NOTES FOR 25 FEB (TUESDAY)

1. Recap

(1) Stated the Hodge theorem and did two applications - Poincaré duality and the Kunneth formula.
(2) Defined Sobolev spaces of sections of a vector bundle on compact manifolds and proved equivalence under change of metrics and connections.

2. Sobolev spaces on general manifolds

To make another definition, we need a lemma :
Lemma 2.1. If $\vec{s}: U \subset \mathbb{R}^{m} \rightarrow \mathbb{R}^{r}$ is in $L_{l o c}^{1}$ and weakly differentiable with weak derivatives $\partial_{i} \vec{s}=\vec{t}_{i}$, then for any smooth functions $g: U \rightarrow G L(r, \mathbb{R})$, diffeomorphisms $y(x): U \rightarrow U$, the function $\overrightarrow{\tilde{s}}=g \vec{s}$ is weakly differentiable with weak derivative $\frac{\partial \vec{s}}{\partial y^{i}}=\frac{\partial g(x(y))}{\partial y^{i}} g^{-1} \overrightarrow{\tilde{s}}+g \overrightarrow{t_{j}} \frac{\partial x^{j}}{\partial y^{j}}$. (Note that this coincides with what we expect if \vec{s} is smooth.)
Proof. Indeed, if $\vec{\phi}$ is a smooth function with compact support in U, then

$$
\begin{align*}
& \int_{U}\left(\left\langle\frac{\partial g(x(y))}{\partial y^{i}} g^{-1} \overrightarrow{\tilde{s}}+g \overrightarrow{t_{j}} \frac{\partial x^{j}}{\partial y^{j}}, \phi\right\rangle d y=\int_{U}\left\langle\frac{\partial g(x(y))}{\partial y^{i}} g^{-1} \overrightarrow{\tilde{s}}, \phi\right\rangle+\frac{\partial x^{j}}{\partial y^{j}}\left\langle\overrightarrow{t_{j}}, g^{T} \phi\right\rangle\right) d y \\
&=\left.\int_{U}\left\langle\overrightarrow{\tilde{s}},\left(\frac{\partial g(x(y))}{\partial y^{i}} g^{-1}\right)^{T} \phi\right\rangle d y-\int_{U}\left\langle\overrightarrow{\tilde{s}},\left(g^{-1}\right)^{T} \frac{\partial}{\partial x^{j}}\left(\sqrt{\operatorname{det}\left(\frac{\partial \vec{y}}{\partial \vec{x}}\right.} \overrightarrow{\partial x^{j}} \frac{\partial y^{j}}{\partial} g^{T} \phi\right)\right\rangle \sqrt{\operatorname{det}\left(\frac{\partial \vec{x}}{\partial \vec{y}}\right.}\right) d y \\
&\left.\left.=-\int_{U}\left\langle\overrightarrow{\tilde{s}}, \frac{\partial \phi}{\partial y^{i}}\right\rangle d y-\int_{U}\left\langle\overrightarrow{\tilde{s}}, \frac{\partial}{\partial x^{j}}\left(\sqrt{\operatorname{det}\left(\frac{\partial \vec{y}}{\partial \vec{x}}\right.}\right) \frac{\partial x^{j}}{\partial y^{j}}\right) \phi\right\rangle \sqrt{\operatorname{det}\left(\frac{\partial \vec{x}}{\partial \vec{y}}\right.}\right) d y=-\int_{U}\left\langle\overrightarrow{\tilde{s}}, \frac{\partial \phi}{\partial y^{i}}\right\rangle d y \tag{2.1}
\end{align*}
$$

This shows that the notion of weak differentiability of an $L_{l o c}^{1}$ section of a vector bundle is welldefined in terms of coordinates and trivialisations.

Lemma 2.2. Suppose (E, ∇, h) is a bundle with a metric and a compatible connection on (M, g) where M is any orientable manifold (not necessarily compact). Let $s \in L_{l o c}^{1}(M)$ be a weakly differentiable section. Then the weak derivative ∇s is well-defined as an $L_{l o c}^{1}$ section of $T^{*} M \otimes E$ and satisfies $(\nabla s, \phi)_{L^{2}}=\left(s, \nabla^{\dagger} \phi\right)_{L^{2}}$ where ϕ is any compactly supported smooth section on M and ∇^{\dagger} is given by the same formula as before. Conversely, if this property is satisfied, then s is weakly differentiable (in the sense defined before).
Proof. Define ∇s locally as $\frac{\partial \vec{s}_{\alpha}}{\partial x^{i}} d x^{i}+A_{\alpha} \vec{s}_{\alpha}$ where the derivatives are weak derivatives. From the previous lemma it is easily seen that it transforms like a section of $T^{*} M \otimes E$.

Suppose we cover M by a locally-finite cover U_{α} of charts which are also trivialising neighbourhoods, and we let ρ_{β} be a partition-of-unity subordinate to it (Note that ρ_{β} has compact support in some U_{β} but the indexing set need not be the same.) Then $(\nabla s, \phi)=\sum_{\beta}\left(\nabla s, \rho_{\beta} \phi\right)$ (the sum is finite because ϕ has compact support). Now $(\nabla s, \phi)=-\sum_{\beta}\left(s, d^{\dagger}\left(\rho_{\beta} \phi\right)\right)+\sum_{\beta}\left(s, A^{\dagger} \rho_{\beta} \phi\right)=$
$-\sum_{\beta}\left(s, \nabla^{\dagger}\left(\rho_{\beta} \phi\right)\right)=-\sum_{\beta}\left(s, \nabla^{\dagger} \phi\right)$ (where we used the property that ∇^{\dagger} is a first order differential operator and $\left.d\left(\sum \rho_{\beta}\right)=0\right)$.

The converse part follows by taking ϕ to be supported in a coordinate trivialising open set.
Now we define the Sobolev space in another way.
Definition 2.3. Suppose (E, ∇, h) is a bundle with a metric and a compatible connection on a compact oriented (M, g). Let $s \geq 0$ be an integer. Then the space $\tilde{H}_{\nabla, h, g}^{s}$ consists of s times weakly differentiable sections $\in L^{2}$ with inner product $(a, b)=\int\langle a, b\rangle \operatorname{vol}_{g}+\langle\nabla a, \nabla b\rangle \operatorname{vol}_{g}+\ldots$ where the derivatives are weak derivatives.
Lemma 2.4. $\tilde{H}_{\nabla, h, g}^{s}$ is a Hilbert space and smooth sections are dense in it. Hence it coincides with $H_{\nabla, h, g}^{s}$.
Proof. Hilbert space : If f_{n} is a Cauchy sequence, then ρf_{n} is also a Cauchy sequence for any smooth function ρ. Assume that ρ is compactly supported in a coordinate trivialising neighbourhood U. Thus ρf_{n} can be extended smoothly to $S^{1} \times S^{1} \ldots$ (by simply taking a large cube in \mathbb{R}^{m} containing its support and periodically extending it). Moreover, it is also clear that ρf_{n} is Cauchy in $H^{s}\left(S^{1} \times S^{1} \ldots\right)$. Hence, $\rho f_{n} \rightarrow u$ for some $u \in H^{s}\left(S^{1} \times S^{1} \ldots\right)$. This function u has support in the previously chosen large rectangle and hence can be extended to all of M. Moreover, since the Sobolev norms are equivalent, this convergence happens in $H_{\nabla, h, g^{*}}^{s} f_{n}=\sum \rho_{\alpha} f_{n} \rightarrow \sum u_{\alpha}$ in H^{s} where ρ_{α} is a partition-of-unity.
Smooth functions are dense : Suppose $\rho_{\alpha} \geq 0$ is such that $\sum \rho_{\alpha}^{2}=1$ and these are subordinate to a finite trivialising coordinate cover U_{α}. Suppose $f \in H_{\nabla, h, g}^{s}$. Then there are sequences of smooth functions $f_{n, \alpha} \rightarrow \rho_{\alpha} f$ in $H^{s}\left(S^{1} \times S^{1} \ldots\right)$. Now $\rho_{\alpha} f_{n, \alpha}$ is well-defined on M. Moreover, $\left\|\sum \rho_{\alpha} f_{n, \alpha}-\rho_{\alpha} \rho_{\alpha} f\right\|_{H_{\nabla, h, g}^{s}} \leq C \sum_{\alpha}\left\|\sum f_{n, \alpha}-\rho_{\alpha} \rho_{\alpha} f\right\|_{H^{s}\left(S^{1} \times S^{1} \ldots\right)} \rightarrow 0$.

There is yet another way to define the Sobolev space.
Definition 2.5. Choose a finite cover of trivialising coordinate neighbourhoods ($U_{\alpha}, x_{\alpha}^{i}, e_{j, \alpha}$) and a partition-of-unity subordinate to it. The space $H^{{ }^{s} s}$ is the space of all $L_{l o c}^{1}$ sections a such that $\|a\|^{2}=\left\|\rho_{\alpha} \vec{a}_{\alpha}\right\|_{H^{s}\left(S^{1} \times S^{1} \ldots\right)}<\infty$. The inner product between a and b is $\sum_{\alpha}\left(\rho_{a l} \vec{a}_{\alpha}, \rho_{\alpha} \vec{b}_{\alpha}\right)_{H^{s}}$

Lemma 2.6. (Exercise) The space $H^{\text {ss }}$ is well-defined independent of choices. It is a Hilbert space and smooth sections are dense in it. On smooth functions the $H^{\text {s }}$ norm is equivalent to the $H_{\nabla, h, g}^{s}$ norm with respect to any connection and hence it is homeomorphically isomorphic to $H_{\nabla, h, g}^{s}$.

3. Sobolev embedding and compactness

Define $C^{k, \alpha}(M, E)$ as the space of C^{k} sections of E such that in local coordinates (and frames) they are $C^{k, \alpha}$. The norm on this space is $\|u\|_{C^{k, \alpha}}=\sum_{\mu}\left\|\vec{u}_{\mu}\right\|_{C^{k, \alpha}\left(\bar{U}_{\mu}\right)}$. This is independent of choices made and is a Banach space. This will be given as a HW problem.

Actually, this is equivalent to the norm $\sum\left\|\rho_{\mu} \vec{u}_{\mu}\right\|_{C^{k, \alpha}\left(\bar{U}_{\mu}\right)}$:
Proof. Indeed, firstly, $\sup _{x}|f(x) g(x)|+\sup _{x, y} \frac{|f(x) g(x)-f(y) g(y)|}{|x-y|^{\alpha}} \leq\|f\|_{C^{0, \alpha}}\|g\|_{C^{0, \alpha}}$. Hence $\sum\left\|\rho_{\mu} \vec{u}_{\mu}\right\|_{C^{k, \alpha}\left(\bar{U}_{\mu}\right)} \leq$ $C\|u\|_{C^{k, \alpha}}$.

Next, if one changes coordinates and trivialisations, the resulting $C^{k, \alpha}$ norms are equivalent (a part of the the HW problem). Therefore, $\left\|\vec{u}_{\mu}\right\|_{C^{k, \alpha}\left(\bar{U}_{\mu}\right)} \leq \sum_{\nu \neq \mu}\left\|\rho_{\nu} \vec{u}_{\mu}\right\|+\left\|\rho_{\mu} \vec{u}_{\mu}\right\|$. Now $\left\|\rho_{\nu} \vec{u}_{\mu}\right\|_{C^{k, \alpha}\left(\bar{U}_{\mu}\right)}=$
$\left\|g_{\nu \mu} \rho_{\nu} \vec{u}_{\nu}\right\|_{C^{k, \alpha}(\bar{U})_{\mu}} \leq C\left\|\rho_{\nu} \vec{u}_{\nu}\right\|_{C^{k, \alpha}\left(\bar{U}_{\nu}\right)}$ where the last norm is in the ν coordinates. Hence we are done.

Firstly, we have the following compactness result :
Lemma 3.1. Suppose $k \leq l$. If $k<l$ or $0 \leq \beta<\alpha<1$, then $C^{l, \alpha} \subset C^{k, \beta}$ is a compact embedding.
Proof. The embedding part is trivial. We shall prove that $C^{0, \alpha} \subset C^{0}$ is compact (the general case is similar). Let ρ_{α} be a partition of unity. If $\left\|f_{n}\right\|_{C^{0, \alpha}} \leq C$, then $\left\|\rho_{\mu} f_{n}\right\|_{C^{0, \alpha}\left(\bar{U}_{\mu}\right)} \leq C$. By the usual Arzela-Ascoli argument, there is a subsequence (which we shall denote by f_{n} still) such that $\rho_{\mu} f_{n} \rightarrow f_{\mu}$ on $C^{0, \alpha}\left(\bar{U}_{\mu}\right)$ for some function $f_{\mu}: U_{\alpha} \rightarrow \mathbb{R}^{r}$. (For each μ there is a potentially different subsequence. We choose one for the first μ, then choose a further subsequence for the second μ and so on. There are only finitely many μ.) Clearly f_{μ} has compact support in U_{μ} and hence can be extended to a $C^{0, \alpha}$ section of E on M. Now $\left\|\sum_{\mu} f_{\mu}-f_{n}\right\|_{C^{0, \alpha}(M)} \leq C \sum_{\mu}\left\|f_{\mu}-\rho_{\mu} f_{n}\right\|_{C^{0, \alpha}\left(\bar{U}_{\mu}\right)} \rightarrow 0$.

Now we prove Sobolev embedding plus compactness.
Theorem 3.2. The following inclusions are compact. (Sometimes, this along with the above theorem are referred to as the Sobolev embedding theorems.)
(1) $H^{s}(E) \subset H^{l}(E)$ if $l<s$. (Rellich lemma.)
(2) $H^{s}(E) \subset C^{a}(M, E)$ if $s \geq\left[\frac{n}{2}\right]+a+1$. (Rellich-Kondrachov compactness.)

Proof. (1) The inclusion part is clear. If f_{n} is a bounded sequence in $H^{s}(E)$, then $\rho_{\alpha} f_{n} \in$ $H^{s}\left(S^{1} \times S^{1} \ldots\right)$ is a bounded sequence and by the usual Rellich lemma, it has a convergent subsequence (which abusing notation as usual we still denote by the subscript n) $\rho_{\alpha} f_{n} \rightarrow f_{\alpha}$ in $H^{s}\left(S^{1} \times S^{1} \ldots\right)$. Passing to a further subsequence (that converges a.e.) we see that f_{α} has support in U_{α} and hence can be thought of as being a global section on M. By equivalence of norms, $\rho_{\alpha} f_{n} \rightarrow f_{\alpha}$ in $H^{s}(M, E)$. Thus $\sum \rho_{\alpha} f_{n}=f_{n} \rightarrow \sum f_{\alpha}$.
(2) If $f \in H^{s}(E)$ then $\rho_{\alpha} f \in H^{s}\left(S^{1} \times S^{1} \ldots\right)$. Thus $\rho_{\alpha} f \in C^{a}\left(S^{1} \times S^{1} \ldots\right)$ by the usual Sobolev embedding on the torus. Hence, $\rho_{\alpha} f \in C^{a}(M, E)$ by equivalence of norms. Thus $\sum_{\alpha} \rho_{\alpha} f=f \in C^{a}(M, E)$. Likewise, if $f_{n} \in H^{s}(E)$ is bounded, then a subsequence $\rho_{\alpha} f_{n} \rightarrow f_{\alpha}$ in $C^{a}\left(S^{1} \times S^{1} \ldots\right)$. Since f_{α} is supported on U_{α}, as before $f_{n}=\sum \rho_{\alpha} f_{n} \rightarrow \sum f_{\alpha}$ in $C^{a}(M, E)$.

4. Elliptic operators - Regularity

Now we define the notion of a uniformly elliptic operator : Suppose $\left(E, h_{E}, \nabla_{E}\right),\left(F, h_{F}\right)$ are smooth bundles with metrics and a metric compatible connection for E on a compact oriented (M, g) where $T M$ is equipped with the Levi-Civita connection. Whenever we use ∇ in what follows, it is made out of ∇_{E}, ∇_{g} (Fix h_{E}, h_{F}, ∇_{E}, and g in whatever follows.) First we prove a "structure theorem" for linear PDOs.

Lemma 4.1. To every linear PDO L of order o with smooth coefficients, there exist smooth maps $a_{k}: T^{*} M \otimes T^{*} M \otimes \ldots T^{*} M \otimes E \rightarrow F$ (where $T^{*} M$ is repeated k times) such that $L(u)=\sum_{k=0}^{o} a_{k} \nabla^{k} u$.
Proof. We prove this by induction on o. For $o=0$, by tensoriality, there is such an endomorphism. Assume the result for $0,1, \ldots, o-1$. Then locally, in a trivialising coordinate chart, $L(u)_{\alpha}=\sum_{k=0}^{o} a_{k, \alpha}^{I} \partial_{I} \vec{u}_{\alpha}$. If we change the trivialising coordinate chart, then $\vec{u}_{\beta}=g_{\beta \alpha} \vec{u}_{\alpha}$, and $\frac{\partial}{\partial y^{2}}=$ $\frac{\partial x^{j}}{\partial y^{i}} \frac{\partial}{\partial x^{j}}$ (and the tensor product version of this). The highest order term changes as $a_{0, \alpha}^{I} \partial_{x, I} \vec{u}_{\alpha} \rightarrow$
$a_{o, \alpha}^{I} g_{\beta \alpha} \frac{\partial y^{J}}{\partial x^{I}} \partial_{y, J} \vec{u}_{\beta}$, i.e., a_{o} is a global section of $\operatorname{End}\left(T^{*} M \otimes T^{*} M \ldots E, F\right)$. Hence $L(u)-a_{o} \nabla^{o} u$ is a linear PDO of order $o-1$ and hence by induction we are done.

The formal adjoint $L_{\text {form }}^{*}$ of L is defined as being a linear PDO of the same order given by $\sum_{k=0}^{o}\left(\nabla^{k}\right)^{\dagger} \circ a_{k}^{\dagger}$. It satisfies (and is equivalent to) $\left(L_{\text {form }}^{*} u, v\right)=(u, L v)$ for smooth u, v.
Definition 4.2. The principal symbol of L is the Endomorphism $\sigma(L): T^{*} M \otimes \ldots E \rightarrow F$ given by $\sigma(L)=a_{o}$. A linear PDO L with smooth coefficients is called uniformly elliptic with ellipticity constants $\delta_{1}, \delta_{2}>0$ if $\delta_{1}|v|_{h_{E}(p)}^{2} \leq\left|\sigma_{p}(L)(\zeta, \zeta, \ldots, \zeta) v\right|_{h_{F}(p)}^{2} \leq \delta_{2}|v|_{h_{E}(p)}^{2} \forall p \in M, \zeta \neq 0 \in T_{p}^{*} M$ and the principal symbol is invertibel. (Please note that δ_{1}, δ_{2} depend on the fixed h_{F}, h_{E} obviously.) In particular, the ranks of E and F are required to be the same.

It is clear that L is uniformly elliptic (from now on, called "elliptic") if and only if $L_{\text {form }}^{*}$ is so. The ellipticity constants may be chosen to be equal. (Again, the ranks of E and F being the same is important for this.)
Definition 4.3. Suppose f is an L^{2} section of F. An L^{2} section u is said to be a distributional solution of $L u=f$ if for every smooth section ϕ of $F,\left(u, L_{\text {form }}^{*} \phi\right)=(f, \phi)$. (Please note that we have not defined distributions in general. However, the notion of a distributional solution does not need distributions.)

Next we prove that distributional solutions of elliptic equations are smooth.
Theorem 4.4. If L is uniformly elliptic and f a smooth section of F. Then if $u \in L^{2}$ satisfies $L u=f$ in the sense of distributions then u is smooth. Moreover, if $f \in H^{s}$, then $u \in H^{s+l}$ and $\|u\|_{H^{s+o}} \leq C_{s}\left(\|f\|_{H^{s}}+\|u\|_{L^{2}}\right)$ where C_{s} depends only on $h_{E}, h_{F}, g, \nabla_{E}$, an upper bound on $\left\|a_{k}\right\|_{C^{s+o}}$, and on the ellipticity constants.

We claim that this theorem follows from
Theorem 4.5. If L is uniformly elliptic, u is a smooth section of E, then $\|u\|_{H^{s+o}} \leq C_{s}\left(\|L u\|_{H^{s}}+\right.$ $\|u\|_{L^{2}}$.

Indeed, assume this theorem. Then we shall prove theorem 4.4. Suppose u_{n} are smooth sections converging to u in L^{2}. Then $\left\|u_{n}\right\|_{H^{s+o}} \leq C_{s}\left(\left\|L u_{n}\right\|_{H^{s}}+\left\|u_{n}\right\|_{L^{2}}\right)$ according to theorem 4.4. Note that $\left(L u_{n}, \phi\right)=\left(u_{n}, L_{\text {form }}^{*} \phi\right) \rightarrow\left(u, L_{\text {form }}^{*} \phi\right)=(f, \phi)_{L^{2}} \forall \phi$. The family of functionals T_{n} : $\phi \in C^{\infty}(M, E) \rightarrow\left(L u_{n}, \phi\right)$ is bounded for every ϕ because $\left|\left(L u_{n}, \phi\right)\right|=\left|\left(u_{n} L_{\text {form }}^{*} \phi\right)\right| \rightarrow|(f, \phi)| \leq$ $\|f\|_{L^{2}}\|\phi\|_{L^{2}}$. Moreover, this shows that T_{n} can be extended (in a norm preserving manner) to L^{2} because smooth sections are dense. So $\left|T_{n}(\phi)\right| \leq\|f\|\|\phi\|+\epsilon$ for $n>N_{\phi, \epsilon}$. The family of functionals $\frac{T_{n}}{\|f\|+\epsilon}$ is pointwise bounded and hence uniformly bounded. Thus $\left\|T_{n}(\phi)\right\| \leq C(\|f\|+\epsilon)\|\phi\|$. Take $\phi=L u_{n}$ to conclude that $\left\|L u_{n}\right\|_{L^{2}} \leq C(\|f\|+\epsilon)$. Thus $\left\|u_{n}\right\|_{H^{o}} \leq C_{s}\left(\|f\|_{L^{2}}+\|u\|_{L^{2}}\right)+C \epsilon$. A bounded sequence in a Hilbert space has a weakly convergent subsequence (Banach-Alaoglu). Hence (upto a subsequence) u_{n} weakly converges in H^{o} to some function and that better be u (because u_{n} strongly converges to u in $\left.L^{2}\right)$. Thus $u \in H^{o}$. Moreover, $|(u, \phi)| \leq\left|\left(u_{n}, \phi\right)_{o}\right| \leq\left(C_{s}\left(\|f\|_{L^{2}}+\|u\|_{L^{2}}\right)+C \epsilon\right)\|\phi\|_{o}$. Since this is true for all ϵ, ϕ, we have the desired estimate on u for $s=0$. Moreover, $L u=f$ in the strong sense (and hence almost everywhere).

For higher values of s, we use induction. We only prove for $s=1$ (the general inductive case is similar). It is easy to see that in the distributional sense, $L(\nabla u)=\nabla f-[\nabla, L] u$ where the right hand side is bounded in L^{2} by $C\left(\|f\|_{H^{1}}+\|u\|_{L^{2}}\right)$ (where we are using the $s=0$ case). Now use $\nabla u \in H^{o}$ and satisfies the same estimate. Hence we get the $s=1$ case and so on.

