
NOTES FOR 16 JAN (THURSDAY)

1. Recap

(1) Proved Sobolev embedding and compactness
(2) Defined elliptic operators and constructed a parametrix.

2. Constant-coefficient elliptic operators on the torus

Proof. (1) Note that |~̂uapp(~k)| ≤ C ‖
~̂f(~k)‖
‖~k‖l

if |~k| ≥ N where N is sufficiently (depending on the

ellipticity constants and the coefficients of the lower order terms) large. Indeed, the magnitude

of the lower order terms is less than C(‖~k‖l−1 + ‖~k‖l−2 + . . . ≤ C‖~k‖l−1) if ‖~k‖ > 1. Now

‖[σ~k + lower][~v]‖ ≥ (δ1‖~k‖l −C‖~k‖l−1)‖~v‖. Of course if |~k| ≥ N is large, then ‖L̂[~v]‖ ≥ c‖~v‖
where c > 0. Hence ‖L̂−1[~v]‖ ≤ C‖~k‖−l‖~v‖ for large N .

The above easily implies that ~uapp ∈ Hs+l. Moreover, ‖~uapp‖Hs+l ≤ C‖f‖Hs .
(2) The last inequality implies this result.

(3) K(f) = L ◦ G(f) − f = L(uapp) − f = −
∑
|k|<N

~̂f(~k)ei
~k.~x. Now K(f) is smooth and is

hence in Ha ∀ a. By the Rellich compactness lemma, K(f) : Hs → Hs is compact. Now

G(L(u))−u = −
∑
|k|<N

û(k)ei
~k.~x. As before this is a smooth function and hence by the Rellich

lemma, G ◦ L− I is compact.

(4) Taking Fourier series on both sides, L̂~̂u(~k) = ~̂f(~k). Of course, for large |k|, u coincides with
uapp. For small |k| < N , (1 + |k|)s+l ≤ (1 +N)s+l ≤ C where C depends only on N, s, l and
hence only on the ellipticity constants, s, l, and the bounds on the lower order coefficients.
This proves the result.

�

Now we define a useful notion in functional analysis.

Definition 2.1. Suppose H1, H2 are Hilbert spaces. A bounded linear operator T : H1 → H2 is
called Fredholm if ker(T ), Coker(T ) are finite-dimensional.

We prove the following useful theorem about Fredholm operators. In these results, we use the easy
fact that if T is a bounded linear operator and K is compact, then T ◦K and K ◦ T are compact.
We also use a slightly more difficult fact that if K is compact, then K∗ is so as well.

Theorem 2.2. (1) If Im(T ) is closed, then Coker(T ) is naturally a Banach space isomorphic
to Im(T )⊥. Therefore, Coker(T ) is a Hilbert space.

(2) If the range of T is closed, then Coker(T )∗ ' Ker(T ∗) where T ∗ : H∗2 → H∗1 .
(3) If ker(T ), Coker(T ) are finite dimensional, then the range is closed.
(4) T is Fredholm if and only if T ∗ is so.
(5) T is Fredholm if and only if there exist bounded linear maps G1, G2 : H2 → H1, such that

G1 ◦ T − I, T ◦G2 − I are compact operators.
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(6) The set of Fredholm operators S ⊂ B(H1, H2) is open.
(7) Suppose I ⊂ R is a connected set. If F (t) : I ⊂ R → S is a continuous map, then the index

Ind(F (t)) = dim(Ker(F (t)))− dim(Coker(F (t))) is a constant.
(8) If K : H1 → H2 is a compact operator and T is Fredholm, then T +K is Fredholm with the

same index.

Proof. (1) Define ‖[y]‖ = infy∈[y] ‖y‖. By Riesz’s lemma, the infimum is attained as a minimum

y0 ∈ Im(T )⊥. The map [y]→ y0 is linear and an isomorphism. We are done.
(2) Take ρ ∈ ker(T ∗) ⊂ H∗2 to λ ∈ Coker(T )∗ where λ([y]) = ρ(y). This map V : ker(T )∗ →

Coker(T )∗ is well-defined because ρ(Tx) = T ∗(ρ)(x) = 0 by definition. It is clearly a linear
map (and bounded). If the range is closed, then Coker(T ) is a Hilbert space isomorphic to
Im(T )⊥. Consider the map U : Coker(T )∗ → H∗2 given by U(λ)(v) = λ([v]). This map is
clearly linear and bounded. It can be easily seen to invert V .

(3) Mistake in the proof. (To be corrected next time.)
(4) If T is Fredholm, then T : ker(T ) ⊕ ker(T )⊥ → Coker(T ) ⊕ Im(T ) is bounded linear

and defines an injective map T1 : ker(T )⊥ → H2. Define G(a ⊕ b) = T−11 (b). Clearly,
G ◦ T − I is a projection onto a finite dimensional subspace and hence compact. Now
T ◦ G(a ⊕ b) − a ⊕ b = T (T−11 (b)) − a ⊕ b = −a ⊕ 0 which is another projection and hence
compact.
Conversely, if there exists such G1, G2, then G1T = I+K. Therefore Ker(T ) ⊂ Ker(G1T ) =
Ker(I + K) which we claim is finite-dimensional. Indeed, if vi is a bounded sequence in
Ker(I +K), then Kvi = −vi has a convergent subsequence. But the unit ball is compact in
a Banach space if and only if the space is finite-dimensional (Riesz’s lemma). Thus ker(T )
is finite dimensional. Likewise, Coker(T ) is finite dimensional : Mistake in the proof. Will
correct the next time.
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