NOTES FOR 11 FEB (TUESDAY)

1. Recap

(1) Defined sectional, Ricci, and scalar curvatures of the Levi-Civita connection and stated a few theorems and PDE.
(2) Defined divergence, gradient, the Laplacian of functions, and the Hodge star.

2. Divergence, Stokes' theorem, and Laplacians

Definition 2.1. Given a k-form α on a compact oriented m-dimensional Riemannian manifold $(M, g), * \alpha$ is a $(m-k)$-form such that $\alpha \wedge * \beta=\langle\alpha, \beta\rangle_{g} v o l_{g}$. Here the inner product on forms is defined as follows : Suppose at p, normal coordinates are chosen, i.e., $g_{i j}(p)=\delta_{i j}$, then $d x^{i_{1}}(p) \wedge d x^{i_{2}} \ldots \wedge$ $d x^{i_{k}}(p)$ form an orthonormal basis at p for k-forms. Note that $\operatorname{vol}(p)=d x^{1}(p) \wedge d x^{2}(p) \ldots d x^{m}(p)$.

Does such an operator $*: \Gamma\left(\Omega^{k}(M)\right) \rightarrow \Gamma\left(\Omega^{m-k}(M)\right)$ exist? Is it linear ? Yes to both. Suppose $\omega_{1}, \omega_{2}, \ldots, \omega_{m}$ form an orthonormal frame on an open set U, i.e., $\omega_{1}(p), \omega_{2}(p), \ldots, \omega_{m}(p)$ form an orthonormal basis of $T_{p}^{*} M$ for all $p \in U$. Then, $*\left(\omega_{i_{1}} \wedge \omega_{i_{2}} \ldots \omega_{i_{k}}\right)=(-1)^{\operatorname{sgn}(I)} \omega_{i_{k+1}} \wedge \omega_{i_{k+2}} \ldots \wedge \omega_{i_{m}}$ where $\operatorname{sgn}(I)$ is the sign of the permutation taking $(1,2, \ldots, m)$ to $\left(i_{1}, i_{2}, \ldots, i_{m}\right)$. Then extend $*$ linearly to all forms. We will see why it is well-defined later on. Here are some examples :
(1) Suppose $(M, g)=\mathbb{R}^{2}, g_{E u c}$ oriented in the usual way, then $* 1=d x \wedge d y$. Also, $* d x=d y$ and $* d y=-d x$. Finally, $*(d x \wedge d y)=1$.
(2) If $M=\mathbb{R}^{3}$ (with the Euclidean metric) oriented in the usual way, then $* 1=d x \wedge d y \wedge d z$, $* d x=d y \wedge d z, * d y=d z \wedge d x, * d z=d x \wedge d y$.
If $\vec{v}=\left(v_{1}, v_{2}, v_{3}\right)$ and $\vec{w}=\left(w_{1}, w_{2}, w_{3}\right)$, form the dual 1-forms $v=v_{1} d x+v_{2} d y+v_{3} d z$ and likewise for w. Then $v \wedge w$ is a 2-form given by $v \wedge w=\left(v_{1} w_{2}-v_{2} w_{1}\right) d x \wedge d y+\ldots$. The Hodge star acting on this gives a 1 -form $*(v \wedge w)=\left(v_{1} w_{2}-v_{2} w_{1}\right) d z+\ldots$ whose dual is $\left(v_{2} w_{3}-v_{3} w_{2}, v_{3} w_{1}-w_{3} v_{1}, v_{1} w_{2}-w_{1} v_{2}\right)$ which are the components of $\vec{v} \times \vec{w}$. Since the cross product depends on the choice of orientation, it is called a "pseudovector".
This $*$ operator (the so-called Hodge star) has the following properties:
(1) Suppose α, β are elements of $\Omega_{p}^{k}(M) \alpha \wedge * \beta=\langle\alpha, \beta\rangle_{g} v o l_{g}=\beta \wedge * \alpha$, i.e., it does satisfy the definition.
(2) $*$ is well-defined, i.e., it does not depend on the choice of orthonormal basis.
(3) If you change the metric from g to $\tilde{g}=c g$ where $c>0$ is a constant, then $* \tilde{g} \omega=\sqrt{c}^{2 k-m} *_{g} \omega$
(4) If you change the orientation, $* \rightarrow-*$.
(5) $* * \eta=(-1)^{k(m-k)} \eta$.
(6) $\langle * \alpha, * \eta\rangle=\langle\alpha, \eta\rangle$.

Proof. (1) Suppose we choose the orthonormal frame ω_{i}. Suppose $\beta=\beta_{I} \omega^{i_{1}} \wedge \omega_{i_{2}} \ldots$ where the summation is over increasing indices $i_{1}<i_{2}<\ldots$, we see that $* \beta=\beta_{I}(-1)^{\operatorname{sgn}(I)} \omega^{i_{k+1}} \wedge$ $\omega^{i_{k+2}} \ldots$. Thus,

$$
\begin{gather*}
\alpha \wedge * \beta=\alpha_{J} \beta_{I}(-1)^{\operatorname{sgn}(I)} \omega^{j_{1}} \wedge \omega^{j_{2}} \ldots \omega^{j_{k}} \wedge \omega^{i_{k+1}} \wedge \ldots \\
=\alpha_{I} \beta_{I}(-1)^{\operatorname{sgn}(I)}(-1)^{\operatorname{sgn}(I)} \omega_{1} \wedge \omega_{2} \ldots=\alpha_{I} \beta_{I} \text { vol }_{g}=\langle\alpha, \beta\rangle \text { vol }_{g} \tag{2.1}
\end{gather*}
$$

Note that this property does not depend on how we defined $*$ (i.e., we did not use the fact that $*$ is well-defined)
(2) The above property $\alpha \wedge * \beta=\langle\alpha, \beta\rangle$ vol $_{g}$ defines $*$ uniquely because, if $*_{1}, *_{2}$ satisfy this property, then $\alpha \wedge\left(*_{1}-*_{2}\right) \beta=0$ for all α, β. However, $(a, b) \rightarrow a \wedge b$ is a non-degenerate pairing (Why? because $\left(a, *_{1} a\right) \rightarrow a \wedge *_{1} a=|a|^{2} v o l_{g} \geq 0$). Hence $*_{1} \beta=*_{2} \beta \forall \beta$.
(3) Suppose $\omega_{1}, \ldots, \omega_{m}$ is an orthonormal frame for g, then $\frac{\omega_{i}}{\sqrt{c}}$ is one for \tilde{g}. From this the result follows trivially.
(4) Obvious.

$$
\begin{equation*}
* *(\eta)=\eta_{I} * *\left(\omega^{I}\right)=\eta_{I} *\left((-1)^{\operatorname{sgn}(I)} \omega^{I^{c}}\right)=\eta_{I}(-1)^{\operatorname{sgn}(I)}(-1)^{\operatorname{sgn}\left(I^{c}\right)} \omega^{I}=(-1)^{k(m-k)} \eta \tag{5}
\end{equation*}
$$

(6) Suppose η is a k-form and α an $m-k$ form.

$$
\begin{gather*}
\langle * \alpha, * \eta\rangle \text { vol }=* \alpha \wedge * * \eta=(-1)^{k(m-k)} * \alpha \wedge \eta \\
=(-1)^{k(m-k)}(-1)^{k(m-k)} \eta \wedge * \alpha=\langle\eta, \alpha\rangle \text { vol }=\langle\alpha, \eta\rangle \text { vol } \tag{2.3}
\end{gather*}
$$

Now we define an operator analogous of the curl $\nabla \times \vec{F}$:
Definition 2.2. Let α be a smooth k-form. Then $d^{\dagger} \alpha=(-1)^{m(k+1)+1} * d * \alpha$. Thus $d^{\dagger} \alpha$ is a smooth $k-1$-form depending on the first derivative of α (it is a first order differential operator).

Definition 2.3. Let α be a smooth k-form. Then $d^{\dagger} \alpha=(-1)^{m(k+1)+1} * d * \alpha$. Thus $d^{\dagger} \alpha$ is a smooth $k-1$-form depending on the first derivative of α (it is a first order differential operator).

The "codifferential" satisfies the following properties:
(1) $d^{\dagger} f=0$ where f is a smooth function.
(2) $d^{\dagger} \circ d^{\dagger}=0$.
(3) $(d \alpha, \beta)=\int_{M}\langle d \alpha, \beta\rangle$ vol $_{g}=\int_{M}\left\langle\alpha, d^{\dagger} \beta\right\rangle$ vol $_{g}=\left(\alpha, d^{\dagger} \beta\right)$. Thus, d^{\dagger} is formally speaking, the adjoint of d.
(4) If X is a vector field and ω_{X} is the dual 1-form, then $d^{\dagger} \omega_{X}=-\operatorname{div}(X)$. Hence, $d^{\dagger} d f=-\Delta f$.

Proof. (1) Obvious because f is a 0 -form.
(2) $d^{\dagger} \circ d^{\dagger}= \pm * d *^{2} d *= \pm * d \circ d *=0$
(3) Suppose β is a k-form and α a $k-1$ form.

$$
\begin{gather*}
\left(\alpha, d^{\dagger} \beta\right)=\int_{M} \alpha \wedge(-1)^{m(k+1)+1} * * d * \beta=\int_{M} \alpha \wedge(-1)^{m(k+1)+1+(m-k+1)(m-(m-k+1))} d * \beta \\
=\int_{M}(-1)^{k}(-1)^{k}(d(\alpha \wedge * \beta)-d \alpha \wedge * \beta)=\int_{M} d \alpha \wedge * \beta=(d \alpha, \beta) \tag{2.4}
\end{gather*}
$$

(4) Note that

$$
\begin{gather*}
\left(d^{\dagger} \omega_{X}, f\right)=\left(\omega_{X}, d f\right)=\int_{M} g^{i j}\left(\omega_{X}\right)_{i} \frac{\partial f}{\partial x^{j}} v o l \\
=\int_{M} g^{i j} g_{i k} X^{k} \frac{\partial f}{\partial x^{j}} v o l=(X, \nabla f)=-(\operatorname{div}(X), f) \\
\Rightarrow\left(d^{\dagger} \omega_{X}+\operatorname{div}(X), f\right)=0 \forall f \in C^{\infty}(M) \tag{2.5}
\end{gather*}
$$

The last equality implies the result because we can choose f to be a mollifier supported inside a coordinate chart and take limits.

The last equality motivates us to make the following definition :
Definition 2.4. Suppose α is a smooth k-form on a compact oriented Riemannian manifold (M, g). Define the second order linear partial differential operator (the Hodge Laplacian or the LaplaceBeltrami operator) as the k-form $\Delta_{d} \omega=\left(d d^{\dagger}+d^{\dagger} d\right) \omega$.

Let us calculate this on \mathbb{R}^{m} with the Euclidean metric and the usual orientation. (Remember that this Laplacian depends on the choice of a metric and an orientation.) Let $\eta=\eta_{I} d x^{I}$ be a k-form (where the sum is over all indices, whether increasing or not).

$$
\begin{gathered}
d \eta=\frac{\partial \eta_{I}}{\partial x^{j}} d x^{j} \wedge d x^{I} \\
d^{\dagger} \eta=(-1)^{m(k+1)+1} * d * \eta=(-1)^{m(k+1)+1} * d\left(\eta_{I}(-1)^{\operatorname{sgn}(I)} d x^{I^{c}}\right) \\
=(-1)^{m(k+1)+1+\operatorname{sgn}(I)} * \frac{\partial \eta_{I}}{\partial x^{j}} d x^{j} \wedge d x^{I^{c}}=(-1)^{m(k+1)+1+\operatorname{sgn}(I)} \frac{\partial \eta_{I}}{\partial x^{j}}(-1)^{s g n\left(j, I^{c}\right)} d x^{i_{1}} \ldots d x^{i_{a_{j}(I)-1}} \wedge \hat{x^{j}} \ldots \\
=(-1)^{m(k+1)+1+\operatorname{sgn}(I)+m-k+a_{j}(I)-1+\operatorname{sgn(I^{c})} \frac{\partial \eta_{I}}{\partial x^{j}} d x^{i_{1}} \ldots \wedge \hat{x^{j}} \ldots} \\
=(-1)^{m(k+1)+m-k+a_{j}(I)+k(m-k)} \frac{\partial \eta_{I}}{\partial x^{j}} d x^{i_{1}} \ldots \wedge \hat{d x^{j}} \ldots=(-1)^{a_{j}(I)} \frac{\partial \eta_{I}}{\partial x^{j}} d x^{i_{1}} \ldots \wedge \hat{x^{j}} \ldots \\
=\Delta_{d, k} \eta=\left(d d^{\dagger}+d^{\dagger} d\right) \eta=d\left((-1)^{a_{j}(I)} \frac{\partial \eta_{I}}{\partial x^{j}} d x^{i_{1}} \ldots \wedge \hat{x^{j}}\right)+d^{\dagger} \frac{\partial \eta_{I}}{\partial x^{k}} d x^{k} \wedge d x^{I} \\
\sum_{I, k, j \in\left(i_{1}, \ldots, i_{k}\right)}(-1)^{a_{j}(I)} \frac{\partial^{2} \eta_{I}}{\partial x^{k} \partial x^{j}} d x^{k} \wedge d x^{i_{1}} \ldots \wedge \hat{x^{j}}+\sum_{I, k, j \in\left(k, i_{1}, \ldots, i_{k}\right)}(-1)^{a_{j}(k, I)} \frac{\partial^{2} \eta_{I}}{\partial x^{k} \partial x^{j}} d x^{k} \wedge d x^{i_{1}} \ldots d \hat{x^{j}} \ldots \\
\quad=-\sum_{I, k} \frac{\partial^{2} \eta_{I}}{\partial\left(x^{k}\right)^{2}} d x^{I}=-\left(\Delta \eta_{I}\right) d x^{I}
\end{gathered}
$$

So, in particular, in Euclidean space, if we compute the principal symbol of the Hodge Laplacian, i.e., we replace the highest order derivatives by a vector $\vec{\zeta}$, we get $\sigma_{\Delta_{d}}(\vec{\zeta})=-\left[\begin{array}{ccc}|\zeta|^{2} & 0 & \ldots \\ 0 & |\zeta|^{2} & \ldots \\ \vdots & \ddots & \ldots\end{array}\right]$. Hence this operator is elliptic with constant coefficients. This holds true even for the flat torus.

Before we proceed further with the analysis of the $\operatorname{PDE} \Delta_{d} \eta=\alpha$, we define a general notion of a Laplacian (the so called Bochner Laplacian or the Rough Laplacian). To do so, suppose (E, ∇, h) is a vector bundle on a compact oriented Riemannian manifold (M, g) with a metric (h) compatible connection ∇. Then we identify the formal adjoint $\nabla^{\dagger}: \Gamma\left(T^{*} M \otimes E\right) \rightarrow \Gamma(E)$ of the connection $\nabla: \Gamma(E) \rightarrow \Gamma\left(T^{*} M \otimes E\right)$ defined by the property

$$
\begin{equation*}
\left(\nabla^{\dagger} \alpha, \beta\right)=\int_{M}\left\langle\nabla^{\dagger} \alpha, \beta\right\rangle_{h} \operatorname{vol}_{g}=\int_{M}\langle\alpha, \nabla \beta\rangle_{g^{*} \otimes h} \operatorname{vol}_{g}=(\alpha, \nabla \beta) \tag{2.6}
\end{equation*}
$$

We need to prove that such an operator is actually a differential operator by finding a formula for it. (Such an operator is unique - Why ?) Suppose we choose an orthonormal normal trivialisation e_{i} for (E, ∇, h) and normal coordinates x^{μ} for g at p, then $A(p)=0, h(p)=I d, g=I d+O\left(x^{2}\right)=g^{*}$.

Let $\alpha=\alpha_{\mu}^{i} d x^{\mu} \otimes e_{i}, \beta=\beta^{j} e_{j}$. Then

$$
\begin{aligned}
\langle\alpha, \nabla \beta\rangle_{g^{*} \otimes h}(p)= & \sum_{\mu, i} \alpha_{\mu}^{i}(p) \frac{\partial \beta^{i}}{\partial x^{\mu}}(p)=\sum_{\mu, i} \frac{\partial \alpha_{\mu}^{i} \beta^{i}}{\partial x^{\mu}}(p)-\frac{\partial \alpha_{\mu}^{i}}{\partial x^{\mu}}(p) \beta^{i}(p) \\
& =\operatorname{div}\left(\langle\alpha, \beta\rangle^{\sharp}\right)(p)-\frac{\partial \alpha_{\mu}^{i}}{\partial x^{\mu}}(p) \beta^{i}(p)
\end{aligned}
$$

Now the expression $-\frac{\partial \alpha_{\mu}^{i}}{\partial x^{\mu}}(p) \beta^{i}(p)$ can be written as $-\langle\operatorname{tr}(\nabla \alpha), \beta\rangle_{h}(p)$ which is a globally defined quantity. By the divergence theorem, $\nabla^{\dagger} \alpha=-\operatorname{tr}(\nabla \alpha)$. So finally,

Definition 2.5. Suppose (M, g) is a compact oriented Riemannian manifold (without boundary as usual) and (E, ∇, h) is a vector bundle with a metric h and a metric-compatible connection ∇. The Bochner Laplacian (sometimes called the Rough Laplacian) is defined as $\nabla^{\dagger} \nabla: \Gamma(E) \rightarrow \Gamma(E)$ where $\nabla^{\dagger} \alpha=-\operatorname{tr}(\nabla \alpha)$.

