NOTES FOR 25 FEB (TUESDAY)

1. Recap

- (1) Stated the Hodge theorem and did two applications Poincaré duality and the Kunneth formula.
- (2) Defined Sobolev spaces of sections of a vector bundle on compact manifolds and proved equivalence under change of metrics and connections.

2. Sobolev spaces on general manifolds

To make another definition, we need a lemma :

Lemma 2.1. If $\vec{s}: U \subset \mathbb{R}^m \to \mathbb{R}^r$ is in L^1_{loc} and weakly differentiable with weak derivatives $\partial_i \vec{s} = \vec{t_i}$, then for any smooth functions $g: U \to GL(r, \mathbb{R})$, diffeomorphisms $y(x): U \to U$, the function $\vec{s} = g\vec{s}$ is weakly differentiable with weak derivative $\frac{\partial \vec{s}}{\partial y^i} = \frac{\partial g(x(y))}{\partial y^i} g^{-1}\vec{s} + g\vec{t_j} \frac{\partial x^j}{\partial y^j}$. (Note that this coincides with what we expect if \vec{s} is smooth.)

Proof. Indeed, if $\vec{\phi}$ is a smooth function with compact support in U, then

$$\int_{U} \left(\langle \frac{\partial g(x(y))}{\partial y^{i}} g^{-1} \vec{s} + g \vec{t}_{j} \frac{\partial x^{j}}{\partial y^{j}}, \phi \rangle dy = \int_{U} \langle \frac{\partial g(x(y))}{\partial y^{i}} g^{-1} \vec{s}, \phi \rangle + \frac{\partial x^{j}}{\partial y^{j}} \langle \vec{t}_{j}, g^{T} \phi \rangle \right) dy$$

$$= \int_{U} \langle \vec{s}, (\frac{\partial g(x(y))}{\partial y^{i}} g^{-1})^{T} \phi \rangle dy - \int_{U} \langle \vec{s}, (g^{-1})^{T} \frac{\partial}{\partial x^{j}} \left(\sqrt{\det\left(\frac{\partial y}{\partial x}\right)} \frac{\partial x^{j}}{\partial y^{j}} g^{T} \phi \right) \rangle \sqrt{\det\left(\frac{\partial x}{\partial y}\right)} dy$$

$$(2.1) \qquad = -\int_{U} \langle \vec{s}, \frac{\partial \phi}{\partial y^{i}} \rangle dy - \int_{U} \langle \vec{s}, \frac{\partial}{\partial x^{j}} \left(\sqrt{\det\left(\frac{\partial y}{\partial x}\right)} \frac{\partial x^{j}}{\partial y^{j}} \right) \phi \rangle \sqrt{\det\left(\frac{\partial x}{\partial y}\right)} dy = -\int_{U} \langle \vec{s}, \frac{\partial \phi}{\partial y^{i}} \rangle dy$$

This shows that the notion of weak differentiability of an L^1_{loc} section of a vector bundle is welldefined in terms of coordinates and trivialisations.

Lemma 2.2. Suppose (E, ∇, h) is a bundle with a metric and a compatible connection on (M, g)where M is any orientable manifold (not necessarily compact). Let $s \in L^1_{loc}(M)$ be a weakly differentiable section. Then the weak derivative ∇s is well-defined as an L^1_{loc} section of $T^*M \otimes E$ and satisfies $(\nabla s, \phi)_{L^2} = (s, \nabla^{\dagger} \phi)_{L^2}$ where ϕ is any compactly supported smooth section on M and ∇^{\dagger} is given by the same formula as before. Conversely, if this property is satisfied, then s is weakly differentiable (in the sense defined before).

Proof. Define ∇s locally as $\frac{\partial \vec{s}_{\alpha}}{\partial x^i} dx^i + A_{\alpha} \vec{s}_{\alpha}$ where the derivatives are weak derivatives. From the previous lemma it is easily seen that it transforms like a section of $T^*M \otimes E$.

Suppose we cover M by a locally-finite cover U_{α} of charts which are also trivialising neighbourhoods, and we let ρ_{β} be a partition-of-unity subordinate to it (Note that ρ_{β} has compact support in some U_{β} but the indexing set need not be the same.) Then $(\nabla s, \phi) = \sum_{\beta} (\nabla s, \rho_{\beta} \phi)$ (the sum is finite because ϕ has compact support). Now $(\nabla s, \phi) = -\sum_{\beta} (s, d^{\dagger}(\rho_{\beta} \phi)) + \sum_{\beta} (s, A^{\dagger} \rho_{\beta} \phi) =$

NOTES FOR 25 FEB (TUESDAY)

 $-\sum_{\beta}(s, \nabla^{\dagger}(\rho_{\beta}\phi)) = -\sum_{\beta}(s, \nabla^{\dagger}\phi)$ (where we used the property that ∇^{\dagger} is a first order differential operator and $d(\sum \rho_{\beta}) = 0$).

The converse part follows by taking ϕ to be supported in a coordinate trivialising open set. \Box

Now we define the Sobolev space in another way.

Definition 2.3. Suppose (E, ∇, h) is a bundle with a metric and a compatible connection on a compact oriented (M, g). Let $s \ge 0$ be an integer. Then the space $\tilde{H}^s_{\nabla,h,g}$ consists of s times weakly differentiable sections $\in L^2$ with inner product $(a, b) = \int \langle a, b \rangle vol_g + \langle \nabla a, \nabla b \rangle vol_g + \dots$ where the derivatives are weak derivatives.

Lemma 2.4. $\tilde{H}^s_{\nabla,h,g}$ is a Hilbert space and smooth sections are dense in it. Hence it coincides with $H^s_{\nabla,h,g}$.

Proof. Hilbert space : If f_n is a Cauchy sequence, then ρf_n is also a Cauchy sequence for any smooth function ρ . Assume that ρ is compactly supported in a coordinate trivialising neighbourhood U. Thus ρf_n can be extended smoothly to $S^1 \times S^1 \dots$ (by simply taking a large cube in \mathbb{R}^m containing its support and periodically extending it). Moreover, it is also clear that ρf_n is Cauchy in $H^s(S^1 \times S^1 \dots)$. Hence, $\rho f_n \to u$ for some $u \in H^s(S^1 \times S^1 \dots)$. This function u has support in the previously chosen large rectangle and hence can be extended to all of M. Moreover, since the Sobolev norms are equivalent, this convergence happens in $H^s_{\nabla,h,g}$. $f_n = \sum \rho_{\alpha} f_n \to \sum u_{\alpha}$ in H^s where ρ_{α} is a partitionof-unity.

Smooth functions are dense : Suppose $\rho_{\alpha} \geq 0$ is such that $\sum \rho_{\alpha}^2 = 1$ and these are subordinate to a finite trivialising coordinate cover U_{α} . Suppose $f \in H^s_{\nabla,h,g}$. Then there are sequences of smooth functions $f_{n,\alpha} \to \rho_{\alpha} f$ in $H^s(S^1 \times S^1 \dots)$. Now $\rho_{\alpha} f_{n,\alpha}$ is well-defined on M. Moreover, $\|\sum \rho_{\alpha} f_{n,\alpha} - \rho_{\alpha} \rho_{\alpha} f\|_{H^s_{\nabla,h,g}} \leq C \sum_{\alpha} \|\sum f_{n,\alpha} - \rho_{\alpha} \rho_{\alpha} f\|_{H^s(S^1 \times S^1 \dots)} \to 0.$

There is yet another way to define the Sobolev space.

Definition 2.5. Choose a finite cover of trivialising coordinate neighbourhoods $(U_{\alpha}, x_{\alpha}^{i}, e_{j,\alpha})$ and a partition-of-unity subordinate to it. The space H^{s} is the space of all L^{1}_{loc} sections a such that $\|a\|^{2} = \|\rho_{\alpha}\vec{a}_{\alpha}\|_{H^{s}(S^{1}\times S^{1}...)} < \infty$. The inner product between a and b is $\sum_{\alpha} (\rho_{al}\vec{a}_{\alpha}, \rho_{\alpha}\vec{b}_{\alpha})_{H^{s}}$

Lemma 2.6. (Exercise) The space H^{s} is well-defined independent of choices. It is a Hilbert space and smooth sections are dense in it. On smooth functions the H^{s} norm is equivalent to the $H^{s}_{\nabla,h,g}$ norm with respect to any connection and hence it is homeomorphically isomorphic to $H^{s}_{\nabla,h,g}$.

3. Sobolev embedding and compactness

Define $C^{k,\alpha}(M, E)$ as the space of C^k sections of E such that in local coordinates (and frames) they are $C^{k,\alpha}$. The norm on this space is $\|u\|_{C^{k,\alpha}} = \sum_{\mu} \|\vec{u}_{\mu}\|_{C^{k,\alpha}(\bar{U}_{\mu})}$. This is independent of choices

made and is a Banach space. This will be given as a HW problem.

Actually, this is equivalent to the norm $\sum \|\rho_{\mu}\vec{u}_{\mu}\|_{C^{k,\alpha}(\bar{U}_{\mu})}$:

Proof. Indeed, firstly, $\sup_{x} |f(x)g(x)| + \sup_{x,y} \frac{|f(x)g(x) - f(y)g(y)|}{|x-y|^{\alpha}} \le ||f||_{C^{0,\alpha}} ||g||_{C^{0,\alpha}}$. Hence $\sum ||\rho_{\mu}\vec{u}_{\mu}||_{C^{k,\alpha}(\bar{U}_{\mu})} \le C ||u||_{C^{k,\alpha}}$.

Next, if one changes coordinates and trivialisations, the resulting $C^{k,\alpha}$ norms are equivalent (a part of the the HW problem). Therefore, $\|\vec{u}_{\mu}\|_{C^{k,\alpha}(\bar{U}_{\mu})} \leq \sum_{\nu \neq \mu} \|\rho_{\nu}\vec{u}_{\mu}\| + \|\rho_{\mu}\vec{u}_{\mu}\|$. Now $\|\rho_{\nu}\vec{u}_{\mu}\|_{C^{k,\alpha}(\bar{U}_{\mu})} =$

 $\|g_{\nu\mu}\rho_{\nu}\vec{u}_{\nu}\|_{C^{k,\alpha}(\bar{U})_{\mu}} \leq C \|\rho_{\nu}\vec{u}_{\nu}\|_{C^{k,\alpha}(\bar{U}_{\nu})}$ where the last norm is in the ν coordinates. Hence we are done. \Box

Firstly, we have the following compactness result :

Lemma 3.1. Suppose $k \leq l$. If k < l or $0 \leq \beta < \alpha < 1$, then $C^{l,\alpha} \subset C^{k,\beta}$ is a compact embedding.

Proof. The embedding part is trivial. We shall prove that $C^{0,\alpha} \subset C^0$ is compact (the general case is similar). Let ρ_{α} be a partition of unity. If $\|f_n\|_{C^{0,\alpha}} \leq C$, then $\|\rho_{\mu}f_n\|_{C^{0,\alpha}(\bar{U}_{\mu})} \leq C$. By the usual Arzela-Ascoli argument, there is a subsequence (which we shall denote by f_n still) such that $\rho_{\mu}f_n \to f_{\mu}$ on $C^{0,\alpha}(\bar{U}_{\mu})$ for some function $f_{\mu}: U_{\alpha} \to \mathbb{R}^r$. (For each μ there is a potentially different subsequence. We choose one for the first μ , then choose a further subsequence for the second μ and so on. There are only finitely many μ .) Clearly f_{μ} has compact support in U_{μ} and hence can be extended to a $C^{0,\alpha}$ section of E on M. Now $\|\sum_{\mu} f_{\mu} - f_n\|_{C^{0,\alpha}(M)} \leq C \sum_{\mu} \|f_{\mu} - \rho_{\mu}f_n\|_{C^{0,\alpha}(\bar{U}_{\mu})} \to 0$.

Now we prove Sobolev embedding plus compactness.

Theorem 3.2. The following inclusions are compact. (Sometimes, this along with the above theorem are referred to as the Sobolev embedding theorems.)

- (1) $H^{s}(E) \subset H^{l}(E)$ if l < s. (Rellich lemma.)
- (2) $H^{s}(E) \subset C^{a}(M, E)$ if $s \geq \left[\frac{n}{2}\right] + a + 1$. (Rellich-Kondrachov compactness.)
- Proof. (1) The inclusion part is clear. If f_n is a bounded sequence in $H^s(E)$, then $\rho_{\alpha} f_n \in H^s(S^1 \times S^1 \dots)$ is a bounded sequence and by the usual Rellich lemma, it has a convergent subsequence (which abusing notation as usual we still denote by the subscript n) $\rho_{\alpha} f_n \to f_{\alpha}$ in $H^s(S^1 \times S^1 \dots)$. Passing to a further subsequence (that converges a.e.) we see that f_{α} has support in U_{α} and hence can be thought of as being a global section on M. By equivalence of norms, $\rho_{\alpha} f_n \to f_{\alpha}$ in $H^s(M, E)$. Thus $\sum \rho_{\alpha} f_n = f_n \to \sum f_{\alpha}$.
 - of norms, $\rho_{\alpha}f_n \to f_{\alpha}$ in $H^s(M, E)$. Thus $\sum \rho_{\alpha}f_n = f_n \to \sum f_{\alpha}$. (2) If $f \in H^s(E)$ then $\rho_{\alpha}f \in H^s(S^1 \times S^1 \dots)$. Thus $\rho_{\alpha}f \in C^a(S^1 \times S^1 \dots)$ by the usual Sobolev embedding on the torus. Hence, $\rho_{\alpha}f \in C^a(M, E)$ by equivalence of norms. Thus $\sum_{\alpha} \rho_{\alpha}f = f \in C^a(M, E)$. Likewise, if $f_n \in H^s(E)$ is bounded, then a subsequence $\rho_{\alpha}f_n \to f_{\alpha}$ in $C^a(S^1 \times S^1 \dots)$. Since f_{α} is supported on U_{α} , as before $f_n = \sum \rho_{\alpha}f_n \to \sum f_{\alpha}$ in $C^a(M, E)$.

4. Elliptic operators - Regularity

Now we define the notion of a uniformly elliptic operator : Suppose $(E, h_E, \nabla_E), (F, h_F)$ are smooth bundles with metrics and a metric compatible connection for E on a compact oriented (M, g) where TM is equipped with the Levi-Civita connection. Whenever we use ∇ in what follows, it is made out of ∇_E, ∇_g (Fix h_E, h_F, ∇_E , and g in whatever follows.) First we prove a "structure theorem" for linear PDOs.

Lemma 4.1. To every linear PDO L of order o with smooth coefficients, there exist smooth maps $a_k: T^*M \otimes T^*M \otimes \ldots T^*M \otimes E \to F$ (where T^*M is repeated k times) such that $L(u) = \sum_{k=0}^{o} a_k \nabla^k u$.

Proof. We prove this by induction on o. For o = 0, by tensoriality, there is such an endomorphism. Assume the result for $0, 1, \ldots, o - 1$. Then locally, in a trivialising coordinate chart, $L(u)_{\alpha} = \sum_{k=0}^{o} a_{k,\alpha}^{I} \partial_{I} \vec{u}_{\alpha}$. If we change the trivialising coordinate chart, then $\vec{u}_{\beta} = g_{\beta\alpha} \vec{u}_{\alpha}$, and $\frac{\partial}{\partial y^{i}} = \frac{\partial x^{j}}{\partial y^{i}} \frac{\partial}{\partial x^{j}}$ (and the tensor product version of this). The highest order term changes as $a_{0,\alpha}^{I} \partial_{x,I} \vec{u}_{\alpha} \to 0$

 $a_{o,\alpha}^{I}g_{\beta\alpha}\frac{\partial y^{J}}{\partial x^{I}}\partial_{y,J}\vec{u}_{\beta}$, i.e., a_{o} is a global section of $End(T^{*}M \otimes T^{*}M \dots E, F)$. Hence $L(u) - a_{o}\nabla^{o}u$ is a linear PDO of order o - 1 and hence by induction we are done.

The formal adjoint L^*_{form} of L is defined as being a linear PDO of the same order given by $\sum_{k=0}^{o} (\nabla^k)^{\dagger} \circ a_k^{\dagger}$. It satisfies (and is equivalent to) $(L^*_{form}u, v) = (u, Lv)$ for smooth u, v.

Definition 4.2. The principal symbol of L is the Endomorphism $\sigma(L) : T^*M \otimes \ldots E \to F$ given by $\sigma(L) = a_o$. A linear PDO L with smooth coefficients is called uniformly elliptic with ellipticity constants $\delta_1, \delta_2 > 0$ if $\delta_1 |v|_{h_E(p)}^2 \leq |\sigma_p(L)(\zeta, \zeta, \ldots, \zeta)v|_{h_F(p)}^2 \leq \delta_2 |v|_{h_E(p)}^2 \forall p \in M, \zeta \neq 0 \in T_p^*M$ and the principal symbol is invertibel. (Please note that δ_1, δ_2 depend on the fixed h_F, h_E obviously.) In particular, the ranks of E and F are required to be the same.

It is clear that L is uniformly elliptic (from now on, called "elliptic") if and only if L_{form}^* is so. The ellipticity constants may be chosen to be equal. (Again, the ranks of E and F being the same is important for this.)

Definition 4.3. Suppose f is an L^2 section of F. An L^2 section u is said to be a distributional solution of Lu = f if for every smooth section ϕ of F, $(u, L_{form}^*\phi) = (f, \phi)$. (Please note that we have not defined distributions in general. However, the notion of a distributional solution does not need distributions.)

Next we prove that distributional solutions of elliptic equations are smooth.

Theorem 4.4. If L is uniformly elliptic and f a smooth section of F. Then if $u \in L^2$ satisfies Lu = f in the sense of distributions then u is smooth. Moreover, if $f \in H^s$, then $u \in H^{s+l}$ and $||u||_{H^{s+o}} \leq C_s(||f||_{H^s} + ||u||_{L^2})$ where C_s depends only on h_E, h_F, g, ∇_E , an upper bound on $||a_k||_{C^{s+o}}$, and on the ellipticity constants.

We claim that this theorem follows from

Theorem 4.5. If L is uniformly elliptic, u is a smooth section of E, then $||u||_{H^{s+o}} \leq C_s(||Lu||_{H^s} + ||u||_{L^2}).$

Indeed, assume this theorem. Then we shall prove theorem 4.4. Suppose u_n are smooth sections converging to u in L^2 . Then $||u_n||_{H^{s+o}} \leq C_s(||Lu_n||_{H^s} + ||u_n||_{L^2})$ according to theorem 4.4. Note that $(Lu_n, \phi) = (u_n, L_{form}^*\phi) \rightarrow (u, L_{form}^*\phi) = (f, \phi)_{L^2} \forall \phi$. The family of functionals $T_n : \phi \in C^{\infty}(M, E) \rightarrow (Lu_n, \phi)$ is bounded for every ϕ because $|(Lu_n, \phi)| = |(u_n L_{form}^*\phi)| \rightarrow |(f, \phi)| \leq ||f||_{L^2} ||\phi||_{L^2}$. Moreover, this shows that T_n can be extended (in a norm preserving manner) to L^2 because smooth sections are dense. So $|T_n(\phi)| \leq ||f|| ||\phi|| + \epsilon$ for $n > N_{\phi,\epsilon}$. The family of functionals $\frac{T_n}{||f||+\epsilon}$ is pointwise bounded and hence uniformly bounded. Thus $||T_n(\phi)|| \leq C(||f||+\epsilon)||\phi||$. Take $\phi = Lu_n$ to conclude that $||Lu_n||_{L^2} \leq C(||f||+\epsilon)$. Thus $||u_n||_{H^o} \leq C_s(||f||_{L^2}+||u||_{L^2})+C\epsilon$. A bounded sequence in a Hilbert space has a weakly convergent subsequence (Banach-Alaoglu). Hence (upto a subsequence) u_n weakly converges in H^o to some function and that better be u (because u_n strongly converges to u in L^2). Thus $u \in H^o$. Moreover, $|(u, \phi)| \leq |(u_n, \phi)_o| \leq (C_s(||f||_{L^2}+||u||_{L^2})+C\epsilon)||\phi||_o$. Since this is true for all ϵ, ϕ , we have the desired estimate on u for s = 0. Moreover, Lu = f in the strong sense (and hence almost everywhere).

For higher values of s, we use induction. We only prove for s = 1 (the general inductive case is similar). It is easy to see that in the distributional sense, $L(\nabla u) = \nabla f - [\nabla, L]u$ where the right hand side is bounded in L^2 by $C(||f||_{H^1} + ||u||_{L^2})$ (where we are using the s = 0 case). Now use $\nabla u \in H^o$ and satisfies the same estimate. Hence we get the s = 1 case and so on.