
NOTES FOR 2 JAN (TUESDAY)

1. Logistics

(1) Webpage : http://math.iisc.ac.in/~vamsipingali/teaching/ma339geomanalysis2019spring/
339_2019.html

(2) HW - 25%, Midterm - 25%, Final/Presentation - 50 % (The HW will be put up on the
webpage)

(3) Office - N -23.
(4) Prereqs - A first course on manifolds, some analysis (Fourier analysis and a little bit of

function spaces and measure theory), multivariable calculus, and functional analysis (up
to and including the spectral theorem for compact self-adjoint operators). The functional
analysis part can be read from the appendix in Evans’ book.

2. Goals of the course (famous last words)

(1) How to write PDE on manifolds. This will include a crash course on basic Riemannian
geometry. (What is a PDE on Rn? It is an equation of the form F (u,∇u,D2u, . . .) = 0. If
you want to write it on a manifold, what is D2u? If you use coordinates to define it, then
changing coordinates gives a different PDE. So we need some additional structure to even
write PDE on manifolds. The structure we will use is a Riemannian metric.)

(2) How to prove existence and uniqueness of solutions for linear elliptic (and hopefully some
nonlinear) PDE.

(3) Hopefully a little bit about parabolic PDE as well.
(4) Why you should care about studying PDE on manifolds. (Hopefully, some Hodge theory and

the uniformisation theorem.)

3. The Poisson ODE and Fourier analysis

Suppose we want to solve the ODE u
′′

= f for a 2π periodic smooth function u where f is a
2π-periodic smooth function, then

u
′
(x) = u

′
(0) +

∫ x

0
f(t)dt(3.1)

u(x) = u(x+ 2π) implies that u
′
(x) = u

′
(x+ 2π) (in fact they are equivalent if u(0) = u(2π)). Thus∫ 2π

0 f(t)dt = 0. This is a necessary and sufficient (by the periodicity of f ,
∫ x+2π
x f(t)dt =

∫ 2π
0 f(t)dt)

condition. (Smoothness is guaranteed by the fundamental theorem of calculus.)
In other words, there is a unique-upto-a-constant smooth periodic solution of the ODE if and only if

f is smooth, periodic, and satisfies
∫ 2π
0 f(t)dt = 0. Interestingly enough, denoting the vector space of

smooth 2π-periodic functions as C∞, the map T : C∞ → C∞ given by T (u) = u
′′

has kernel precisely

the constants. Moreover, equipping this vector space with the inner product 〈u, v〉 =
∫ 2π
0 uvdx, we

see that T = T ∗ and T (u) = f if and only if f is orthogonal to ker(T ∗) = ker(T ). This is very
similar to finite-dimensional linear algebra. Moreover, by the fundamental theorem of calculus, if f
is k-times continuously differentiable (will be denoted as Ck from now on), then u is Ck+2.
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The above mentioned observations are not coincidences. Later on, we will see that many PDE
(the so-called elliptic PDE) satisfy similar properties. However, to prove such things, we cannot rely
on a direct formula for the solution unlike the case of ODE. So we need a more abstract, theoretical
method.

Thinking naively (like an engineer or a physicist) we write the Fourier series u =
∞∑

k=−∞
û(k)eikx

where û(k) = 1
2π

∫ 2π

0
u(x)e−ikxdx and likewise for f . Then we see that

û(k)k2 = −f̂(k)(3.2)

In other words, there is a (formal) solution if and only if f̂(0) = 0 = 1
2π

∫ 2π
0 f(x)dx. In this case,

û(0) is a free parameter and hence the solution is unique upto a constant. Moreover, since as sharp
changes in music (think of opera music) correspond to very shrill sounds, if the high-frequency Fourier
components are “small”, then the function is very “smooth” (melodious notes are not too shrill).

Since û(k) = f̂(k)
k2

, u behaves more smoothly than f does. So if f is a smooth function, we expect u
to be so as well.

To make things rigorous, firstly, notice that the Fourier coefficients make sense for any integrable
function. The convergence of Fourier series is a subtle phenomenon though. For example, there
exist continuous functions whose Fourier series do not convergence pointwise at some points. 1

Nonetheless, we have the following useful results.

(1) Riesz-Fischer : A measurable function on [0, 2π] is in L2 if and only if its Fourier series
converges in the L2 norm to it. Moreover, if ak is in l2, then

∑
ake

ikx converges in L2.
(2) Parseval-Plancherel : The Fourier series transform is an isometric isomorphism between

L2([0, 2π]) and l2.
(3) Let C0,α (0 < α < 1) consist of all Hölder continuous 2π-periodic functions g, i.e., periodic

functions g such that |g(x)− g(y)| ≤ C|x− y|α for all x, y. Note that if f is in C1, then f is
Hölder continuous.
Theorem : If f ∈ C0,α then |f̂(k)| ≤ K

|k|α ∀ |k| ≥ 1.

Proof.

2π
̂f(x+ h)(k)− f̂(k)

hα
=

∫ 2π

0

f(x+ h)− f(x)

hα
e−ikxdx

⇒ |
̂f(x+ h)(k)− f̂(k)

hα
| ≤ C(3.3)

Now

|
∫ 2π

0

f(x+ h)− f(x)

hα
e−ikxdx| = |

∫ 2π+h

h

f(y)

hα
e−ik(y−h) −

∫ 2π

0

f(x)

hα
e−ikxdx|

= | −
∫ h

0

f(y)

hα
e−ik(y−h)dy +

∫ 2π+h

2π

f(y)

hα
e−ik(y−h)dy +

1

hα

∫ 2π

0
e−ikxf(x)(eikh − 1)dx|

= | 1

hα

∫ 2π

0
e−ikxf(x)(eikh − 1)dx| = |f̂(k)| |e

ikh − 1|
hα

(3.4)

1Already this is beginning to hint that expecting results like “If f is Ck, then u is Ck+2” is a bad idea from the

Fourier-analytic point of view. In fact for PDE, this expectation is false.
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Take h = 1
k . Using 3.3 and 3.4 we see that |f̂(k)| ≤ K

kα .
As for uniform convergence, �

(4) Theorem : If f ∈ C0,α, the Fourier series converges uniformly to f .

(5) Theorem : If f ∈ C1 then f̂ ′ = ikf̂(k). This holds for higher derivatives too.

Proof.

f̂ ′ =
1

2π

∫ 2π

0
f

′
(x)e−ikxdx = − 1

2π

∫ 2π

0
f(x)(e−ikx)

′
dx =

1

2π

∫ 2π

0
ikf(x)e−ikxdx = ikf̂(k)(3.5)

�

(6) Theorem : If f is smooth, then the Fourier coefficients are rapidly decaying (decay faster
than any polynomial). Also the Fourier series of f and its derivatives converge uniformly.
Conversely, if ak are rapidly decaying, then they are the Fourier coefficients of a smooth
function (with convergence being uniform).

Proof. If f is smooth, then ˆf (l)(k) = (ik)lf̂(k). Since ˆf (l)(k) is bounded, f̂(k) is rapidly
decaying. By one of the earlier theorems, the convergence is uniform.

If |ak| ≤ Cl|k|−l, then by the WeierstrassM -test (choosing l > 1), we see that
∑
ake

ikx con-
verges uniformly to a continuous function u. The same argument also shows that

∑
(ik)lake

ikx

converges uniformly to ul. It is easy to see (fundamental theorem of calculus and interchange

of summation and integration) that ul = u(l). �
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