
NOTES FOR 6 FEB (THURSDAY)

1. Recap

(1) Defined curvature.
(2) Defined connections on various bundles arising from V and W .
(3) Defined PDE, linear PDE, and gave several examples of linear and nonlinear PDE.

2. Connections and curvature

We now come to the a very special metric-compatible connection on TM for a Riemannian manifold
(M, g). This connection is determined completely by the metric.

Theorem 2.1. Suppose (M, g) is a Riemannian manifold. There exists a unique metric compatible
connection ∇ on TM such that it is torsion-free, i.e., for any two smooth vector fields X,Y ,

∇XY −∇YX = [X,Y ].(2.1)

This connection is called the Levi-Civita connection of the metric g. Commonly, its curvature is
simply called the curvature of g.

Proof. We will do this in two ways :

(1) Using coordinates : Locally, ∇Y has components (d + A)~Y = dY i + AijY
j where A is an

m×m matrix of 1-forms. So Aij = Γijkdx
k where Γijk are a bunch of locally defined functions

(the Christoffel symbols). So ∇XY is locally ∂Y i

∂xj
Xj + ΓijkX

kY j . Take X = ∂
∂xa and Y = ∂

∂yb

(suitably extended to all of M by a bump function). Now the torsion-free property implies
that ∇XY −∇YX = 0. In other words, Γiab = Γiba. In any normal coordinate system, at p,
metric compatibility means that A(p) is a skew-symmetric matrix, i.e.,

Γiab(p) = −Γaib(p) = −Γabi(p) = Γbai(p) = Γbia(p) = −Γiba(p) = −Γiab(p)(2.2)

which means that Γiab(p) = 0. So if the LC connection exists, it is unique.

Define the Levi-Civita connection as :∇YX(p) = ∂Y i

∂xj
(p)Xj(p) in any normal coordinate

system at p. The fact that this is a connection is easy to see. (Linearly and tensoriality at p
are obvious. The Leibniz rule at p is a consequence of the product rule for derivatives.)

(2) Invariantly :

g(∇XY,Z) = g([X,Y ] +∇YX,Z)

= g([X,Y ], Z) + Y (X,Z)− g(X,∇Y Z) = g([X,Y ], Z) + Y (X,Z)− g(X, [Y,Z] +∇ZY )

= g([X,Y ], Z) + Y (X,Z)− g(X, [Y,Z])− Z(g(X,Y )) + g(∇ZX,Y )

= g([X,Y ], Z) + Y (X,Z)− g(X, [Y,Z])− Z(g(X,Y )) + g([Z,X], Y ) + g(∇XZ, Y )

= g([X,Y ], Z) + Y (X,Z)− g(X, [Y, Z])− Z(g(X,Y )) + g([Z,X], Y ) +X(g(Z, Y ))− g(Z,∇XY )

⇒ 2g(∇XY,Z) = g([X,Y ], Z) + Y (X,Z)− g(X, [Y,Z])− Z(g(X,Y )) + g([Z,X], Y ) +X(g(Z, Y ))

(2.3)
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This determines the connection completely (you can verify that this is indeed a connection)
and is called Kozul’s formula for the Levi-Civita connection.

�

Using the Kozul formula you can see that the Christoffel symbols have exactly the formula we
wrote whilst studying geodesics. In fact, it is not hard to see that a geodesic is simply a curve γ
such that ∇γ′ (γ

′
) = 0.

The torsion-free condition appears mysterious but there is a physics way of looking at it involving
carrying rods along geodesics which start rotating in the presence of torsion. Indeed, consider
the connection ∇ defined on TR3 as (suppose X,Y, Z are coordinate vector fields - example on
mathoverflow),

∇XY = Z,∇XY = −Z
∇XZ = −Y,∇ZX = Y

∇Y Z = X,∇ZY = −X.(2.4)

A body undergoing parallel translation for this connection spins like an American football: around
the axis of motion with speed proportional to its velocity. So the geodesics are straight lines, and
this connection preserves the standard metric, but it has torsion and is thus not the Levi-Civita
connection.

Actually, there is another way of looking at the torsion-free condition.

Theorem 2.2. Suppose M is a manifold. Let ∇∗ be the induced connection on T ∗M from any
connection on TM . Then d∇

∗
: Ω1(M)→ Ω2(M).

(1) (d∇
∗−d)ω satisfies tensoriality and hence there exists a tensor T ∈ Γ(T ∗∗M ' TM⊗Ω2(M))

such that Tω( , ) = (d∇
∗ − d)(ω).

(2) T (X,Y ) = ω(∇XY −∇YX − [X,Y ]). Thus for the Levi-Civita connection, d∇
∗

= d.

Proof. (1) (d∇
∗ −d)(fω) = df ∧ω+ fd∇

∗
ω−df ∧ω− fdω = f(d∇

∗ −d)ω. Hence, by tensoriality
there exists such a tensor T (T is called the Torsion tensor of ∇).

(2) Suppose

Tω(X,Y ) = Tω(Xi ∂

∂xi
, Y j ∂

∂xj
) = XiY jT (

∂

∂xi
,
∂

∂xj
) = XiY j(d∇

∗ − d)(ω)(
∂

∂xi
,
∂

∂xj
)

= XiY j(d∇
∗ − d)(ωkdx

k)(
∂

∂xi
,
∂

∂xj
) = XiY j(A∗)ak ∧ ωadxk((

∂

∂xi
,
∂

∂xj
))

= XiY j(δkj (A∗)ak(
∂

∂xi
)ωa − δki (A∗)ak(

∂

∂xj
)ωa) = XiY j(ωa

(
−A a

j (
∂

∂xi
) +A a

i (
∂

∂xj
)

)
)

= ω(∇XY −∇YX − [X,Y ])(2.5)

�

As for the connection and curvature matrices for the Levi-Civita connection, Aij = Γijµdx
µ and

F ij = F ijµνdx
µ ∧ dxν which is a complicated expression involving two derivatives of the metric g.

Typically, one writes R (standing for Riemann) for the curvature tensor instead of F . It satisfies
various symmetries. It also satisfies the following expression (which is usually given as a definition).

R(X,Y )Z = ∇X∇Y Z −∇Y∇XZ −∇[X,Y ]Z.(2.6)
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So the curvature matrix is F ij = dxi(R(, ) ∂
∂xj

). While the curvature is important, it is too much
information to keep track of. Here are other “curvatures” derived from this basic object that may
sometimes be easier to handle.

(1) Sectional curvature of a two-plane spanned by an orthonormal set X,Y ∈ TpM : This
quantity is g(R(X,Y )Y,X). It turns out that it is independent of the orthonormal frame
chosen (using the symmetries of the Riemann tensor) and actually, using a polarisation-
type identity, one can know the full Riemann tensor if one knows all sectional curvatures.
Using this concept one can talk of “positively curved” (all sectional curvatures are positive
everywhere) or “constant curvature” (all sectional curvatures are constant). For instance, we
have two important theorems.
(a) Complete Riemannian manifolds with constant sectional curvature are an isometric quo-

tient of space forms : Hyperbolic space, or Euclidean space, or the Sphere. (Killing-Hopf
theorem)

(b) If the sectional curvature of a complete manifold is non-positive, then the universal cover
is diffeomorphic to Rn (Cartan-Hadamard theorem).

(2) Ricci curvature : Ricc(Y, Z) = tr(X → R(X,Y )Z), i.e., Riccab = Rcbca. It turns out that
Ricc(X,Y ) = Ricc(Y,X). This tensor (like the metric) is symmetric. In fact, one can prove
that for 1, 2, 3 dimensions, the Ricci tensor determines the full Riemann tensor. (Not beyond
three dimensions though.) The Ricci curvature is very important. Here is a beautiful theorem
(Bonnet-Myers) that illustrates its importance.

Theorem 2.3. If k > 0, m = dim(M), and g is a complete Riemannian metric satisfying
Ric(p)− (m−1)kg(p) ≥ 0∀ p ∈M (as semi-positive definite matrices), then diam(M) ≤ π√

k
.

Hence M is compact. Moreover, since the universal cover is also compact (by pulling back
the metric), the fundamental group is finite.

(3) Scalar curvature : S = Riccabg
ab. This curvature has the advantage (and disdvantage) of

being a single number. The scalar curvature determines the full curvature in dimensions
1, 2. (Actually, all curvatures in dim 1 are zero.) The scalar curvature can be interpreted as
follows :

V ol(Bε(p) ⊂M
Bε(0) ⊂ Rm

= 1− S

6(m+ 2)
ε2 +O(ε4).(2.7)

Therefore, if S > 0, then balls in the manifold have smaller volume because they curve more.
The Yamabe problem asks the following : On a compact manifold, given a metric g0, is

there is a function f so that g = efg0 has constant scalar curvature ? (The answer is now
known to be “yes”). If the “constant” of the scalar curvature is negative, then it is not
incredibly hard to prove the theorem. There are obstructions to finding metrics of positive
scalar curvature on manifolds (you can’t always do it). Even if you can find one, the Yamabe
problem in the positive case is very hard. Shockingly enough, its proof involves the positive
mass theorem of general relativity.

3. Divergence, Stokes’ theorem, and Laplacians

Suppose u : M → R is a function on a Riemannian manifold (M, g) whose tangent bundle is
equipped with the Levi-Civita connection. Then ∇u = ∂u

∂xj
gij ∂

∂xi
is called the gradient of u with

respect to g. It is just dual to du using the metric g. Suppose c is a regular value of u, then u−1(c) is
a submanifold of M of dimension m− 1. The gradient ∇u is normal to this submanifold. Indeed, if
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~v is tangent to the submanifold, i.e., ~v = dγ
dt (0) where γ is a curve lying on u−1(c), i.e., u(γ(t)) = c,

then du
dt = 0, i.e., 0 = ∂u

∂xi
∂γi

∂t = (∇u)jgij
∂γi

∂t . Thus ∇u is perpendicular to ~v.
Suppose X is a smooth vector field. Define the divergence of X

Definition 3.1. div(X) = ∇iXi = ∂Xi

∂xi
+ΓiikX

k. So in normal coordinates, it is the usual divergence
at p. Note that div(fX) = X(f) + fdiv(X).

Theorem 3.2.

∫
M
div(X)volg =

∫
∂M

iXvolg where iXω(Y1, Y2, . . .) = ω(X,Y1, Y2, . . .). If ~N is a

unit outward pointing normal vector field on the boundary, then iXvolg = g(X, ~N)dvolg|∂M .

Proof. Choose oriented normal coordinates xi for g at p ∈M . Now

div(X)(p)volg(p) =
∑
i

∂Xi

∂xi
(p)dx1 ∧ dx2 . . . dxm(p) = d(

∑
i

Xi(−1)i−1dx1 ∧ . . . dxi−1dx̂i ∧ . . .)(p)

= d(iXvol)(p)(3.1)

Since the above equation is an equation of globally defined forms at p, it is independent of coordinates
chosen. Thus div(X)volg = d(iXvol). By the usual Stokes’ theorem,

∫
M div(X)volg =

∫
∂M iXvol.

Now if X = g(X, ~N) ~N +Y , then Y is tangent to the boundary. Choose oriented normal coordinates

such that x1 = 0 corresponds to the boundary (hence ~N(p) = ∂
∂x1

and Y is a linear combination

of ∂i where i ≥ 2)Then iXvol(p)|x1=0 = g(X, ~N)(p)i ~N(p)dx
1 ∧ dx2 . . . (p) + iY (p)dx

1 ∧ dx2 . . . (p) =

g(X, ~N)volg|∂M (p). As before, this equation holds globally. �

In particular, if M has no boundary, then
∫
M div(X) = 0. Now define

Definition 3.3. The Laplacian ∆u where u is a function on M is a function ∆u = div(∇u) =
∂
∂xi

(
gij ∂u

∂xj

)
+ Γiik

∂u
∂xj

gjk. So in normal coordinates, it is the usual Laplacian at p.

As an example, take the flat metric g = dθ1⊗dθ1+dθ2⊗dθ2+. . . on the torus. Then the Laplacian
is easily seen to be the Laplacian we studied earlier. Here is an observation using Stokes :∫

M
∆u =

∫
div(grad(u))dvolg = 0(3.2)

So if ∆u = f , a necessary condition is that
∫
fdvolg = 0 (just like the torus). If ∆u = f , then

observe that for any smooth function v,∫
M
v∆uvolg =

∫
M
vfvolg ⇒

∫
M

(div(v∇u)−∇v.∇u)volg = −
∫
M
∇v.∇uvolg =

∫
M
u∆vvolg(3.3)

So we can define a distributional solution of ∆u = f as an L2 function u such that the above holds
for all smooth v.

What about the curl of a vector field X ? Firstly, given a vector field X, we can produce its dual
1-form ωX(Y ) = g(X,Y ). We can then define dωX as a 2-form. If there is a way to take a 2-form α
to an m − 2 form ∗α, then in 3-dimensions, ∗α will be a 1-form, whose dual is a vector field. This
should be the curl. So we need a notion called the Hodge star ∗ taking k-forms to m− k forms.

Definition 3.4. Given a k-form α on a compact oriented m-dimensional Riemannian manifold
(M, g), ∗α is a (m−k)-form such that α∧∗β = 〈α, β〉gvolg. Here the inner product on forms is defined
as follows : Suppose at p, normal coordinates are chosen, i.e., gij(p) = δij , then dxi1(p) ∧ dxi2 . . . ∧
dxik(p) form an orthonormal basis at p for k-forms. Note that vol(p) = dx1(p) ∧ dx2(p) . . . dxm(p).
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