
NOTES FOR 25 FEB (TUESDAY)

1. Recap

(1) Stated the Hodge theorem and did two applications - Poincaré duality and the Kunneth
formula.

(2) Defined Sobolev spaces of sections of a vector bundle on compact manifolds and proved
equivalence under change of metrics and connections.

2. Sobolev spaces on general manifolds

To make another definition, we need a lemma :

Lemma 2.1. If ~s : U ⊂ Rm → Rr is in L1
loc and weakly differentiable with weak derivatives ∂i~s = ~ti,

then for any smooth functions g : U → GL(r,R), diffeomorphisms y(x) : U → U , the function ~̃s = g~s

is weakly differentiable with weak derivative ∂~̃s
∂yi

= ∂g(x(y))
∂yi

g−1~̃s + g~tj
∂xj

∂yj
. (Note that this coincides

with what we expect if ~s is smooth.)

Proof. Indeed, if ~φ is a smooth function with compact support in U , then∫
U

(
〈∂g(x(y))

∂yi
g−1~̃s+ g~tj

∂xj

∂yj
, φ〉dy =

∫
U
〈∂g(x(y))

∂yi
g−1~̃s, φ〉+

∂xj

∂yj
〈~tj , gTφ〉

)
dy

=

∫
U
〈~̃s, (∂g(x(y))

∂yi
g−1)Tφ〉dy −

∫
U
〈~̃s, (g−1)T

∂

∂xj

(√
det
(∂~y
∂~x

)∂xj
∂yj

gTφ

)
〉

√
det
(∂~x
∂~y

)
dy

= −
∫
U
〈~̃s, ∂φ

∂yi
〉dy −

∫
U
〈~̃s, ∂

∂xj

(√
det
(∂~y
∂~x

)∂xj
∂yj

)
φ〉

√
det
(∂~x
∂~y

)
dy = −

∫
U
〈~̃s, ∂φ

∂yi
〉dy(2.1)

�

This shows that the notion of weak differentiability of an L1
loc section of a vector bundle is well-

defined in terms of coordinates and trivialisations.

Lemma 2.2. Suppose (E,∇, h) is a bundle with a metric and a compatible connection on (M, g)
where M is any orientable manifold (not necessarily compact). Let s ∈ L1

loc(M) be a weakly differ-
entiable section. Then the weak derivative ∇s is well-defined as an L1

loc section of T ∗M ⊗ E and

satisfies (∇s, φ)L2 = (s,∇†φ)L2 where φ is any compactly supported smooth section on M and ∇†
is given by the same formula as before. Conversely, if this property is satisfied, then s is weakly
differentiable (in the sense defined before).

Proof. Define ∇s locally as ∂ ~sα
∂xi

dxi + Aα~sα where the derivatives are weak derivatives. From the
previous lemma it is easily seen that it transforms like a section of T ∗M ⊗ E.

Suppose we cover M by a locally-finite cover Uα of charts which are also trivialising neighbour-
hoods, and we let ρβ be a partition-of-unity subordinate to it (Note that ρβ has compact support
in some Uβ but the indexing set need not be the same.) Then (∇s, φ) =

∑
β(∇s, ρβφ) (the sum

is finite because φ has compact support). Now (∇s, φ) = −
∑

β(s, d†(ρβφ)) +
∑

β(s,A†ρβφ) =
1
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−
∑

β(s,∇†(ρβφ)) = −
∑

β(s,∇†φ) (where we used the property that ∇† is a first order differential

operator and d(
∑
ρβ) = 0).

The converse part follows by taking φ to be supported in a coordinate trivialising open set. �

Now we define the Sobolev space in another way.

Definition 2.3. Suppose (E,∇, h) is a bundle with a metric and a compatible connection on a

compact oriented (M, g). Let s ≥ 0 be an integer. Then the space H̃s
∇,h,g consists of s times weakly

differentiable sections ∈ L2 with inner product (a, b) =

∫
〈a, b〉volg + 〈∇a,∇b〉volg + . . . where the

derivatives are weak derivatives.

Lemma 2.4. H̃s
∇,h,g is a Hilbert space and smooth sections are dense in it. Hence it coincides with

Hs
∇,h,g.

Proof. Hilbert space : If fn is a Cauchy sequence, then ρfn is also a Cauchy sequence for any smooth
function ρ. Assume that ρ is compactly supported in a coordinate trivialising neighbourhood U . Thus
ρfn can be extended smoothly to S1 × S1 . . . (by simply taking a large cube in Rm containing its
support and periodically extending it). Moreover, it is also clear that ρfn is Cauchy inHs(S1×S1 . . .).
Hence, ρfn → u for some u ∈ Hs(S1 × S1 . . .). This function u has support in the previously chosen
large rectangle and hence can be extended to all of M . Moreover, since the Sobolev norms are
equivalent, this convergence happens in Hs

∇,h,g. fn =
∑
ραfn →

∑
uα in Hs where ρα is a partition-

of-unity.
Smooth functions are dense : Suppose ρα ≥ 0 is such that

∑
ρ2
α = 1 and these are subordinate

to a finite trivialising coordinate cover Uα. Suppose f ∈ Hs
∇,h,g. Then there are sequences of

smooth functions fn,α → ραf in Hs(S1 × S1 . . .). Now ραfn,α is well-defined on M . Moreover,
‖
∑
ραfn,α − ραραf‖Hs

∇,h,g
≤ C

∑
α ‖
∑
fn,α − ραραf‖Hs(S1×S1...) → 0. �

There is yet another way to define the Sobolev space.

Definition 2.5. Choose a finite cover of trivialising coordinate neighbourhoods (Uα, x
i
α, ej,α) and

a partition-of-unity subordinate to it. The space H ‘s is the space of all L1
loc sections a such that

‖a‖2 = ‖ρα~aα‖Hs(S1×S1...) <∞. The inner product between a and b is
∑
α

(ρal~aα, ρα~bα)Hs

Lemma 2.6. (Exercise) The space H ‘s is well-defined independent of choices. It is a Hilbert space
and smooth sections are dense in it. On smooth functions the H ‘s norm is equivalent to the Hs

∇,h,g
norm with respect to any connection and hence it is homeomorphically isomorphic to Hs

∇,h,g.

3. Sobolev embedding and compactness

Define Ck,α(M,E) as the space of Ck sections of E such that in local coordinates (and frames)

they are Ck,α. The norm on this space is ‖u‖Ck,α =
∑
µ

‖~uµ‖Ck,α(Ūµ). This is independent of choices

made and is a Banach space. This will be given as a HW problem.
Actually, this is equivalent to the norm

∑
‖ρµ~uµ‖Ck,α(Ūµ) :

Proof. Indeed, firstly, supx |f(x)g(x)|+supx,y
|f(x)g(x)−f(y)g(y)|

|x−y|α ≤ ‖f‖C0,α‖g‖C0,α . Hence
∑
‖ρµ~uµ‖Ck,α(Ūµ) ≤

C‖u‖Ck,α .
Next, if one changes coordinates and trivialisations, the resulting Ck,α norms are equivalent (a part

of the the HW problem). Therefore, ‖~uµ‖Ck,α(Ūµ) ≤
∑

ν 6=µ ‖ρν~uµ‖+ ‖ρµ~uµ‖. Now ‖ρν~uµ‖Ck,α(Ūµ) =
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‖gνµρν~uν‖Ck,α(Ū)µ ≤ C‖ρν~uν‖Ck,α(Ūν) where the last norm is in the ν coordinates. Hence we are
done. �

Firstly, we have the following compactness result :

Lemma 3.1. Suppose k ≤ l. If k < l or 0 ≤ β < α < 1, then C l,α ⊂ Ck,β is a compact embedding.

Proof. The embedding part is trivial. We shall prove that C0,α ⊂ C0 is compact (the general case
is similar). Let ρα be a partition of unity. If ‖fn‖C0,α ≤ C, then ‖ρµfn‖C0,α(Ūµ) ≤ C. By the

usual Arzela-Ascoli argument, there is a subsequence (which we shall denote by fn still) such that
ρµfn → fµ on C0,α(Ūµ) for some function fµ : Uα → Rr. (For each µ there is a potentially different
subsequence. We choose one for the first µ, then choose a further subsequence for the second µ and so
on. There are only finitely many µ.) Clearly fµ has compact support in Uµ and hence can be extended
to a C0,α section of E on M . Now ‖

∑
µ fµ − fn‖C0,α(M) ≤ C

∑
µ ‖fµ − ρµfn‖C0,α(Ūµ) → 0. �

Now we prove Sobolev embedding plus compactness.

Theorem 3.2. The following inclusions are compact. (Sometimes, this along with the above theorem
are referred to as the Sobolev embedding theorems.)

(1) Hs(E) ⊂ H l(E) if l < s. (Rellich lemma.)
(2) Hs(E) ⊂ Ca(M,E) if s ≥ [n2 ] + a+ 1. (Rellich-Kondrachov compactness.)

Proof. (1) The inclusion part is clear. If fn is a bounded sequence in Hs(E), then ραfn ∈
Hs(S1 × S1 . . .) is a bounded sequence and by the usual Rellich lemma, it has a convergent
subsequence (which abusing notation as usual we still denote by the subscript n) ραfn → fα
in Hs(S1×S1 . . .). Passing to a further subsequence (that converges a.e.) we see that fα has
support in Uα and hence can be thought of as being a global section on M . By equivalence
of norms, ραfn → fα in Hs(M,E). Thus

∑
ραfn = fn →

∑
fα.

(2) If f ∈ Hs(E) then ραf ∈ Hs(S1 × S1 . . .). Thus ραf ∈ Ca(S1 × S1 . . .) by the usual
Sobolev embedding on the torus. Hence, ραf ∈ Ca(M,E) by equivalence of norms. Thus∑

α ραf = f ∈ Ca(M,E). Likewise, if fn ∈ Hs(E) is bounded, then a subsequence ραfn → fα
in Ca(S1×S1 . . .). Since fα is supported on Uα, as before fn =

∑
ραfn →

∑
fα in Ca(M,E).

�

4. Elliptic operators - Regularity

Now we define the notion of a uniformly elliptic operator : Suppose (E, hE ,∇E), (F, hF ) are smooth
bundles with metrics and a metric compatible connection for E on a compact oriented (M, g) where
TM is equipped with the Levi-Civita connection. Whenever we use ∇ in what follows, it is made
out of ∇E ,∇g (Fix hE , hF ,∇E , and g in whatever follows.) First we prove a “structure theorem”
for linear PDOs.

Lemma 4.1. To every linear PDO L of order o with smooth coefficients, there exist smooth maps

ak : T ∗M ⊗T ∗M ⊗ . . . T ∗M ⊗E → F (where T ∗M is repeated k times) such that L(u) =

o∑
k=0

ak∇ku.

Proof. We prove this by induction on o. For o = 0, by tensoriality, there is such an endomor-
phism. Assume the result for 0, 1, . . . , o − 1. Then locally, in a trivialising coordinate chart,
L(u)α =

∑o
k=0 a

I
k,α∂I~uα. If we change the trivialising coordinate chart, then ~uβ = gβα~uα, and ∂

∂yi
=

∂xj

∂yi
∂
∂xj

(and the tensor product version of this). The highest order term changes as aI0,α∂x,I~uα →
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aIo,αgβα
∂yJ

∂xI
∂y,J~uβ, i.e., ao is a global section of End(T ∗M ⊗ T ∗M . . . E, F ). Hence L(u) − ao∇ou is

a linear PDO of order o− 1 and hence by induction we are done. �

The formal adjoint L∗form of L is defined as being a linear PDO of the same order given by∑o
k=0(∇k)† ◦ a†k. It satisfies (and is equivalent to) (L∗formu, v) = (u, Lv) for smooth u, v.

Definition 4.2. The principal symbol of L is the Endomorphism σ(L) : T ∗M ⊗ . . . E → F given
by σ(L) = ao. A linear PDO L with smooth coefficients is called uniformly elliptic with ellipticity
constants δ1, δ2 > 0 if δ1|v|2hE(p) ≤ |σp(L)(ζ, ζ, . . . , ζ)v|2hF (p) ≤ δ2|v|2hE(p) ∀ p ∈ M, ζ 6= 0 ∈ T ∗pM and

the principal symbol is invertibel. (Please note that δ1, δ2 depend on the fixed hF , hE obviously.) In
particular, the ranks of E and F are required to be the same.

It is clear that L is uniformly elliptic (from now on, called “elliptic”) if and only if L∗form is so.

The ellipticity constants may be chosen to be equal. (Again, the ranks of E and F being the same
is important for this.)

Definition 4.3. Suppose f is an L2 section of F . An L2 section u is said to be a distributional
solution of Lu = f if for every smooth section φ of F , (u, L∗formφ) = (f, φ). (Please note that we
have not defined distributions in general. However, the notion of a distributional solution does not
need distributions.)

Next we prove that distributional solutions of elliptic equations are smooth.

Theorem 4.4. If L is uniformly elliptic and f a smooth section of F . Then if u ∈ L2 satisfies
Lu = f in the sense of distributions then u is smooth. Moreover, if f ∈ Hs, then u ∈ Hs+l and
‖u‖Hs+o ≤ Cs(‖f‖Hs +‖u‖L2) where Cs depends only on hE , hF , g,∇E, an upper bound on ‖ak‖Cs+o,
and on the ellipticity constants.

We claim that this theorem follows from

Theorem 4.5. If L is uniformly elliptic, u is a smooth section of E, then ‖u‖Hs+o ≤ Cs(‖Lu‖Hs +
‖u‖L2).

Indeed, assume this theorem. Then we shall prove theorem 4.4. Suppose un are smooth sec-
tions converging to u in L2. Then ‖un‖Hs+o ≤ Cs(‖Lun‖Hs + ‖un‖L2) according to theorem 4.4.
Note that (Lun, φ) = (un, L

∗
formφ) → (u, L∗formφ) = (f, φ)L2 ∀ φ. The family of functionals Tn :

φ ∈ C∞(M,E) → (Lun, φ) is bounded for every φ because |(Lun, φ)| = |(unL∗formφ)| → |(f, φ)| ≤
‖f‖L2‖φ‖L2 . Moreover, this shows that Tn can be extended (in a norm preserving manner) to L2

because smooth sections are dense. So |Tn(φ)| ≤ ‖f‖‖φ‖+ ε for n > Nφ,ε. The family of functionals
Tn
‖f‖+ε is pointwise bounded and hence uniformly bounded. Thus ‖Tn(φ)‖ ≤ C(‖f‖ + ε)‖φ‖. Take

φ = Lun to conclude that ‖Lun‖L2 ≤ C(‖f‖+ε). Thus ‖un‖Ho ≤ Cs(‖f‖L2+‖u‖L2)+Cε. A bounded
sequence in a Hilbert space has a weakly convergent subsequence (Banach-Alaoglu). Hence (upto a
subsequence) un weakly converges in Ho to some function and that better be u (because un strongly
converges to u in L2). Thus u ∈ Ho. Moreover, |(u, φ)| ≤ |(un, φ)o| ≤ (Cs(‖f‖L2 +‖u‖L2)+Cε)‖φ‖o.
Since this is true for all ε, φ, we have the desired estimate on u for s = 0. Moreover, Lu = f in the
strong sense (and hence almost everywhere).

For higher values of s, we use induction. We only prove for s = 1 (the general inductive case is
similar). It is easy to see that in the distributional sense, L(∇u) = ∇f − [∇, L]u where the right
hand side is bounded in L2 by C(‖f‖H1 + ‖u‖L2) (where we are using the s = 0 case). Now use
∇u ∈ Ho and satisfies the same estimate. Hence we get the s = 1 case and so on.
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