
NOTES FOR 23 JAN (THURSDAY)

1. Recap

(1) Proved a functional analytic theorem about Fredholm operators.
(2) Proved that elliptic operators are Fredholm and that they satisfy elliptic regularity.

2. Riemannian manifolds and metrics on vector bundles

In order to define ∆u = f on a manifold, unfortunately, we cannot do this locally by choosing

coordinates and saying
∑

i
∂2

∂(xi)2
u = f because if we change coordinates, then the PDE will not be

the same. So how can hope to even set up the Poisson PDE on a manifold ?
Another way of looking at the Laplacian is ∆ = ∇.∇. So if we can define a dot product on every

tangent space, and define the ∇ operation, then we can define the Laplacian. Why would we care
about defining the Laplacian ? Among other things, it gives insight into the De Rham cohomology
of the manifold.

Recall that a smooth vector bundle V over a smooth manifold M is a ”smoothly varying collection
of vector spaces parametrised by M”, i.e., locally, V ' U ×Rr (where instead of R, we can also have
C - such a beast is a complex vector bundle) via a trivialisation, i.e., a collection of smooth sections
e1, . . . , er : U ⊂ M → V such that e1(p), . . . , er(p) form a basis for Vp at all p ∈ U . Equivalently,
a vector bundle is simply a collection (Uα, gαβ : Uα ∩ Uβ → GL(r)) satisfying gαα = Id, gαβ =

g−1
βα , gαβgβγgγα = Id. Fundamental examples of vector bundles are the tangent bundle TM , the

cotangent bundle T ∗M , and the bundles of differential forms Ωk(M). These bundles can be defined
using transition functions. A smooth section s : M → V is a smooth function satisfying π ◦ s = Id.

A metric g on a vector bundle V over M is a smooth section of V ∗ ⊗ V ∗ such that on each fibre
it is symmetric and positive-definite. In other words, suppose ei is a trivialisation of V over U and
ei∗ the dual trivialisation of V ∗ over U , then1 g(p) = gij(p)e

i∗ ⊗ ej∗ where gij : U ⊂ M → GL(r,R)
is a smooth matrix-valued function to symmetric positive-definite matrices. So a metric is simply a
smoothly varying collection of dot products, one for each fibre. Using a partition-of-unity one can
prove the following result.

Theorem 2.1. Every rank-r real vector bundle V over a manifold M admits a smooth metric g.

In the special case when V = TM , the metric is called a Riemannian metric on M . If (x, U) is
a coordinate chart, then g(x) = gij(x)dxi ⊗ dxj . By symmetry, gij = gji. Moreover, g is a positive

definite matrix. If one changes coordinates to yµ then gµν = gij
∂xi

∂yµ
∂xj

∂yν . Given a metric g on TM ,

we get one on T ∗M given by g∗ = gij ∂
∂xi
⊗ ∂

∂xj
. Note that gikg

kj = δji .

If M is oriented, supposing (x, U) is an oriented coordinate chart, then vol =
√

det(gij)dx
1 ∧

dx2 . . . dxm is a well-defined top form. Indeed, if we changes coordinates, it transforms correctly as
seen in the linear algebra above. This form is called the “volume” form of the metric.

Here are examples :

1We will be using the Einstein summation convention. Repeated indices are understood to be summed over.
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(1) Euclidean space Rn, gEuc =
∑
dxi ⊗ dxi. This is the usual metric. The length of a tangent

vector v is
∑

(vi)2.
(2) If we take the same Euclidean space R2 and use polar coordinates, x = r cos(θ), y = r sin(θ),

then dx = dr cos(θ)−r sin(θ)dθ, dy = dr sin(θ)+r cos(θ)dθ. Thus, gEuc = dr⊗dr+r2dθ⊗dθ.
(3) The circle S1 : g = dθ ⊗ dθ.
(4) If M, gM , N, gN are two Riemannian manifolds, then M×N, gM×gN given by gM×gN (vM⊕

vN , wM ⊕ wN ) = gM (vM , wM ) + gN (vN , wN ). This gives a metric on the n-torus using the
circle metric.

(5) The Hyperbolic metric Hm, gHyp : gHyp =
∑
dxi⊗dxi
(xm)2

.
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