NOTES FOR 16 JAN (THURSDAY)

1. Recap

- (1) Proved Sobolev embedding and compactness
- (2) Defined elliptic operators and constructed a parametrix.

2. Constant-coefficient elliptic operators on the torus

Proof. (1) Note that $|\widehat{u_{app}}(\vec{k})| \leq C \frac{\|\widehat{\vec{f}}(\vec{k})\|}{\|\vec{k}\|^l}$ if $|\vec{k}| \geq N$ where N is sufficiently (depending on the ellipticity constants and the coefficients of the lower order terms) large. Indeed, the magnitude of the lower order terms is less than $C(\|\vec{k}\|^{l-1} + \|\vec{k}\|^{l-2} + \ldots \leq C\|\vec{k}\|^{l-1})$ if $\|\vec{k}\| > 1$. Now $\|[\sigma_{\vec{k}} + lower][\vec{v}]\| \geq (\delta_1 \|\vec{k}\|^l - C\|\vec{k}\|^{l-1})\|\vec{v}\|$. Of course if $|\vec{k}| \geq N$ is large, then $\|\hat{L}[\vec{v}]\| \geq c\|\vec{v}\|$ where c > 0. Hence $\|\hat{L}^{-1}[\vec{v}]\| \leq C\|\vec{k}\|^{-l}\|\vec{v}\|$ for large N.

The above easily implies that $\vec{u}_{app} \in H^{s+l}$. Moreover, $\|\vec{u}_{app}\|_{H^{s+l}} \leq C \|f\|_{H^s}$.

- (2) The last inequality implies this result.
- (3) $K(f) = L \circ G(f) f = L(u_{app}) f = -\sum_{|k| < N} \hat{\vec{f}}(\vec{k}) e^{i\vec{k}\cdot\vec{x}}$. Now K(f) is smooth and is

hence in $H^a \forall a$. By the Rellich compactness lemma, $K(f) : H^s \to H^s$ is compact. Now $G(L(u)) - u = -\sum_{|k| < N} \hat{u}(k) e^{i\vec{k}\cdot\vec{x}}$. As before this is a smooth function and hence by the Rellich

lemma, $G \circ L - I$ is compact.

(4) Taking Fourier series on both sides, $\hat{L}\hat{\vec{u}}(\vec{k}) = \hat{\vec{f}}(\vec{k})$. Of course, for large |k|, u coincides with u_{app} . For small |k| < N, $(1 + |k|)^{s+l} \le (1 + N)^{s+l} \le C$ where C depends only on N, s, l and hence only on the ellipticity constants, s, l, and the bounds on the lower order coefficients. This proves the result.

Now we define a useful notion in functional analysis.

Definition 2.1. Suppose H_1, H_2 are Hilbert spaces. A bounded linear operator $T : H_1 \to H_2$ is called Fredholm if ker(T), Coker(T) are finite-dimensional.

We prove the following useful theorem about Fredholm operators. In these results, we use the easy fact that if T is a bounded linear operator and K is compact, then $T \circ K$ and $K \circ T$ are compact. We also use a slightly more difficult fact that if K is compact, then K^* is so as well.

Theorem 2.2. (1) If Im(T) is closed, then Coker(T) is naturally a Banach space isomorphic to $Im(T)^{\perp}$. Therefore, Coker(T) is a Hilbert space.

- (2) If the range of T is closed, then $Coker(T)^* \simeq Ker(T^*)$ where $T^*: H_2^* \to H_1^*$.
- (3) If ker(T), Coker(T) are finite dimensional, then the range is closed.
- (4) T is Fredholm if and only if T^* is so.
- (5) T is Fredholm if and only if there exist bounded linear maps $G_1, G_2 : H_2 \to H_1$, such that $G_1 \circ T I, T \circ G_2 I$ are compact operators.

NOTES FOR 16 JAN (THURSDAY)

- (6) The set of Fredholm operators $S \subset B(H_1, H_2)$ is open.
- (7) Suppose $I \subset \mathbb{R}$ is a connected set. If $F(t) : I \subset \mathbb{R} \to S$ is a continuous map, then the index Ind(F(t)) = dim(Ker(F(t))) dim(Coker(F(t))) is a constant.
- (8) If $K : H_1 \to H_2$ is a compact operator and T is Fredholm, then T + K is Fredholm with the same index.
- *Proof.* (1) Define $||[y]|| = \inf_{y \in [y]} ||y||$. By Riesz's lemma, the infimum is attained as a minimum $y_0 \in Im(T)^{\perp}$. The map $[y] \to y_0$ is linear and an isomorphism. We are done.
 - (2) Take $\rho \in ker(T^*) \subset H_2^*$ to $\lambda \in Coker(T)^*$ where $\lambda([y]) = \rho(y)$. This map $V : ker(T)^* \to Coker(T)^*$ is well-defined because $\rho(Tx) = T^*(\rho)(x) = 0$ by definition. It is clearly a linear map (and bounded). If the range is closed, then Coker(T) is a Hilbert space isomorphic to $Im(T)^{\perp}$. Consider the map $U : Coker(T)^* \to H_2^*$ given by $U(\lambda)(v) = \lambda([v])$. This map is clearly linear and bounded. It can be easily seen to invert V.
 - (3) Mistake in the proof. (To be corrected next time.)
 - (4) If T is Fredholm, then $T : ker(T) \oplus ker(T)^{\perp} \to Coker(T) \oplus Im(T)$ is bounded linear and defines an injective map $T_1 : ker(T)^{\perp} \to H_2$. Define $G(a \oplus b) = T_1^{-1}(b)$. Clearly, $G \circ T - I$ is a projection onto a finite dimensional subspace and hence compact. Now $T \circ G(a \oplus b) - a \oplus b = T(T_1^{-1}(b)) - a \oplus b = -a \oplus 0$ which is another projection and hence compact.

Conversely, if there exists such G_1, G_2 , then $G_1T = I + K$. Therefore $Ker(T) \subset Ker(G_1T) = Ker(I + K)$ which we claim is finite-dimensional. Indeed, if v_i is a bounded sequence in Ker(I + K), then $Kv_i = -v_i$ has a convergent subsequence. But the unit ball is compact in a Banach space if and only if the space is finite-dimensional (Riesz's lemma). Thus ker(T) is finite dimensional. Likewise, Coker(T) is finite dimensional : Mistake in the proof. Will correct the next time.

 $\mathbf{2}$