
NOTES FOR 12 MARCH (THURSDAY)

1. Recap

(1) Proved that strongly elliptic operators are diagonalisable.
(2) Stated other regularity results.

2. Parabolic equations

Let L be an order 2θ elliptic formally self-adjoint operator satisfying the Garding coercivity in-
equality (Lv, v)L2 ≥ δ(v, v)Hθ such that L : Γ(E) → Γ(E) and let u0, f be smooth sections of E.
Then the equation du

dt = −Lu + f, u(0) = u0 for a section u : [0, T ] ×M → E is called a linear

parabolic PDE. The quintessential example of a parabolic PDE is the heat equation du
dt = ∆u. (The

equation du
dt = −∆u is called the backwards heat equation and is usually badly behaved.)

We typically want u to be smooth on the interior of the parabolic domain and smooth from the
right hand side at t = 0.

Theorem 2.1. Every parabolic equation has a unique smooth solution for all time, i.e., on [0,∞)×M .

Proof. First we prove uniqueness. Indeed, if there are two solutions, then let v = u1−u2. It satisfies
dv
dt = −Lv, v(0) = 0. Now,

d(v, v)L2

dt
= −2(Lv, v) ≤ −δ(v, v)L2 .(2.1)

Hence,

(v, v)(t) ≤ (v, v)(0)e−δt.

Thus v ≡ 0. The estimate on v (an “Energy estimate”) is useful in its own right. One can similarly
prove that if dv

dt = −Lv + f , then (v, v)(t) ≤ C(1 + t).
Now we prove existence. Let en be a countable family of smooth eigenvectors with eigenvalues

λn > 0 of L spanning L2. Thus, u0 =
∑

n cnen for any u0 ∈ L2 (and f =
∑

n fnen). Since u0 ∈ L2, we

see that
∑

n |cn|2 <∞. First we prove that the quantity ‖u0‖k =
∑

n |cn|2(1 +λn)2k is equivalent to

the Hk2θ norm. Indeed, if ‖u0‖k <∞, then (u0, L
ken)L2 = λkncn. If φ is a smooth section, then φ =∑

n φnen. Thus, Lkφ ∈ L2 satisfies (Lkφ, en) = φnλ
k
n. Therefore, (u0, L

kφ) =
∑

n cnλ
k
nφn and hence

Lku0 = fk in the sense of distributions where fk ∈ L2. Therefore, u0 ∈ Hkθ and ‖u0‖Hk2θ ≤ Ck‖u0‖k.
Conversely, if u0 ∈ H2kθ, then ‖Lku0‖L2 ≤ C‖u0‖H2kθ < ∞. Thus, (Lku0, en) = (u0, L

ken) = λkncn.

Therefore, ‖u0‖k <∞ and ‖u0‖2k ≤ C̃k‖u0‖2H2kθ .

Define the function u(t) =
∑

n cne
−λnten + fn

λn
(1 − e−λnt)en. Clearly u(t) ∈ L2. Moreover,

‖u(t)− u0‖2L2 =
∑

n |cn|2(1− e−λnt)2 which by DCT converges to 0 as t→ 0+.
Now we proceed to prove that u(t, x) is C∞ in x for every fixed t ≥ 0 and that we can differentiate

w.r.t x term-by-term. Since
∑

n cnen and
∑

n fnen are smooth (by assumption), their ‖.‖k norms
are finite for all (by the equivalence of norms above). Therefore, ‖u‖H2kθ ≤ Ck ∀ k. Hence u
is smooth in x for all fixed t ≥ 0. Moreover, by Sobolev embedding, the partial sum sN (t) =

‖
∑N

n=1 unen‖Ck,α ≤ C̃k independent of N . Therefore, by Arzela-Ascoli, every subsequence has a

subsequence that converges in C l and in fact the limits are all u(t) because sN (t) → u(t) in L2.
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Therefore, u(t) ∈ C l for all l and the term-by-term derivatives in x converge.
Now note that if u(t) =

∑
n un(t)en where ‖sN (t)‖Hk ≤ Ck independent of N, t ≥ 0, then ‖sN (t)−

sN (t0)‖2k ≤
∑N

n=1(1 + λn)2k(2λ2n|cn|2 + λ2n|fn|2)|t− t0|2 ≤ Ck and hence ‖sN (t)− sN (t0)‖C0 < ε for
t − t0 small (if t0 = 0, then t ≥ 0). So u(t, x)is continuous in (t, x). Actually, this argument shows
that ∂lxu(t, x) is continuous too.

Likewise, ‖s′N (t)− s′N (t0)‖C0 < ε for t close to t0. So the term-by-term derivatives s′N (t) converge

uniformly to a continuous function v(t, x). Note that
∫ t
0 v(a)da = limN→∞

∫ t
0 s
′
N (a)da = u(s) and

hence by the FTC, u′(t, x) = v(t, x) and moreover, u′(t, x) is continuous in t, x. (Actually it shows
that all the partials in x are also continuous.) Inductively, we can prove that u is smooth on [0,∞)×M
and that we can differentiate term-by-term.

Finally, an easy calculation shows that u satisfies the equation with the boundary conditions. �

3. Uniformisation theorem

A natural question in Riemannian geometry is the Yamabe problem : Given a compact oriented
(M, g0), find a smooth function f : M → R so that (M, g = e−fg0) has constant scalar curvature.
When M is 2-dim, the scalar curvature is upto a factor, the Gaussian curvature K. In such a case,∫
KdA = 2πχ(M) (the Gauss-Bonnet theorem) and hence the constant is fixed by the topology of

the manifold. So in 2-dim, the equation is strongly linked to the topology of the manifold. This
problem is called the Riemannian uniformisation problem.
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