
NOTES FOR 11 FEB (TUESDAY)

1. Recap

(1) Defined sectional, Ricci, and scalar curvatures of the Levi-Civita connection and stated a few
theorems and PDE.

(2) Defined divergence, gradient, the Laplacian of functions, and the Hodge star.

2. Divergence, Stokes’ theorem, and Laplacians

Definition 2.1. Given a k-form α on a compact oriented m-dimensional Riemannian manifold
(M, g), ∗α is a (m−k)-form such that α∧∗β = 〈α, β〉gvolg. Here the inner product on forms is defined
as follows : Suppose at p, normal coordinates are chosen, i.e., gij(p) = δij , then dxi1(p) ∧ dxi2 . . . ∧
dxik(p) form an orthonormal basis at p for k-forms. Note that vol(p) = dx1(p) ∧ dx2(p) . . . dxm(p).

Does such an operator ∗ : Γ(Ωk(M)) → Γ(Ωm−k(M)) exist ? Is it linear ? Yes to both. Suppose
ω1, ω2, . . . , ωm form an orthonormal frame on an open set U , i.e., ω1(p), ω2(p), . . . , ωm(p) form an

orthonormal basis of T ∗pM for all p ∈ U . Then, ∗(ωi1 ∧ωi2 . . . ωik) = (−1)sgn(I)ωik+1
∧ωik+2

. . .∧ωim
where sgn(I) is the sign of the permutation taking (1, 2, . . . ,m) to (i1, i2, . . . , im). Then extend ∗
linearly to all forms. We will see why it is well-defined later on. Here are some examples :

(1) Suppose (M, g) = R2, gEuc oriented in the usual way, then ∗1 = dx∧ dy. Also, ∗dx = dy and
∗dy = −dx. Finally, ∗(dx ∧ dy) = 1.

(2) If M = R3 (with the Euclidean metric) oriented in the usual way, then ∗1 = dx ∧ dy ∧ dz,
∗dx = dy ∧ dz, ∗dy = dz ∧ dx, ∗dz = dx ∧ dy.
If ~v = (v1, v2, v3) and ~w = (w1, w2, w3), form the dual 1-forms v = v1dx + v2dy + v3dz and
likewise for w. Then v ∧ w is a 2-form given by v ∧ w = (v1w2 − v2w1)dx ∧ dy + . . .. The
Hodge star acting on this gives a 1-form ∗(v ∧ w) = (v1w2 − v2w1)dz + . . . whose dual is
(v2w3 − v3w2, v3w1 −w3v1, v1w2 −w1v2) which are the components of ~v× ~w. Since the cross
product depends on the choice of orientation, it is called a “pseudovector”.

This ∗ operator (the so-called Hodge star) has the following properties :

(1) Suppose α, β are elements of Ωk
p(M) α ∧ ∗β = 〈α, β〉gvolg = β ∧ ∗α, i.e., it does satisfy the

definition.
(2) ∗ is well-defined, i.e., it does not depend on the choice of orthonormal basis.

(3) If you change the metric from g to g̃ = cg where c > 0 is a constant, then ∗g̃ω =
√
c

2k−m ∗g ω
(4) If you change the orientation, ∗ → −∗.
(5) ∗ ∗ η = (−1)k(m−k)η.
(6) 〈∗α, ∗η〉 = 〈α, η〉.

Proof. (1) Suppose we choose the orthonormal frame ωi. Suppose β = βIω
i1 ∧ ωi2 . . . where the

summation is over increasing indices i1 < i2 < . . ., we see that ∗β = βI(−1)sgn(I)ωik+1 ∧
ωik+2 . . .. Thus,

α ∧ ∗β = αJβI(−1)sgn(I)ωj1 ∧ ωj2 . . . ωjk ∧ ωik+1 ∧ . . .

= αIβI(−1)sgn(I)(−1)sgn(I)ω1 ∧ ω2 . . . = αIβIvolg = 〈α, β〉volg(2.1)
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Note that this property does not depend on how we defined ∗ (i.e., we did not use the fact
that ∗ is well-defined)

(2) The above property α ∧ ∗β = 〈α, β〉volg defines ∗ uniquely because, if ∗1, ∗2 satisfy this
property, then α ∧ (∗1 − ∗2)β = 0 for all α, β. However, (a, b) → a ∧ b is a non-degenerate
pairing (Why? because (a, ∗1a)→ a ∧ ∗1a = |a|2volg ≥ 0). Hence ∗1β = ∗2β ∀ β.

(3) Suppose ω1, . . . , ωm is an orthonormal frame for g, then ωi√
c

is one for g̃. From this the result

follows trivially.
(4) Obvious.
(5)

∗ ∗ (η) = ηI ∗ ∗(ωI) = ηI ∗ ((−1)sgn(I)ωI
c
) = ηI(−1)sgn(I)(−1)sgn(Ic)ωI = (−1)k(m−k)η(2.2)

(6) Suppose η is a k-form and α an m− k form.

〈∗α, ∗η〉vol = ∗α ∧ ∗ ∗ η = (−1)k(m−k) ∗ α ∧ η

= (−1)k(m−k)(−1)k(m−k)η ∧ ∗α = 〈η, α〉vol = 〈α, η〉vol(2.3)

�

Now we define an operator analogous of the curl ∇× ~F :

Definition 2.2. Let α be a smooth k-form. Then d†α = (−1)m(k+1)+1 ∗d ∗α. Thus d†α is a smooth
k − 1-form depending on the first derivative of α (it is a first order differential operator).

Definition 2.3. Let α be a smooth k-form. Then d†α = (−1)m(k+1)+1 ∗d ∗α. Thus d†α is a smooth
k − 1-form depending on the first derivative of α (it is a first order differential operator).

The “codifferential” satisfies the following properties :

(1) d†f = 0 where f is a smooth function.
(2) d† ◦ d† = 0.

(3) (dα, β) =

∫
M
〈dα, β〉volg =

∫
M
〈α, d†β〉volg = (α, d†β). Thus, d† is formally speaking, the

adjoint of d.
(4) If X is a vector field and ωX is the dual 1-form, then d†ωX = −div(X). Hence, d†df = −∆f .

Proof. (1) Obvious because f is a 0-form.
(2) d† ◦ d† = ± ∗ d ∗2 d∗ = ± ∗ d ◦ d∗ = 0
(3) Suppose β is a k-form and α a k − 1 form.

(α, d†β) =

∫
M
α ∧ (−1)m(k+1)+1 ∗ ∗d ∗ β =

∫
M
α ∧ (−1)m(k+1)+1+(m−k+1)(m−(m−k+1))d ∗ β

=

∫
M

(−1)k(−1)k(d(α ∧ ∗β)− dα ∧ ∗β) =

∫
M
dα ∧ ∗β = (dα, β)(2.4)

(4) Note that

(d†ωX , f) = (ωX , df) =

∫
M
gij(ωX)i

∂f

∂xj
vol

=

∫
M
gijgikX

k ∂f

∂xj
vol = (X,∇f) = −(div(X), f)

⇒ (d†ωX + div(X), f) = 0 ∀ f ∈ C∞(M)(2.5)
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The last equality implies the result because we can choose f to be a mollifier supported inside a
coordinate chart and take limits. �

The last equality motivates us to make the following definition :

Definition 2.4. Suppose α is a smooth k-form on a compact oriented Riemannian manifold (M, g).
Define the second order linear partial differential operator (the Hodge Laplacian or the Laplace-
Beltrami operator) as the k-form ∆dω = (dd† + d†d)ω.

Let us calculate this on Rm with the Euclidean metric and the usual orientation. (Remember that
this Laplacian depends on the choice of a metric and an orientation.) Let η = ηIdx

I be a k-form
(where the sum is over all indices, whether increasing or not).

dη =
∂ηI
∂xj

dxj ∧ dxI

d†η = (−1)m(k+1)+1 ∗ d ∗ η = (−1)m(k+1)+1 ∗ d(ηI(−1)sgn(I)dxI
c
)

= (−1)m(k+1)+1+sgn(I) ∗ ∂ηI
∂xj

dxj ∧ dxIc = (−1)m(k+1)+1+sgn(I) ∂ηI
∂xj

(−1)sgn(j,Ic)dxi1 . . . dx
iaj(I)−1 ∧ ˆdxj . . .

= (−1)m(k+1)+1+sgn(I)+m−k+aj(I)−1+sgn(Ic) ∂ηI
∂xj

dxi1 . . . ∧ ˆdxj . . .

= (−1)m(k+1)+m−k+aj(I)+k(m−k) ∂ηI
∂xj

dxi1 . . . ∧ ˆdxj . . . = (−1)aj(I)
∂ηI
∂xj

dxi1 . . . ∧ ˆdxj . . .

∆dη = (dd† + d†d)η = d((−1)aj(I)
∂ηI
∂xj

dxi1 . . . ∧ ˆdxj) + d†
∂ηI
∂xk

dxk ∧ dxI

=
∑

I,k,j∈(i1,...,ik)

(−1)aj(I)
∂2ηI
∂xk∂xj

dxk ∧ dxi1 . . . ∧ ˆdxj +
∑

I,k,j∈(k,i1,...,ik)

(−1)aj(k,I)
∂2ηI
∂xk∂xj

dxk ∧ dxi1 . . . ˆdxj . . .

= −
∑
I,k

∂2ηI
∂(xk)2

dxI = −(∆ηI)dx
I

So, in particular, in Euclidean space, if we compute the principal symbol of the Hodge Laplacian,

i.e., we replace the highest order derivatives by a vector ~ζ, we get σ∆d
(~ζ) = −

 |ζ|
2 0 . . .

0 |ζ|2 . . .
...

. . . . . .

.

Hence this operator is elliptic with constant coefficients. This holds true even for the flat torus.
Before we proceed further with the analysis of the PDE ∆dη = α, we define a general notion of

a Laplacian (the so called Bochner Laplacian or the Rough Laplacian). To do so, suppose (E,∇, h)
is a vector bundle on a compact oriented Riemannian manifold (M, g) with a metric (h) compatible
connection ∇. Then we identify the formal adjoint ∇† : Γ(T ∗M ⊗ E) → Γ(E) of the connection
∇ : Γ(E)→ Γ(T ∗M ⊗ E) defined by the property

(∇†α, β) =

∫
M
〈∇†α, β〉hvolg =

∫
M
〈α,∇β〉g∗⊗hvolg = (α,∇β)(2.6)

We need to prove that such an operator is actually a differential operator by finding a formula for
it. (Such an operator is unique - Why ?) Suppose we choose an orthonormal normal trivialisation ei
for (E,∇, h) and normal coordinates xµ for g at p, then A(p) = 0, h(p) = Id, g = Id + O(x2) = g∗.
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Let α = αiµdx
µ ⊗ ei, β = βjej . Then

〈α,∇β〉g∗⊗h(p) =
∑
µ,i

αiµ(p)
∂βi

∂xµ
(p) =

∑
µ,i

∂αiµβ
i

∂xµ
(p)−

∂αiµ
∂xµ

(p)βi(p)

= div(〈α, β〉])(p)−
∂αiµ
∂xµ

(p)βi(p)

Now the expression −∂αiµ
∂xµ (p)βi(p) can be written as −〈tr(∇α), β〉h(p) which is a globally defined

quantity. By the divergence theorem, ∇†α = −tr(∇α). So finally,

Definition 2.5. Suppose (M, g) is a compact oriented Riemannian manifold (without boundary as
usual) and (E,∇, h) is a vector bundle with a metric h and a metric-compatible connection ∇. The
Bochner Laplacian (sometimes called the Rough Laplacian) is defined as ∇†∇ : Γ(E)→ Γ(E) where
∇†α = −tr(∇α).


	1. Recap
	2. Divergence, Stokes' theorem, and Laplacians

