
NOTES FOR 4 FEB (TUESDAY)

1. Recap

(1) Defined connections, looked at them locally, proved that they form an affine space, and proved
that they exist on every vector bundle.

(2) Defined the pullback of a connection.

2. Connections and curvature

Now we turn to another notion arising from a connection. What if we want to take the second
derivative ? There is a nice way to do this using a connection, but let us return to that later.
For now, let us be very naive. Note that ∇ takes sections to vector-valued 1-forms. What if we
want to apply ∇ again ? Unfortunately, unless we have a way to differentiate 1-forms, there is no
meaning to differentiating ω ⊗ s. But we actually do have a way to differentiate 1-forms using the
exterior derivative d ! So, define the following map d∇ : Γ(V ⊗ T ∗M) → Γ(V ⊗ Ω2(M)) given by
d∇(ω⊗s) = dω⊗s+ω∧∇s and extending it linearly. Of course, d∇(fω⊗s) = df∧ω⊗s+fd∇(ω⊗s).
So indeed, tensoriality holds and hence the image of d∇ is a vector-valued 2-form. Actually, let’s
take this opportunity to define d∇ : Γ(V ⊗ΩrM)→ Γ(V ⊗Ωr+1M) as d∇(s⊗ω) = ∇s∧ω+ s⊗ dω.

It is natural to ask whether (d∇)2 = 0 on sections (i.e. vector-valued 0-forms). But this is
not true ! Indeed, locally, d∇s = (d~s + A~s). Thus (d∇)2s = d(d~s + A~s) + A ∧ (d~s + A~s) =
0 + d(A~s) + A ∧ d~s+ A ∧ A~s = dA~s− A ∧ d~s+ A ∧ d~s+ A ∧ A~s = (dA+ A ∧ A)~s = F~s where F is
locally a matrix of 2-forms called the curvature of (V,∇). In other words, (d∇)2s depends linearly on
s and not on any derivative of it ! More curiously, if we calculate how F changes when we change the
trivialisation, we see that F̃ = gFg−1. In other words, F is actually a section of End(V )⊗ Ω2(M).
(We can do this calculation more invariantly by proving tensoriality, i.e., (d∇)2(fs) = f(d∇)2s. )

Definition 2.1. The curvature F of a connection ∇ is a section of End(V ) ⊗ Ω2(M) defined as
Fs = (d∇)2s. It locally has the formula, F = dA+A ∧A.

If V is a line bundle, A∧A = 0 and F = dA is a global closed 2-form (because End(L) is a trivial
bundle).

Here is an interesting observation :

Lemma 2.2. If (L,∇) is a (real or complex) line bundle, then its curvature F is a globally defined
closed 2-form whose De Rham cohomology class is independent of the connection chosen.

Proof. We already saw that F is a globally defined close 2-form. Suppose ∇1,∇2 = ∇1 + a are two
connections where a is a section of End(L) ⊗ T ∗M . Noting that End(L) is trivial, a is a globally
defined 1-form. Now F2 = dA2 = dA1 + da = F1 + da. Therefore [F2] = [F1]. �

Real line bundles are actually quite straightforward to study. They are either orientable (and
hence trivial) or non-orientable. In either case, L⊗ L has transition functions g2αβ > 0. Thus L⊗ L
is always a trivial real line bundle.

Complex line bundles are much more complicated and interesting. The De Rham cohomology

class [
√
−1
2π F ] associated to a complex line bundle L is denoted as c1(L) and is called the first Chern

1



2 NOTES FOR 4 FEB (TUESDAY)

class of L. (The presence of
√
−1 and 2π is technical. It is done so that whenever you integrate this

cohomology class against a 1-dimensional submanifold, you get an integer as the answer.)
Given connections ∇v,∇w on vector bundles V and W respectively, there exists natural connec-

tions on V ⊕W , V ∗ (for this you only need ∇v), and V ⊗W -

(1) V ⊕W : ∇v⊕w(s⊕ t) = ∇vs⊕∇wt. It is easy to verify that this satisfy all the definition of a
connection. Locally, Av⊕w = Av⊕Aw (a block diagonal matrix). Therefore, F v⊕w = F v⊕Fw.

(2) V ⊗W : ∇v⊕w(s ⊗ t) = ∇vs ⊗ t + s ⊗ ∇wt. Unfortunately, not every section of V ⊗W is
of the form s⊗ t. It is not obvious that it is even of the form

∑
cαβsα ⊗ tβ where sα, tβ are

global sections.
However, given a p, it is easy to see that there exist global smooth sections sα, tβ such that∑
cαβsα ⊗ tβ = s on a neighbourhood U of p. Define ∇v⊕w(

∑
cαβsα ⊗ tβ) =

∑
cαβ(∇vsα ⊗

tβ + sα ⊗ ∇wtβ). We have to show that it is well-defined (independent of choices of sα, tβ)
and is genuinely a connection. This will be given as a homework problem.

Locally, Av⊗w = Av⊗I+I⊗Aw where we are using the Kronecker product of the matrices.
Moreover, F v⊗w = F v ⊗ I + I ⊗ Fw.

(3) V ∗ : Define ∇s∗ to satisfy d(s∗(t)) = (∇s∗)(t) + s∗(∇t) where t is any section of V and s∗ a
section of V ∗. This is indeed a connection (easy to see). Locally, suppose ei is a frame for

V , then ei∗ defined by ei∗(ej) = δij is a frame for V ∗. In this frame, (A∗)ji = (∇ei∗)(ej) =

d(ei∗(ej))− ei∗(∇ej) = −Aij . Thus A∗ = −AT . Therefore F ∗ = −F T .
In the case where V = L is a line bundle, the curvature satisfies F ∗ = −F . Therefore, for

a complex line bundle c1(L
∗) = −c1(L).

(4) If E = S⊕Q, then given a connection ∇ on E, we can define connections on S and Q. Indeed,
∇Ss = π1 ◦ ∇s where π1 is the projection to S. So, for example, since V ⊗ V = Alt⊕ Sym,
we see that, given a connection on V , we have a connection on the alternating tensors. (More
generally, V ⊗ V ⊗ V . . . = Alt⊕ other things including Sym(V ).) Hence, if we are given a
connection on TM , we have a connection on T ∗M and hence on Ωk(M) for all k.

As a consequence, given a connection on V , we have a naturally defined connection on V ⊗V ⊗V . . ..
If V = L is a line bundle equipped with a connection ∇ with curvature F , then L ⊗ L ⊗ . . . has a
connection whose curvature is kF . So for a complex line bundle, c1(L ⊗ L . . .) = kc1(L). In fact,
c1(L1 ⊗ L2) = c1(L1) + c1(L2).

Now we specialise further to more important connections.

Definition 2.3. Suppose h is a metric on V . Then a connection ∇ on V is said to be metric
compatible with h if for any two sections s1, s2, d(h(s1, s2)) = h(∇s1, s2) + h(s1,∇s2).

It turns out that this is equivalent to saying that parallel transport preserves dot products. Locally,
choosing an orthonormal frame e1, . . . , er, (i.e. a collection of r smooth local sections such that
at every point there are orthonormal) we see that d(h(ei, ej)) = 0 = h(∇ei, ej) + h(ei,∇ej) =

h(Akiek, ej) + h(ei, A
k
jek) = Aji + Aij . Therefore A is a skew-symmetric (skew-Hermitian in the

complex case) matrix of 1-forms in a local orthonormal trivialisation. In that trivialisation, F =
dA+A ∧A is a skew-symmetric (or skew-Hermitian in the complex case) matrix of 2-forms.

Note that the trivial connection ∇ = d on a trivial bundle is compatible with the trivial metric.

Theorem 2.4. On a vector bundle V equipped with a metric h (whether real or complex), there
exists a metric compatible connection ∇.

The proof of this theorem is very similar to the previous one (indeed, replace “trivialisation”
with “orthonormal trivialisation” everywhere). Just as before, if we are given one metric compatible
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connection ∇0, every other metric compatible connection equals ∇0+a where a ∈ Γ(End(V )⊗T ∗M)
is a skew-symmetric (or skew-Hermitian in the complex case) endomorphism-valued 1-form.

Note that suppose we are given a connection ∇m on T ∗M and ∇v on V , then we have a connection
∇m⊗v on T ∗M ⊗V . Therefore, we can define the second derivative of a section s of V as ∇m⊗v∇vs.
Likewise, we can define higher order derivatives.

Now we define a PDE on a manifold.

Definition 2.5. Suppose V and W be smooth manifolds. Let C(M,V ), C(M,W ) be the set of
smooth maps from M to V,W respectively. A kth order partial differential operator L is a map
L : C(M,V ) → C(M,W ) such that locally it is of the form Ls(x) = F (x, s, ∂s, ∂2s, . . . , ∂ks) where
F is a smooth function. A PDE is an equation of the form Lu = f .
If V and W are vector bundles, then a linear partial differential operator is one that takes sections
of V to sections of W , and satisfies L(a1u1 + a2u2) = a1L(u1) + a2L(u2) where a1, a2 are constants.

Note that the above notion is well-defined. Indeed, if you change trivialisations and coordinates,
you will get a different F but it will remain smooth and depend only on k derivatives of s.
We can finally come up with examples of PDE on manifolds :

(1) Any PDE in Rn does the job.
(2) More non-trivially, the Laplace equation ∆u = f on a torus is an example of a second-order

linear PDE. A second order non-linear PDE on a torus is ∆u = eu − f . (If f > 0 this PDE
turns out to have a unique smooth solution. Note that if f = 1, there is an obvious solution,
i.e., u = 0.)

(3) Lu = du = f where u is a k-form.
(4) ∇u = f where u ∈ Γ(V ) and f ∈ Γ(V ⊗ T ∗M).
(5) ∇T ∗Mdu = f where u is a smooth function and f is a (0, 2)-tensor. This equation is a second

order linear PDE.
(6) A harmonic map f : M → N satisfies a second order nonlinear PDE (that we may write

later).
(7) The Ricci flow is a second-order nonlinear PDE for the metric on a manifold.
(8) The Einstein equations in General Relativity are a second-order nonlinear PDE for a Lorentzian

metric.
(9) The Navier-Stokes equation is a second-order nonlinear PDE.

(10) The Monge-Ampère equation is a second order nonlinear PDE.
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