
NOTES FOR 13 FEB (THURSDAY)

1. Recap

(1) Defined the Hodge star and proved some properties.
(2) Defined the codifferential and the formal adjoint of the connection operator.
(3) Defined the Hodge Laplacian and calculated it for the Euclidean space. Defined the Rough

Laplacian for sections of vector bundles.

2. Divergence, Stokes’ theorem, and Laplacians

Suppose we take E = Ωk(M), then potentially, we have two Laplacians, ∆d and ∇∗∇. It turns
out that

∆dη = ∇∗∇η + Curvature(η)(2.1)

where the last term is something that depends linearly on η with coefficients depending on the
Riemann tensor. This sort of an identity relating two different Laplacians is called a Bochner-
Weitzenböck identity. So, taking inner product with η and integrating,

(dη, dη) + (d†η, d†η) = (∇η,∇η) + (η, Curvature(η)) ≥ (η, Curvature(η))(2.2)

So if ∆dη = 0, i.e., η is Harmonic, and the curvature term is positive, we have a contradiction unless
η = 0. This sort of a conclusion turns out to be useful for topology. This method is called the
Bochner technique for proving non-existence of non-trivial Harmonic objects.

3. Statement of the Hodge theorem and applications

To calculate the De Rham cohomology groups Hk(M), it is useful to have “good, canonical”
representatives of each cohomology class. That is, given a class [η] consisting of forms α = η + dγ,
we want to find the “best” possible α ∈ [η]. More precisely, we want to minimise the “energy”

Eg(α) =

∫
M
|α|2gvolg. Suppose α is such a smooth minimiser. Then dE(α+tdγ)

dt |t=0 = 0 ∀ γ.

dE(α+ tdγ)

dt
|t=0 =

∫
M

2〈dγ, α〉 = 2(dγ, α) = 0⇔ (γ, d†α) = 0⇔ d†α = 0(3.1)

This means that dα = 0 = d†α⇒ ∆dα = 0. Conversely, if ∆dα = 0, then taking inner product with
α we see that ‖dα‖2 + ‖d†α‖2 = 0. This means that dα = 0 = d†α. So, ideally, we’d like a statement
to the effect of:

Theorem 3.1 (Hodge’s theorem). Suppose (M, g) is compact and oriented. The space of Har-
monic forms Hk among the space of smooth forms is finite dimensional. Therefore there is an
orthogonal projection H : Smooth k forms → Hk and a unique operator G : Smooth k forms →
Smooth k forms such that Gd = dG, d†G = Gd† and I = H + ∆dG. As a consequence, every
De Rham cohomology class has a unique harmonic representative. Also, the Hodge Laplacian is
diagonalisable, i.e., there is a complete orthonormal basis of eigenvectors.

If we manage to prove this, we have some wonderful conclusions (for compact oriented manifolds):
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(1) A weak form of Poincaré duality : The map Hk(M) × Hm−k(M) → R given by [ω], [η] →∫
M

[ω ∧ η] is non-degenerate. Thus dim(Hk(M)) = dim(Hm−k(M)). Indeed, choose any

metric on M and suppose ω ∈ [ω] is harmonic, i.e., dω = d†ω = 0. Then ∗ω is also
harmonic because d ∗ ω = ± ∗ ∗d ∗ ω = 0 and d† ∗ ω = ± ∗ d ∗2 ω = ± ∗ dω = 0. Now∫
ω ∧ ∗ω = ‖ω‖2 = 0 if and only if ω = 0, i.e., [ω] = [0]. The Poincaré duality theorem

implies that χ(M) = dim(H0(M))−dim(H1(M))+. . . is zero for odd dimensional manifolds.
This χ(M) turns out to be the Euler characteristic, i.e., the alternating sum of the vertices,
edges, etc if you triangulate the manifold.

(2) A weak form of the Kunneth formula : Hk(M ×N) ' ⊕kl=0H
l(M)⊗Hk−l(N) with the map

being ⊕[ωi] ⊗ [ηj ] →
∑

[π∗1ωi ∧ π∗2ηj ]. Choose metrics gM , gN , gM × gN on M,N,M × N
respectively, and suppose we represent all classes with their harmonic representatives. Then
π∗1ωi ∧ π∗2ηj are harmonic with respect to the product metric. Indeed, obviously they are
closed. Now

(d†M×Nπ∗1ωi ∧ π∗2ηj , π∗1α ∧ π∗2β) = (π∗1ωi ∧ π∗2ηj , π∗1dα ∧ π∗2β ± π∗1α ∧ π∗2dβ)

= (π∗1ωi, π
∗
1dα)(π∗2ηi, π

∗
2β) + (π∗1ωi, π

∗
1α)(π∗2ηi, π

∗
2dβ) = 0(3.2)

In fact, one can prove that ∆M×N = ∆M + ∆N . Thus, the map at the level of harmonic
forms is well-defined. It is clear that it is injective. To prove it is surjective requires some
more effort. One has to identify the eigenvectors of the Laplacian and prove it consists of
decomposable forms.

Indeed, first one proves that if ωi, ηj are the orthonormal bases of eigenvectors of ∆M ,∆N

respectively, then π∗1ωi ∧ π∗2ηj form a complete orthonormal basis for L2(M ×N, gM × gN ).
This can be accomplished by proving that if α is any L2 form, then (α, π∗1ωi ∧ π∗2ηj) = 0 for
all i, j, then α ought to be 0. Indeed, this implies that (α, π∗1ω∧π∗2η) = 0 for all ω, η because
ωi, ηj form bases for L2(M, gM ), L2(N, gN ). Now near a point p, α can be written as a finite
sum of such decomposable forms. Using a cut-off function, one can see that α(p) = 0 ∀ p.

Second, note that ∆M×N (π∗1ωi ∧ π∗2ηj) = (λi + µj)π
∗
1ωi ∧ π∗2ηj . So π∗1ωi ∧ π∗2ηj form a

complete basis of eigenvectors for ∆M×N . (A small argument shows that if you have a
complete basis of eigenvectors, then every eigenvector better be one of these (or in the case
of repeated eigenvalues, a linear combination of these).) Since λi + µj ≥ 0, equality holds if
and only if λi = ηj = 0. Therefore, the harmonic forms of ∆M×N are obtained only this way.

For the flat torus, since we already proved that ∆d is a constant coefficient symmetric elliptic operator,
and that elliptic operators are Fredholm, we see that ∆dη = ω can be solved for η if and only if ω is
orthogonal to the space of harmonic forms (which we proved is finite dimensional). Moreover, we can
choose η to be the unique one having the smallest L2-norm. So we have η = G(ω). Thus, every form
ω can be uniquely written as H(ω) + ∆G(ω). Now ∆dd(Gω) = dd†dGω = d∆dGω = dω. This does
not yet show that d(Gω) = G(dω). We need to show that d(Gω) has the smallest L2-norm among
all such solutions, i.e., it is orthogonal to harmonic forms. But indeed, (d(Gω), α) = (Gω, d†α) = 0.
Likewise, G commutes with d†. As for the completeness of the eigenfunctions, one can explicitly
calculate these eigenfunctions as simply being of the form eikx. We know that the Fourier functions
are complete in L2 (Parseval-Plancherel).

Seeing how useful this Hodge theorem is, we want to prove it for general compact oriented (M, g).
There are several approaches to this. One is to prove such a result for general elliptic operators.
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(However, that approach has the disadvantage that it does not say much about eigenvalues. So we
have to deal with that issue.)

4. Sobolev spaces on general manifolds

The theory of Sobolev spaces, Sobolev embedding, etc goes over to general manifolds. We will
focus on that now.

There are many ways of defining Hs(M,E) :

Definition 4.1. Suppose (E, h,∇) is a vector bundle with metric and connection on a compact
oriented (M, g) and s ≥ 0 is an integer. Suppose t is a smooth section of E. Define ‖t‖2Hs =∫
M

(|t|2 + |∇t|2 + . . . + |∇st|2)volg. Define Hs
∇,h,g to be the completion of this space (in the metric

space sense). Concretely, Hs consists of L2 sections t such that there exist smooth sections tn → t
in L2 and tn form a Cauchy sequence in the Hs norm.

The claim is that these spaces are equivalent. Indeed,

Lemma 4.2. The Sobolev norms are equivalent (on smooth sections) for different h,∇, g.

Proof. Suppose we choose h1,∇1, g1, h2,∇2, g2. First of all, it is easy to see that there exists a
positive finite constant C so that 1

Ch1 ≤ h2 ≤ Ch2,
1
C g2 ≤ g1 ≤ Cg2 where the inequalities are in

the sense of positive-definite matrices. Now ∇1 = ∇2 + B where B is an endomorphism of E. Let
|B|1, |B|2 ≤ C. Now 1

C2 |∇1t|h2⊗g2 ≤ |∇1t|2h1⊗g1 ≤ C2|∇1t|2h2⊗g2 . Now |∇1t|h2⊗g2 ≤ |∇2t|2 + C|t|2.
Moreover, |∇2t|2 ≤ |∇1t|2 + C|t|2. Hence, 1

K (|t|22 + |∇2t|22) ≤ |t|22 + |∇1t|22 ≤ K(|t|22 + |∇2t|22). By
induction, we can show this for all derivatives. �

Remark 4.3. Note that the above proof works even for open subsets U of a compact manifold M .


	1. Recap
	2. Divergence, Stokes' theorem, and Laplacians
	3. Statement of the Hodge theorem and applications
	4. Sobolev spaces on general manifolds

