NOTES FOR 30 JAN (THURSDAY)

1. Recap

(1) Induced metrics on submanifolds and examples.
(2) Geodesics, properties, and normal coordinates.

2. Connections and curvature

Here are a bunch of observations / questions :
(1) In \mathbb{R}^{n}, you have the idea of a "constant" vector field. (Indeed, this is one way to prove that \mathbb{R}^{n} is parallelizable, i.e., it has trivial tangent bundle.) So you need to able to find the directional derivative $\nabla_{V} X$ of any vector field along a direction V. Note that if we manage to define this concept, then $\nabla_{\gamma^{\prime}(t)} X(\gamma(t))=0$ amounts to parallel transporting the vector field along γ.
(2) Suppose $\left(S, g_{S}\right) \subset\left(\mathbb{R}^{n}, E u c\right)$ is a submanifold with the induced metric. (Actually every Riemannian manifold is of this form by the Nash embedding theorem.) Suppose X is a tangent vector field along S. Suppose that $N_{1}, N_{2} \ldots, N_{k}$ are local linearly independent unit normal vector fields on $U \subset S$ (where $k=n-\operatorname{dim}(S)$). Assume that V is a tangent vector on S at p. How can we define the directional derivative $\nabla_{V} X(p)$? Clearly, the usual Euclidean directional derivative $D_{V} X=\frac{\partial \vec{X}}{\partial x^{i}} V^{i}$ is not the right one because it measures how fast X is changing perpendicular to S as well. So we need to project this back to S.

In other words, the "correct" way to define a directional derivative is $\nabla_{V} X=D_{V} X-$ $\sum_{i=1}^{k}\left\langle D_{V} X, N_{i}\right\rangle_{E u c} N_{i}$. Now note that $\left\langle D_{V} X, N_{i}\right\rangle_{E u c}=D_{V}\left\langle X, N_{i}\right\rangle_{E u c}-\left\langle X, D_{V} N_{i}\right\rangle_{E u c}=$ ${ }^{-}\left\langle X, D_{V} N_{i}\right\rangle_{E u c}$. In other words,

$$
\begin{equation*}
\nabla_{V} X=D_{V} X-\sum\left\langle X, D_{V} N_{i}\right\rangle_{E u c} N_{i}=D_{V} X+\text { a term linear in } X . \tag{2.1}
\end{equation*}
$$

It turns out (miraculously) that the linear term is related to the Christoffel symbols and the Riemann curvature tensor of g_{S} that we defined before. This way of defining a directional derivative is called the Levi-Civita connection. In general, a "directional derivative" on a vector bundle is called a "connection".
(3) The above definitions of directional derivative are important even for a general vector bundle. For example if we want to prove that there is a nowhere vanishing section of a certain vector bundle, ideally, we would want to take a "constant" section. But to even define that, we need to know the notion of a directional derivative.
(4) The notion of "curvature" seems to depend on one derivative of the Christoffel symbol (or alternatively, two derivatives of the metric).
The above mentioned observations force us to define a connection $\nabla_{W} s$ on vector bundles. It is suppose to represent how fast a section s is changing along the tangent vector W. In fact, if W is a vector field, then $\nabla_{W} s$ better be a section of the vector bundle itself. So, we have

Definition 2.1. Suppose V is a smooth rank- r real vector bundle (a similar definition holds for complex vector bundles) over a smooth manifold M. Suppose $\Gamma(V)$ is the (infinite-dimensional) vector space of smooth sections of V over M. Suppose X is a vector field on M. Then a connection (sometimes called an affine connection) ∇ on V is a map $\nabla_{X}: \Gamma(V) \rightarrow \Gamma(V)$ satisfying the following properties.
(1) Tensoriality in X : If s is a smooth section of V, X_{1}, X_{2} are two vector fields, and f_{1}, f_{2} are two smooth functions, then $\nabla_{f_{1} X_{1}+f_{2} X_{2}}(s)=f_{1} \nabla_{X_{1}} s+f_{2} \nabla_{X_{2}} s$. In other words, the value of $\nabla_{X} s$ at p depends only on the value of X at p but not on the derivatives of X.
(2) Linearity in s : If s_{1}, s_{2} are two sections and c_{1}, c_{2} are two real numbers, then $\nabla_{X}\left(c_{1} s_{1}+\right.$ $\left.c_{2} s_{2}\right)=c_{1} \nabla_{X} s_{1}+c_{2} \nabla_{X} s_{2}$.
(3) Leibniz rule : If f is a smooth function and s is a section, $\nabla_{X}(f s)=f \nabla_{X} s+d f(X) s=$ $f \nabla_{X}+X(f) s$.

The first assumption (tensoriality in X) can be stated in another nice way : Suppose we fix s. Then the map $(X, \alpha) \rightarrow \alpha\left(\nabla_{X} s\right)$ is a map from Vect fields $\times \Gamma\left(V^{*}\right) \rightarrow C^{\infty}$ functions which is multilinear (over functions). It can be proved that there exists a smooth section $T_{s} \in \Gamma\left(T^{*} M \otimes V^{* *} \simeq V\right)$ such that $T_{s}(X, \alpha)=\alpha\left(\nabla_{X} s\right)$.

Thus ∇ can be thought of as a map $\Gamma(V) \rightarrow \Gamma\left(V \otimes T^{*} M\right)$ given by $s \rightarrow \nabla s$. The space $\Gamma\left(V \otimes T^{*} M\right)$ is commonly called "vector-valued 1-forms". Moreover, in this framework, a connection satisfies $\nabla(f s)=d f \otimes s+f \nabla s$.

Locally, suppose e_{1}, \ldots, e_{r} is a frame (i.e. a collection of smooth local sections such that every point, they form a basis for the fibre) giving a local trivialisation of V. Then every smooth section is of the form, $s=s^{\mu} e_{\mu}$ where s^{μ} are smooth functions. Therefore,

$$
\begin{equation*}
\nabla\left(s^{\mu} e_{\mu}\right)=d s^{\mu} \otimes e_{\mu}+s^{\mu} \nabla e_{\mu}=d s^{\mu} \otimes e_{\mu}+s^{\mu} A_{-\mu}^{\nu} \otimes e_{\nu}=\left(d s^{\mu}+A_{-\nu}^{\mu} s^{\nu}\right) \otimes e_{\mu} \tag{2.2}
\end{equation*}
$$

where $A_{-\nu}^{\mu}$ is an $r \times r$ matrix consisting of 1-forms. Note that $\nabla_{X} s=X\left(s^{\mu}\right) e_{\mu}+A_{-\nu}(X)^{\mu} s^{\nu} e_{\mu}$. Suppose we change our trivialisation to $\tilde{e}_{1}, \tilde{e}_{2}, \ldots$. Then of course the matrix of 1 -forms A will change to \tilde{A}. Let us calculate this change. Suppose $\tilde{e}_{\mu}=g_{-\mu}^{\nu} e_{\nu}$, i.e., $\tilde{e}=e g$ where g is an invertible smooth matrix-valued function. Then since $s=\tilde{s}^{\mu} \tilde{e}_{\mu}=s^{\nu} e_{\nu}$, we see that $\tilde{e} \vec{s}=e g \overrightarrow{\tilde{s}}=e \vec{s}$. Hence $\overrightarrow{\tilde{s}}=g^{-1} \vec{s}$. Since $\nabla_{X} s$ is a section, $\nabla_{X}^{\overrightarrow{\tilde{x}}} s=g^{-1} \nabla_{X} s$, i.e., $\overrightarrow{\nabla \vec{v}} s=g^{-1} \overrightarrow{\nabla s}$. Hence,

$$
\begin{gather*}
d \overrightarrow{\tilde{s}}+\tilde{A} \overrightarrow{\tilde{s}}=g^{-1}(d \vec{s}+A \vec{s}) \Rightarrow d\left(g^{-1} \vec{s}\right)+\tilde{A} g^{-1} \vec{s}=g^{-1}(d \vec{s}+A \vec{s}) \\
\quad-g^{-1} d g g^{-1} \vec{s}+\tilde{A} g^{-1} \vec{s}=g^{-1} A \vec{s} \Rightarrow \tilde{A}=g^{-1} A g+g^{-1} d g \tag{2.3}
\end{gather*}
$$

In more familiar terms, rewriting $\tilde{\vec{s}}=g \vec{s}$ where g are the transition functions (i.e., replacing g^{-1} by g), we see that $\tilde{A}=g A g^{-1}-d g g^{-1}$.

So A does not change like a tensor. However, the cool thing is that, suppose ∇_{1} is one connection. Then, if ∇_{2} is any other connection, $\left(\nabla_{2}-\nabla_{1}\right)(f s)=f\left(\nabla_{2}-\nabla_{1}\right) s$. In other words, the difference of any two connections is an Endomorphism of the vector bundle. Locally, $\tilde{A}_{2}-\tilde{A}_{1}=g\left(A_{2}-A_{1}\right) g^{-1}$. In other words, $A_{2}-A_{1}$ is a section of $\operatorname{End}(V) \otimes T^{*} M$. So the space of connections is an affine space (a vector space without a preferred choice of an origin).

We prove a useful little lemma here
Lemma 2.2. If two smooth sections $s_{1}, s_{2}: M \rightarrow V$ satisfy $s_{1}=s_{2}$ on a neighbourhood U of p, then $\nabla s_{1}(p)=\nabla s_{2}(p)$. T(That is, the directional derivative at p depends only on local information about s near p.)

Proof. Taking $s=s_{1}-s_{2}$, we just have to show that $\nabla s(p)=0$ if $s=0$ on U. Indeed, taking a local trivialisation, $s=s^{i} e_{i}$ and hence $\nabla s(p)=\left(d s^{i}(p)+([A](p) \vec{s}(p))^{i}\right) e_{i}=0$.

In fact, the above observation shows that in order to know ∇s at p, it is enough to take any smooth section \tilde{s} on U, define $s=\rho \tilde{s}$ where ρ is a bump function vanishing outside U (and equal to 1 in a smaller neighbourhood of p), and find out $\nabla s(p)$ for all such sections.
Before going further, we prove a very very useful lemma. (This is like the existence of normal coordinates.)

Lemma 2.3. Suppose ∇ is a connection on V. Suppose $p \in M$. There exists a trivialisation such that $A(p)=0$ in this trivialisation.

Proof. Choose any trivialisation in a neighbourhood U of p. Assume that (x, U) is also a coordinate chart for M such that p corresponds to $x=0$. Let $\nabla=d+\tilde{A}$ on U. If we change the trivialisation using a transition function g, then $A=g \tilde{A} g^{-1}-d g g^{-1}$. Suppose $\tilde{A}(p)=B_{i} d x^{i}$ where B_{i} are real (or complex) $r \times r$ matrices. Define $g=I+x^{i} b_{i}$. For sufficiently small x, g is invertible. Now $g(p)=g^{-1}(p)=I$ and $d g=B_{i} d x^{i}=\tilde{A}(p)$. Thus $A(p)=\tilde{A}(p)-\tilde{A}(p)=0$.

Note that the trivial bundle $M \times \mathbb{R}^{r}$ has an obvious connection - the usual directional derivative. Indeed, there is a global trivialisation. Set $A=0$ and define $\nabla s=d \vec{s}$.

Another point : If $T: V_{1} \rightarrow V_{2}$ is a bundle isomorphism, and V_{2} has a connection ∇, we can define a connection on $V_{1}:\left(T^{*} \nabla\right) s=T^{-1}(\nabla T(s))$. This is called the pullback connection. Locally, the connection matrix of one-forms is $T^{-1} A T+T^{-1} d T$.

Theorem 2.4. Every vector bundle has a connection.
Proof. Suppose M is covered by a locally finite cover U_{α} of trivialisation open sets for V. Suppose $T_{\alpha}: \pi^{-1} U_{\alpha} \rightarrow U_{\alpha} \times \mathbb{R}^{r}$ is the trivialising isomorphism of bundles. As discussed, there is an obvious connection ∇_{α} on the trivial bundle $U_{\alpha} \times \mathbb{R}^{r}$. Define $\tilde{\nabla}_{\alpha}=T_{\alpha}^{*} \nabla_{\alpha}$ as a connection on V on the set U_{α}, i.e., if s is any local section on $U_{\alpha}, \tilde{\nabla}_{\alpha} s$ is a section of $T^{*} U_{\alpha} \times\left. V\right|_{U_{\alpha}}$. Suppose ρ_{α} is a partition-of-unity subordinate to U_{α}.

Now, define $\nabla s=\sum_{\alpha} \rho_{\alpha} \tilde{\nabla}_{\alpha} s$. The meaning of this statement is "Take s, restrict it to U_{α}, calculate $\tilde{\nabla}_{\alpha} s$ as a section over U_{α}, multiply by ρ_{α} and extend it to all of M by 0 outside U_{α}, and sum over all α. It is a finite sum at every point because of local finiteness of the cover. Thus we have a section of $V \otimes T^{*} M^{\prime \prime}$

We still have to prove that ∇ is a connection. Indeed,

$$
\begin{gather*}
\nabla(f s)=\sum_{\alpha} \rho_{\alpha} \tilde{\nabla}_{\alpha}(f s)=\sum_{\alpha} \rho_{\alpha}\left(d f \otimes s+f \tilde{\nabla}_{\alpha} s\right) \\
=d f \otimes s \sum_{\alpha} \rho_{\alpha}+f \nabla s=d f \otimes s+f \nabla s \tag{2.4}
\end{gather*}
$$

So every vector bundle can be equipped with a way to take directional derivatives. There can be more than one way (infinitely many in fact). We can now define the notion of a "constant", rather a "parallel" section.

Definition 2.5. A smooth section s is said to be parallel with respect to a connection ∇ if it satisfies $\nabla s=0$.

We can do better. Suppose $\gamma:[0,1] \rightarrow M$ is a smooth curve. Assume that s_{0} is a vector in $V_{\gamma(0)}$.
Definition 2.6. The parallel transport of s_{0} is a section s on a neighbourhood of the image of γ such that $\nabla_{\gamma^{\prime}(t)} s=0$ on the image of γ (where we are assuming that $\gamma^{\prime}(t)$ has been extended arbitrarily to a smooth vector field on a smaller open subset of the neighbourhood on which s is defined).

The neighbourhood does not make any difference in the above definition. The definition locally means this : If we choose a trivialisation and a coordinate chart on the manifold, we are required to solve an ODE : $\frac{d \vec{s}}{d t}+A_{\gamma(t)}\left(\gamma^{\prime}(t)\right) \vec{s}=0$ with $\vec{s}(0)=\vec{s}_{0}$. Of course this system of ODE has a unique smooth solution for a short period of time. In fact, it can be proven to have a solution for all time.

