defines an

L2 function f =
∑

b~ke
i~k.~x. Clearly f is in Hs and fn → f in Hs.

(b) Let fn =
∑
|k|≤n

f̂(k)ei
~k.~x. Clearly fn is smooth. Now, ‖fn−f‖2Hs =

∑
|k|>n

(1+ |k|2)s|f̂(k)|2.

Since the Sobolev norm of f is finite, as n→∞, the right hand side goes to 0.
�

The Sobolev space satisfies some other nice properties (they are collectively called the
Sobolev embedding theorem).
(a) Hs ⊂ H l if l ≤ s.
(b) If s ≥ [n2 ] + 1 + a, then Hs ⊂ Ca.

Proof. (a) Obvious.

(b) Note that
∑
k

(|k|2 +1)a/2|û(k)| ≤ ‖u‖Hs‖(1+ |k|2)a/2−s/2‖l2 <∞ by the Cauchy integral

test. Therefore,
∑
k

|k|l|û(k)| <∞ ∀ l ≤ a. This means by the M-test that
∑

(ik)αû(k)

converges uniformly to some continuous functions uα for all multiindices α with α1 +
α2 + . . . ≤ l. By the fundamental theorem of calculus it is easily seen that uα = Dαu0.
Thus u0 ∈ Ca.

�

Now we define a useful notion from functional analysis.

Definition 2.6. Suppose B1, B2 are two Banach spaces. Then a bounded linear map K :
B1 → B2 is called compact if for every bounded sequence xk ∈ B1, K(xk) has a convergent
subsequence in B2.

If H1, H2 are two Hilbert spaces, then a bounded linear map T : H1 → H2 is called weakly
compact if for every bounded sequence xk ∈ H1, there is a subsequence xnk and a u ∈ H2 so
that for every v ∈ H2, 〈T (xnk), v〉 → 〈u, v〉.
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Sobolev spaces give nice examples of compact operators. The point is that it in the study of
PDE, we want to produce “weak” solutions and then prove that secretly, these weak solutions
are actually smooth. How does one produce weak solutions ? One needs something out of
nothing. Such “something out of nothing” theorems are provided by functional analysis for
not necessarily the PDE we are trying to solve, but for a slightly different PDE. Then one
tries to use the spectral theorem for compact symmetric operators to find a weak solution for
the PDE we are trying to solve. This is where compactness kicks in. All of this sounds too
abstract, but we will see this in practice soon enough. For now, we will state and prove this
theorem (which I promise will be useful later on). This theorem basically says “If we prove
estimates for a sequence of functions in one function space, then a subsequence converges in
some other space”.

Theorem 2.7. The following inclusions are compact. (Sometimes, this along with the above
theorem are referred to as the Sobolev embedding theorems.)
(a) Hs ⊂ H l if l < s. (Rellich lemma.)
(b) Hs ⊂ Ca(S1 × S1 . . .) if s ≥ [n2 ] + a + 1 where Ca is the space of Ca functions with

the norm ‖f‖ = maxS1×S1... |f(x)| + max |Df | + . . . + max |Daf |. (Rellich-Kondrachov
compactness.)

(c) Suppose U is a bounded domain in Rn, then Ck,α(Ū) ⊂ Ck,β(Ū) if β < α and Ck ⊂ C l

if l < k. (The Hölder space Ck,α(Ū) consists of Ck,α functions with the norm ‖f‖ =

max
Ū
|f |+ max |Df |+ . . .+ max |Dkf |+

∑
|α|=k

sup
x,y∈Ū

|Dαf(x)−Dαf(y)|
|x− y|α

. This space is a

Banach space.)
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