
NOTES FOR 28 JAN (TUESDAY)

1. Recap

(1) Recalled definitions and examples of Vector bundles. Did some constructions of new vector
bundles from old ones.

(2) Defined metrics, and gave examples.

2. Riemannian manifolds and metrics on vector bundles

Recall the definition of an induced metric

Definition 2.1. If g is a metric on M and S ⊂ M is an embedded submanifold, then g induces a
metric g|S on S given by gp|S(vS , wS) = gp(i∗vS , i∗wS).

(1) S2 ⊂ R3. First write the metric in R3 in spherical coordinates z = r cos(θ), x = r sin(θ) cos(φ),
y = r sin(θ) sin(φ). Thus, gEuc = dr ⊗ dr + r2dθ ⊗ dθ + r2 sin2(θ)dφ ⊗ dφ. Now when
we restrict to the unit sphere, the tangent vectors do not include ∂

∂r . Thus, gSphere =

dθ ⊗ dθ + sin2(θ)dφ⊗ dφ
(2) Suppose z = f(x, y) is the graph of a function, then gInduced = dx⊗dx+dy⊗dy+ (∂f∂x )2dx⊗

dx+ (∂f∂y )2dy ⊗ dy + ∂f
∂x

∂f
∂y (dx⊗ dy + dy ⊗ dx).

Now we write down the volume forms of most of the above examples :

(1) volEuc = dx1 ∧ dx2 ∧ . . . dxn.

(2) In polar coordinates in R2, volEuc =
√

det(g)dr ∧ dθ = rdr ∧ dθ.
(3) For the circle, vol = dθ.

Suppose γ : [0, 1] → M is a smooth path. Then, define its length as L(γ) =
∫ 1
0

√
g(dγdt ,

dγ
dt )dt. A

piecewise C1, regular (meaning that γ′ 6= 0 throughout) curve satisfying the following equation is
called a geodesic.

d2γr

dt2
+ Γrij

dγi

dt

dγj

dt
= 0

Γrij = grl
1

2

(
∂gil
∂xj

+
∂gjl
∂xi
− ∂gij
∂xl

)
(2.1)

It can be proved that every geodesic is actually smooth, can be parametrised by its arc-length,
and that arc-length parametrised geodesics are precisely the critical points of the length functional.
Moreover, the function d(p, q) = inf L(p, q) over all the piecewise C1 paths joining p and q is a metric
and that the topology induced by it is the same as the original topology of the manifold.

Now we note that geodesics exist locally, and that if γ is a geodesic, then so is γ(ct). In fact, we
have the following result.

Theorem 2.2. Let p ∈ M . Then there is a neighbourhood Uo of p and a number εp > 0 such
that for every q ∈ U and every tangent vector v ∈ TqM with ‖v‖ < εp there is a unique geodesic

γv : (−2, 2)→M satisfying γv(0) = q, dγv
dt (0) = v.
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If v ∈ TqM is a vector for which there is a geodesic, γ : [0, 1] → M satisfying γ(0) = q and

γ
′
(0) = v then we define expq(v) = γv(1). The geodesic itself can be described as γ(t) = expq(tv) (by

the uniqueness theorem for ODE). By the smooth dependence on parameters of an ODE, expq(v)
depends smoothly on q and on v and defines a smooth map expq : TqM →M .
Note that (expq)v∗ : Tv(TqM) ' TqM → Texpq(v)M is its pushforward. We claim that

Theorem 2.3. (expq)0∗ = Id and hence expq is a local diffeomorphism around ~0.

Proof. Clearly the first statement and the inverse function theorem imply the second. Now if v ∈
TqM , we need to obtain a curve c(t) ∈ TqM such that c(0) = 0, c′(0) = v, and

d expq(c(t))

dt |t=0 = v.
Let c(t) = tv. Then expq(c(t)) = expq(tv) which is the time-t geodesic starting at q pointing along
v at t = 0. Thus we are done. �

In fact, we can say more.

Theorem 2.4. Geodesics are locally length minimising. Moreover, if p ∈M , there exists a geodesic
ball Bεp(p) such that every two points in the ball can be connected by a unique length minimising
geodesic lying in the ball and such that the exponential map is a diffeomorphism restricted to the ball.
Such a ball is called a geodesically convex ball.

Now we make a definition of a useful coordinate system.

Definition 2.5. Given q ∈ M , the coordinate system defined by expq : U ⊂ TqM → M is called a
geodesic normal coordinate system at q (after choosing coordinates on U that is).

This set of coordinates is extremely useful. In fact,

Theorem 2.6. There is a geodesic normal coordinate system v at p, gij(p) = δij and
∂gij
∂vk

(p) = 0.

Proof. Choose coordinates xµ so that gµν(p) = δµν . (This can be easily accomplished by taking any
coordinate system and rotating it so as to diagonalise g.) Let vi be coordinates in TpM . Now exp is a
local diffeomorphism. So xµ(vj) = xµ ◦ exp(vj) is a change of coordinates in a small neighbourhood.

Note that since exp0∗ = Id, ∂xµ

∂vj
|v=0 = δµj . Now g̃ij = gµν

∂xµ

∂vi
∂xν

∂vj
. So it is easy to see that

g̃ij(0) = δij . Since the geodesics through p are linear in this coordinate system, we see that the

Christoffel symbols Γ̃rij(0) = 0. It is easy to see that if the Christoffel symbols are 0, then so are all
first partial derivatives of the metric. �

More generally, any coordinate system in which the metric at p is standard upto first order is
called a normal coordinate system at p.

Actually, we can prove the existence of normal coordinates in much simpler manner even without
reference to geodesics.

Theorem 2.7. There is a normal coordinate system y at p.

Proof. Choose any coordinate system at x at p such that x = 0 is p. Using a linear map, we may
diagonalise g at p. So without loss of generality, g̃µν = δµν+aµναx

α+O(x2). (Note that aµνα = aνµα.)

Change the coordinates to y such that x(y)i = yi + bijky
jyk where bijk = bikj . Now

gij = g̃µν
∂xµ

∂yi
∂xν

∂yj
= (δµν + aµναy

α +O(y2))(δµi + bµiky
k)(δνj + bνjky

k)

= δij + aijky
k + (bijk + bjik)y

k +O(y2)(2.2)

So we just need to choose b so that aijk = −bijk − bjik ∀ k. So take b = −a
2 . �
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It is natural to ask if there is a geodesic normal coordinate system to the second order. Shockingly
enough, there isn’t (in general). In fact,

Theorem 2.8. There exists a (0, 4) tensor (called the Riemann curvature tensor of g) which is
locally Rµναβ such that in geodesic normal coordinates,

gµν = δµν −
1

3
Rµανβ(0)xµxν +O(x3)(2.3)

where in these coordinates, Rijkl(0) = 1
2
∂2gjk
∂xi∂xl

(0) + 1
2

∂2gil
∂xj∂xk

(0) − 1
2
∂2gjl
∂xi∂xk

(0) − 1
2
∂2gik
∂xj∂xl

(0). In fact,
all the other terms in the Taylor expansion depend only on R and its derivatives. So there is a
change of coordinates such that g is Euclidean everywhere, then, since the Euclidean coordinates are
geodesically normal, the Riemann curvature tensor is identically 0.

So one can prove that one cannot draw a map of any part of Bangalore on a piece of paper such
that distances are to scale, by calculating the curvature of the sphere with the metric induced from
the Euclidean space. It turns out to be a non-zero tensor. We will return to curvature later on in a
different way. This theorem is to show you that the notion of curvature is “forced” upon us. (It is
not an artificial definition.)
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