NOTES FOR 4 FEB (TUESDAY)

1. Recap

- (1) Defined connections, looked at them locally, proved that they form an affine space, and proved that they exist on every vector bundle.
- (2) Defined the pullback of a connection.

2. Connections and curvature

Now we turn to another notion arising from a connection. What if we want to take the second derivative ? There is a nice way to do this using a connection, but let us return to that later. For now, let us be very naive. Note that ∇ takes sections to vector-valued 1-forms. What if we want to apply ∇ again ? Unfortunately, unless we have a way to differentiate 1-forms, there is no meaning to differentiating $\omega \otimes s$. But we actually do have a way to differentiate 1-forms using the exterior derivative d ! So, define the following map $d^{\nabla} : \Gamma(V \otimes T^*M) \to \Gamma(V \otimes \Omega^2(M))$ given by $d^{\nabla}(\omega \otimes s) = d\omega \otimes s + \omega \wedge \nabla s$ and extending it linearly. Of course, $d^{\nabla}(f\omega \otimes s) = df \wedge \omega \otimes s + fd^{\nabla}(\omega \otimes s)$. So indeed, tensoriality holds and hence the image of d^{∇} is a vector-valued 2-form. Actually, let's take this opportunity to define $d^{\nabla} : \Gamma(V \otimes \Omega^r M) \to \Gamma(V \otimes \Omega^{r+1}M)$ as $d^{\nabla}(s \otimes \omega) = \nabla s \wedge \omega + s \otimes d\omega$.

It is natural to ask whether $(d^{\nabla})^2 = 0$ on sections (i.e. vector-valued 0-forms). But this is not true ! Indeed, locally, $d^{\nabla}s = (d\vec{s} + A\vec{s})$. Thus $(d^{\nabla})^2s = d(d\vec{s} + A\vec{s}) + A \wedge (d\vec{s} + A\vec{s}) =$ $0 + d(A\vec{s}) + A \wedge d\vec{s} + A \wedge A\vec{s} = dA\vec{s} - A \wedge d\vec{s} + A \wedge d\vec{s} + A \wedge A\vec{s} = (dA + A \wedge A)\vec{s} = F\vec{s}$ where F is locally a matrix of 2-forms called the curvature of (V, ∇) . In other words, $(d^{\nabla})^2s$ depends linearly on s and not on any derivative of it ! More curiously, if we calculate how F changes when we change the trivialisation, we see that $\tilde{F} = gFg^{-1}$. In other words, F is actually a section of $End(V) \otimes \Omega^2(M)$. (We can do this calculation more invariantly by proving tensoriality, i.e., $(d^{\nabla})^2(fs) = f(d^{\nabla})^2s$.)

Definition 2.1. The curvature F of a connection ∇ is a section of $End(V) \otimes \Omega^2(M)$ defined as $Fs = (d^{\nabla})^2 s$. It locally has the formula, $F = dA + A \wedge A$.

If V is a line bundle, $A \wedge A = 0$ and F = dA is a global closed 2-form (because End(L) is a trivial bundle).

Here is an interesting observation :

Lemma 2.2. If (L, ∇) is a (real or complex) line bundle, then its curvature F is a globally defined closed 2-form whose De Rham cohomology class is independent of the connection chosen.

Proof. We already saw that F is a globally defined close 2-form. Suppose $\nabla_1, \nabla_2 = \nabla_1 + a$ are two connections where a is a section of $End(L) \otimes T^*M$. Noting that End(L) is trivial, a is a globally defined 1-form. Now $F_2 = dA_2 = dA_1 + da = F_1 + da$. Therefore $[F_2] = [F_1]$.

Real line bundles are actually quite straightforward to study. They are either orientable (and hence trivial) or non-orientable. In either case, $L \otimes L$ has transition functions $g_{\alpha\beta}^2 > 0$. Thus $L \otimes L$ is always a trivial real line bundle.

Complex line bundles are much more complicated and interesting. The De Rham cohomology class $\left[\frac{\sqrt{-1}}{2\pi}F\right]$ associated to a complex line bundle L is denoted as $c_1(L)$ and is called the first Chern

class of L. (The presence of $\sqrt{-1}$ and 2π is technical. It is done so that whenever you integrate this cohomology class against a 1-dimensional submanifold, you get an integer as the answer.)

Given connections ∇^v, ∇^w on vector bundles V and W respectively, there exists natural connections on $V \oplus W$, V^* (for this you only need ∇^v), and $V \otimes W$ -

- (1) $V \oplus W : \nabla^{v \oplus w}(s \oplus t) = \nabla^v s \oplus \nabla^w t$. It is easy to verify that this satisfy all the definition of a connection. Locally, $A^{v \oplus w} = A^v \oplus A^w$ (a block diagonal matrix). Therefore, $F^{v \oplus w} = F^v \oplus F^w$.
- (2) $V \otimes W : \nabla^{v \oplus w}(s \otimes t) = \nabla^v s \otimes t + s \otimes \nabla^w t$. Unfortunately, not every section of $V \otimes W$ is of the form $s \otimes t$. It is not obvious that it is even of the form $\sum c_{\alpha\beta}s_{\alpha} \otimes t_{\beta}$ where s_{α}, t_{β} are global sections.

However, given a p, it is easy to see that there exist global smooth sections s_{α}, t_{β} such that $\sum c_{\alpha\beta}s_{\alpha} \otimes t_{\beta} = s$ on a neighbourhood U of p. Define $\nabla^{v \oplus w}(\sum c_{\alpha\beta}s_{\alpha} \otimes t_{\beta}) = \sum c_{\alpha\beta}(\nabla^{v}s_{\alpha} \otimes t_{\beta} + s_{\alpha} \otimes \nabla^{w}t_{\beta})$. We have to show that it is well-defined (independent of choices of s_{α}, t_{β}) and is genuinely a connection. This will be given as a homework problem.

Locally, $A^{v \otimes w} = A^v \otimes I + I \otimes A^w$ where we are using the Kronecker product of the matrices. Moreover, $F^{v \otimes w} = F^v \otimes I + I \otimes F^w$.

(3) V^* : Define ∇s^* to satisfy $d(s^*(t)) = (\nabla s^*)(t) + s^*(\nabla t)$ where t is any section of V and s^* a section of V^* . This is indeed a connection (easy to see). Locally, suppose e_i is a frame for V, then e^{i*} defined by $e^{i*}(e_j) = \delta^i_j$ is a frame for V^* . In this frame, $(A^*)^j_{-i} = (\nabla e^{i*})(e_j) = d(e^{i*}(e_j)) - e^{i*}(\nabla e_j) = -A^i_{-j}$. Thus $A^* = -A^T$. Therefore $F^* = -F^T$.

In the case where V = L is a line bundle, the curvature satisfies $F^* = -F$. Therefore, for a complex line bundle $c_1(L^*) = -c_1(L)$.

(4) If $E = S \oplus Q$, then given a connection ∇ on E, we can define connections on S and Q. Indeed, $\nabla^S s = \pi_1 \circ \nabla s$ where π_1 is the projection to S. So, for example, since $V \otimes V = Alt \oplus Sym$, we see that, given a connection on V, we have a connection on the alternating tensors. (More generally, $V \otimes V \otimes V \dots = Alt \oplus other things including Sym(V)$.) Hence, if we are given a connection on TM, we have a connection on T^*M and hence on $\Omega^k(M)$ for all k.

As a consequence, given a connection on V, we have a naturally defined connection on $V \otimes V \otimes V \dots$ If V = L is a line bundle equipped with a connection ∇ with curvature F, then $L \otimes L \otimes \dots$ has a connection whose curvature is kF. So for a complex line bundle, $c_1(L \otimes L \dots) = kc_1(L)$. In fact, $c_1(L \otimes L_2) = c_1(L_1) + c_1(L_2)$.

Now we specialise further to more important connections.

Definition 2.3. Suppose h is a metric on V. Then a connection ∇ on V is said to be metric compatible with h if for any two sections $s_1, s_2, d(h(s_1, s_2)) = h(\nabla s_1, s_2) + h(s_1, \nabla s_2)$.

It turns out that this is equivalent to saying that parallel transport preserves dot products. Locally, choosing an orthonormal frame e_1, \ldots, e_r , (i.e. a collection of r smooth local sections such that at every point there are orthonormal) we see that $d(h(e_i, e_j)) = 0 = h(\nabla e_i, e_j) + h(e_i, \nabla e_j) = h(A^k_{_i}e_k, e_j) + h(e_i, A^k_{_j}e_k) = A^j_{_i} + A^i_{_j}$. Therefore A is a skew-symmetric (skew-Hermitian in the complex case) matrix of 1-forms in a local orthonormal trivialisation. In that trivialisation, $F = dA + A \wedge A$ is a skew-symmetric (or skew-Hermitian in the complex case) matrix of 2-forms.

Note that the trivial connection $\nabla = d$ on a trivial bundle is compatible with the trivial metric.

Theorem 2.4. On a vector bundle V equipped with a metric h (whether real or complex), there exists a metric compatible connection ∇ .

The proof of this theorem is very similar to the previous one (indeed, replace "trivialisation" with "orthonormal trivialisation" everywhere). Just as before, if we are given one metric compatible

connection ∇_0 , every other metric compatible connection equals $\nabla_0 + a$ where $a \in \Gamma(End(V) \otimes T^*M)$ is a skew-symmetric (or skew-Hermitian in the complex case) endomorphism-valued 1-form.

Note that suppose we are given a connection ∇^m on T^*M and ∇^v on V, then we have a connection $\nabla^{m\otimes v}$ on $T^*M\otimes V$. Therefore, we can define the second derivative of a section s of V as $\nabla^{m\otimes v}\nabla^v s$. Likewise, we can define higher order derivatives.

Now we define a PDE on a manifold.

Definition 2.5. Suppose V and W be smooth manifolds. Let C(M, V), C(M, W) be the set of smooth maps from M to V, W respectively. A k^{th} order partial differential operator L is a map $L: C(M, V) \to C(M, W)$ such that locally it is of the form $Ls(x) = F(x, s, \partial s, \partial^2 s, \ldots, \partial^k s)$ where F is a smooth function. A PDE is an equation of the form Lu = f.

If V and W are vector bundles, then a linear partial differential operator is one that takes sections of V to sections of W, and satisfies $L(a_1u_1 + a_2u_2) = a_1L(u_1) + a_2L(u_2)$ where a_1, a_2 are constants.

Note that the above notion is well-defined. Indeed, if you change trivialisations and coordinates, you will get a different F but it will remain smooth and depend only on k derivatives of s. We can finally come up with examples of PDE on manifolds :

- (1) Any PDE in \mathbb{R}^n does the job.
- (2) More non-trivially, the Laplace equation $\Delta u = f$ on a torus is an example of a second-order linear PDE. A second order non-linear PDE on a torus is $\Delta u = e^u - f$. (If f > 0 this PDE turns out to have a unique smooth solution. Note that if f = 1, there is an obvious solution, i.e., u = 0.)
- (3) Lu = du = f where u is a k-form.
- (4) $\nabla u = f$ where $u \in \Gamma(V)$ and $f \in \Gamma(V \otimes T^*M)$.
- (5) $\nabla^{T^*M} du = f$ where u is a smooth function and f is a (0, 2)-tensor. This equation is a second order linear PDE.
- (6) A harmonic map $f: M \to N$ satisfies a second order nonlinear PDE (that we may write later).
- (7) The Ricci flow is a second-order nonlinear PDE for the metric on a manifold.
- (8) The Einstein equations in General Relativity are a second-order nonlinear PDE for a Lorentzian metric.
- (9) The Navier-Stokes equation is a second-order nonlinear PDE.
- (10) The Monge-Ampère equation is a second order nonlinear PDE.