
NOTES FOR 21 JAN (TUESDAY)

1. Recap

(1) Proved properties of the parametrix and defined Fredholm operators.
(2) Proved a couple of properties of Fredholm operators.

2. Constant-coefficient elliptic operators on the torus

Theorem 2.1. (1) If the range of T is closed, then Coker(T )∗ ' Ker(T ∗) where T ∗ : H∗2 → H∗1 .
(2) If Coker(T ) is finite dimensional, then the range is closed.
(3) T is Fredholm if and only if T ∗ is so.
(4) T is Fredholm if and only if there exist bounded linear maps G1, G2 : H2 → H1, such that

G1 ◦ T − I, T ◦G2 − I are compact operators.
(5) The set of Fredholm operators S ⊂ B(H1, H2) is open.
(6) Suppose I ⊂ R is a connected set. If F (t) : I ⊂ R → S is a continuous map, then the index

Ind(F (t)) = dim(Ker(F (t)))− dim(Coker(F (t))) is a constant.
(7) If K : H1 → H2 is a compact operator and T is Fredholm, then T +K is Fredholm with the

same index.

Proof. (1) Done.
(2) (There was an error in the earlier proof) Let X = Ker(T )⊥ and let v1, . . . , vn ∈ H2 be

such that [v]i form a basis for Coker(T ). Denote by C the span of vi in H2. Note that
C ∩ Im(T ) = {0}. Define a map S : X ⊕C → H2 as S(x, c) = T (x) + c. This map is clearly
1− 1. It is onto because [y] =

∑
i ci[vi] and hence y =

∑
i civi + T (x). Thus, S is a bounded

linear isomorphism. Therefore, by the open mapping theorem, it is a homeomorphism. Hence,
S(x, 0) = Im(T ) is closed.

(3) If T is Fredholm, then T : ker(T ) ⊕ ker(T )⊥ → Coker(T ) ⊕ Im(T ) is bounded linear
and defines an injective map T1 : ker(T )⊥ → H2. Define G(a ⊕ b) = T−11 (b). Clearly,
G ◦ T − I is a projection onto a finite dimensional subspace and hence compact. Now
T ◦ G(a ⊕ b) − a ⊕ b = T (T−11 (b)) − a ⊕ b = −a ⊕ 0 which is another projection and hence
compact.
Conversely, if there exists such G1, G2, then G1T = I+K. Therefore Ker(T ) ⊂ Ker(G1T ) =
Ker(I + K) which we claim is finite-dimensional. Indeed, if vi is a bounded sequence in
Ker(I + K), then Kvi = −vi has a convergent subsequence. But the unit ball is compact
in a Banach space if and only if the space is finite-dimensional (Riesz’s lemma). Thus
ker(T ) is finite dimensional. On the other hand, we know that for compact operators,

I+K̃ = TG2 has closed range. Therefore, Coker(TG2)
∗ ' ker(G∗2T ∗) = Ker(I+K̃∗). Hence,

dim(Coker(TG2)) is finite. Now, take the map [v]→ [v] from Coker(TG2) to Coker(T ). Its
is clearly well-defined, linear, and onto. Thus, dim(Coker(T )) <∞.

(4) If F is Fredholm, there exists a G so that FG = I + K1 and GF = I + K2. Now if F
were invertible, then (F + p)−1 = F−1(1 + F−1p)−1 = F−1

∑
(−1)i(F−1p)i which makes

sense if ‖p‖ is small. Now, define Gp = G(1 + Gp)−1 for small p. Now (F + p)Gp =
FG(I + Gp)−1 + pG(I + Gp)−1 = (I + Gp)−1 + K1(I + Gp)−1 + pG(I + Gp)−1 = Hp + K
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where H = (I +Gp)−1 + pG(I +Gp)−1. Clearly when p is small, then Hp is invertible.

Thus (F + p)Gp = (I +KH−1p )Hp. Now define G̃p = GpH
−1
p . So (F + p)G̃p = I + compact.

Likewise we can find another G̃′
p which is an approximate left inverse for small p. Thus F +p

is Fredholm for all small p if F is so.
(5) If we prove that Ind(F +p) = Ind(F ) for all small p, we will be done because I is connected.

First we prove that for small p, there is a linear transformation Ap : Ker(T )→ Coker(T ) so
that Ker(T + p) = Ker(Ap) and Coker(T + p) = Coker(Ap). For operators between finite-
dimensional spaces, the index equals the difference in dimensions and is hence a constant.

Indeed, writing T : Ker(T )⊥ ⊕Ker(T )→ Im(T )⊕Coker(T ) as T =

[
T

′
0

0 0

]
where T

′
is

an isomorphism. Write p =

[
a b
c d

]
. Take Ap = −c(T ′

+ a)−1b+ d. It can be verified that

Ap does the job.
(6) If G1T = I +K1 and TG2 = I +K2, then G1(T +K) = I +K1 +G1K = I + compact and

likewise. Thus T +K is Fredholm. Now T + sK has locally constant index where s ∈ [0, 1].
Hence Ind(T +K) = Ind(T ).

�

We define the formal adjoint L∗form of L as follows.

Definition 2.2. If Lu =
∑
α,p

[A]p,αD
αu, then define the formal adjoint L∗formv =

∑
α,p

[A∗]p,α(−1)|α|Dαv.

It satisfies 〈Lu, v〉L2(S1×S1...) = 〈u, L∗formv〉L2(S1×S1... whenever u, v are smooth functions.

We have the following easy lemma.

Lemma 2.3. If L is elliptic, then so is L∗form.

Using the above theorems and some more work we conclude the following.

Theorem 2.4. If L is elliptic, then

(1) Im(L) ⊂ Hs is closed, and ker(L) ⊂ Hs+l and coker(L) = Hs

Im(L) are finite-dimensional

subspaces. (Fredholm’s alternative.)
(2) Ker(L) consists of smooth functions.
(3) Suppose L : H l → L2. Then Coker(L)∗ ' Ker(L∗ : L2 → (H l)∗) consists of smooth

functions and Coker(L) ' Ker(L∗form).

(4) If f is in Hs and u ∈ L2 is a distributional solution of Lu = f , then u is in Hs+l. (Elliptic
regularity.)

Proof. (1) By the above theorems, since there is a parametrix for elliptic operators, L : Hs+l →
Hs is Fredholm. Hence its kernel and cokernel are finite dimensional and its range is closed.

(2) This follows from the last result in this lemma.
(3) If u ∈ (L2)∗ ∩ ker(L∗), then L∗u(v) = u(Lv) = 〈u, Lv〉L2 = 0 for all v ∈ H l. Thus, choosing

v to be a smooth function, we see that u is a distributional solution to L∗formu = 0. Since the
formal adjoint is also elliptic, by the previous part, its kernel consists of smooth functions.
Thus, Coker(L) ' Ker(L∗) ⊂ Ker(L∗form). If u ∈ Ker(L∗form), then L∗u(v) = 〈u, Lv〉 =

〈L∗formu, v〉 = 0 for all smooth v. By approximation of H l functions using smooth functions,

we see that it holds for all v ∈ H l and hence u ∈ Ker(L∗). Thus we are done.



NOTES FOR 21 JAN (TUESDAY) 3

(4) Suppose φ : S1 × S1 . . . is any smooth function. Since u ∈ L2 is supposedly a distributional
solution (by the way u need not be in L2 for this to be true, it need be only a distribution),

〈L∗formφ, u〉L2 = 〈φ, f〉L2 . This means that (by the Parseval-Plancherel theorem),
∑
~k

φ̂T L̂û =

φ̂T
¯̂
f for all φ. Now choose φ to have Fourier series such that φ̂(k) = 1 if and only if ~k = ~a

and 0 otherwise. Then L̂(~a)û(~a) = f̂(~a) ∀ ~a. This observation implies that û = ûapp for all

|k| ≥ N . Hence, by the previous results, u ∈ Hs+l.
�

Remark 2.5. The above implies that elliptic operators with constant coefficients on the torus are
Fredholm operators between Sobolev spaces. So their index is constant under small (arbitrary)
perturbations and under compact perturbations. This index turns out to be given by an integral
over the torus of some differential form (whose De Rham cohomology class depends only on the
principal symbol of L). This is a special case of the Atiyah-Singer index theorem which deals with
general elliptic operators on general manifolds.
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