Lecture 2 during Covid

Vamsi Pritham Pingali

IISc

프 에 에 프 어 - -

= 990

Vamsi Pritham Pingali

Lecture 2

2/10

◆□ > ◆□ > ◆ 三 > ◆ 三 > ● ○ ○ ○ ○

• Completed the proof of parabolic existence.

ヨト くヨトー

- Completed the proof of parabolic existence.
- Proved the Riemannian uniformisation theorem using the method of continuity.

프 🖌 🛪 프 🛌

ъ

포 > 포

• If $g = e^{-f}g_0$ and we want K(g) = K, then $\Delta f = Ke^{-f} - K_0$.

₹ 990

• If $g = e^{-f}g_0$ and we want K(g) = K, then $\Delta f = Ke^{-f} - K_0$. It is a semilinear PDE.

▲ 문 ▶ ▲ 문 ▶ ...

э.

• If $g = e^{-f}g_0$ and we want K(g) = K, then $\Delta f = Ke^{-f} - K_0$. It is a semilinear PDE. Let K = -1.

프 🖌 🛪 프 🛌

If g = e^{-f}g₀ and we want K(g) = K, then Δf = Ke^{-f} - K₀.
 It is a semilinear PDE. Let K = −1. Let the area of g₀ be normalised to be 1.

- If g = e^{-f}g₀ and we want K(g) = K, then Δf = Ke^{-f} K₀.
 It is a semilinear PDE. Let K = −1. Let the area of g₀ be normalised to be 1.
- One can prove existence by minimising a certain functional.

- If g = e^{-f}g₀ and we want K(g) = K, then Δf = Ke^{-f} K₀.
 It is a semilinear PDE. Let K = −1. Let the area of g₀ be normalised to be 1.
- One can prove existence by minimising a certain functional. This approach is there in Kazdan-Warner ("Curvature function for compact two manifolds".)

- If g = e^{-f}g₀ and we want K(g) = K, then Δf = Ke^{-f} K₀.
 It is a semilinear PDE. Let K = −1. Let the area of g₀ be normalised to be 1.
- One can prove existence by minimising a certain functional. This approach is there in Kazdan-Warner ("Curvature function for compact two manifolds".)
- Let $E[f] = \frac{1}{2} \int_M |\nabla f|^2 \int_M K_0 f$.

→ ★@ → ★ 国 → ★ 国 → → 国

- If g = e^{-f}g₀ and we want K(g) = K, then Δf = Ke^{-f} K₀.
 It is a semilinear PDE. Let K = −1. Let the area of g₀ be normalised to be 1.
- One can prove existence by minimising a certain functional. This approach is there in Kazdan-Warner ("Curvature function for compact two manifolds".)
- Let $E[f] = \frac{1}{2} \int_{M} |\nabla f|^2 \int_{M} K_0 f$. We want to minimise this functional over H^1 with the constraint $\int_{M} -e^{-f} = 2\pi \chi(M)$.

(ロ) (四) (主) (主) (三)

- If g = e^{-f}g₀ and we want K(g) = K, then Δf = Ke^{-f} K₀.
 It is a semilinear PDE. Let K = −1. Let the area of g₀ be normalised to be 1.
- One can prove existence by minimising a certain functional. This approach is there in Kazdan-Warner ("Curvature function for compact two manifolds".)
- Let $E[f] = \frac{1}{2} \int_{M} |\nabla f|^2 \int_{M} K_0 f$. We want to minimise this functional over H^1 with the constraint $\int_{M} -e^{-f} = 2\pi \chi(M)$.
- Why is this problem even sensible ? Zeroethly, ignore the constraint for the next few minutes.

<ロ> (四) (四) (三) (三) (三)

- If g = e^{-f}g₀ and we want K(g) = K, then Δf = Ke^{-f} K₀.
 It is a semilinear PDE. Let K = −1. Let the area of g₀ be normalised to be 1.
- One can prove existence by minimising a certain functional. This approach is there in Kazdan-Warner ("Curvature function for compact two manifolds".)
- Let $E[f] = \frac{1}{2} \int_{M} |\nabla f|^2 \int_{M} K_0 f$. We want to minimise this functional over H^1 with the constraint $\int_{M} -e^{-f} = 2\pi \chi(M)$.
- Why is this problem even sensible ? Zeroethly, ignore the constraint for the next few minutes. Firstly, it is obvious (Cauchy-Schwarz) that *E*(*f*) is finite for *H*¹ functions.

・ロ・ ・ 同・ ・ ヨ・ ・ ヨ・

- If g = e^{-f}g₀ and we want K(g) = K, then Δf = Ke^{-f} K₀.
 It is a semilinear PDE. Let K = −1. Let the area of g₀ be normalised to be 1.
- One can prove existence by minimising a certain functional. This approach is there in Kazdan-Warner ("Curvature function for compact two manifolds".)
- Let $E[f] = \frac{1}{2} \int_{M} |\nabla f|^2 \int_{M} K_0 f$. We want to minimise this functional over H^1 with the constraint $\int_{M} -e^{-f} = 2\pi \chi(M)$.
- Why is this problem even sensible ? Zeroethly, ignore the constraint for the next few minutes. Firstly, it is obvious (Cauchy-Schwarz) that *E*(*f*) is finite for *H*¹ functions. Secondly, wit is bounded below by C-S again.

▲ 御 ▶ ▲ 臣 ▶ ▲ 臣 ▶ …

크 에 세 크 어

Now we come to the pesky constraint.

- Now we come to the pesky constraint.
- Firstly, there is a constant *C* (independent of *p*) such that $||w||_{L^p} \leq C \sqrt{p} ||w||_{H^1}$.

- Now we come to the pesky constraint.
- Firstly, there is a constant *C* (independent of *p*) such that ||*w*||_{L^p} ≤ C √p||*w*||_{H¹}. Indeed, locally, if *w* is compactly supported,

- Now we come to the pesky constraint.
- Firstly, there is a constant *C* (independent of *p*) such that $||w||_{L^p} \leq C \sqrt{p} ||w||_{H^1}$. Indeed, locally, if *w* is compactly supported, then $w(x) = \frac{1}{2\pi} \int_{\mathbb{R}^2} \nabla_{euc} w(x y) \cdot \frac{y}{|y|^2} dy$

- Now we come to the pesky constraint.
- Firstly, there is a constant *C* (independent of *p*) such that $||w||_{L^p} \leq C \sqrt{p} ||w||_{H^1}$. Indeed, locally, if *w* is compactly supported, then $w(x) = \frac{1}{2\pi} \int_{\mathbb{R}^2} \nabla_{euc} w(x y) \cdot \frac{y}{|y|^2} dy$ from which Young's inequality and a partition-of-unity give the result.

4/10

- Now we come to the pesky constraint.
- Firstly, there is a constant *C* (independent of *p*) such that $||w||_{L^p} \leq C \sqrt{p} ||w||_{H^1}$. Indeed, locally, if *w* is compactly supported, then $w(x) = \frac{1}{2\pi} \int_{\mathbb{R}^2} \nabla_{euc} w(x y) \cdot \frac{y}{|y|^2} dy$ from which Young's inequality and a partition-of-unity give the result.
- A power series expansion, the above inequality, and Poincaré 's inequality show the Moser-Trudinger inequality :

- Now we come to the pesky constraint.
- Firstly, there is a constant *C* (independent of *p*) such that $||w||_{L^p} \leq C \sqrt{p} ||w||_{H^1}$. Indeed, locally, if *w* is compactly supported, then $w(x) = \frac{1}{2\pi} \int_{\mathbb{R}^2} \nabla_{euc} w(x y) \cdot \frac{y}{|y|^2} dy$ from which Young's inequality and a partition-of-unity give the result.
- A power series expansion, the above inequality, and Poincaré 's inequality show the Moser-Trudinger inequality : $\int_M e^{\beta u^2} dA \le \gamma$ for some positive β, γ and all $||u||_{H^1} \le 1$ and $\int u = 0$.

포 > 포

• By AM-GM, for any
$$\alpha > 0$$
, $\int_{M} e^{\alpha |u|} \le \gamma \exp\left(\alpha \int u + \frac{\alpha^{2} ||\nabla u||_{L^{2}}^{2}}{4\beta}\right)$.

프 > 프

- By AM-GM, for any $\alpha > 0$, $\int_{M} e^{\alpha |u|} \le \gamma \exp\left(\alpha \int u + \frac{\alpha^{2} ||\nabla u||_{L^{2}}^{2}}{4\beta}\right)$.
- Using $|e^t 1| \le |t|e^{|t|}$ and the inequality above,

□ ▶ ▲ 臣 ▶ ▲ 臣 ▶ ● 臣 ■ ∽ � @

5/10

- By AM-GM, for any $\alpha > 0$, $\int_{M} e^{\alpha |u|} \le \gamma \exp\left(\alpha \int u + \frac{\alpha^{2} ||\nabla u||_{L^{2}}^{2}}{4\beta}\right)$.
- Using $|e^t 1| \le |t|e^{|t|}$ and the inequality above, we see that if $u_j \to u$ weakly in H^1 , then $e^{u_j} \to e^u$ strongly in L^2 .

- By AM-GM, for any $\alpha > 0$, $\int_{M} e^{\alpha |u|} \le \gamma \exp\left(\alpha \int u + \frac{\alpha^{2} ||\nabla u||_{L^{2}}^{2}}{4\beta}\right)$.
- Using $|e^t 1| \le |t|e^{|t|}$ and the inequality above, we see that if $u_j \to u$ weakly in H^1 , then $e^{u_j} \to e^u$ strongly in L^2 .
- Therefore, the constraint is met by *f* above.

프 🕨 🛛 프

• We now prove a better lower bound on *E*(*f*).

- We now prove a better lower bound on *E*(*f*).
- WLog we can assume that $K_0 < 0$

- We now prove a better lower bound on *E*(*f*).
- WLog we can assume that K₀ < 0 by solving a linear equation Δf₀ + K_{0,old} = 2πχ(M)

- We now prove a better lower bound on *E*(*f*).
- WLog we can assume that $K_0 < 0$ by solving a linear equation $\Delta f_0 + K_{0,old} = 2\pi \chi(M) = K_{0,new} e^{-f_0}$.

- We now prove a better lower bound on *E*(*f*).
- WLog we can assume that $K_0 < 0$ by solving a linear equation $\Delta f_0 + K_{0,old} = 2\pi \chi(M) = K_{0,new} e^{-f_0}$.
- Since $x \to e^{-x}$ is convex,

- We now prove a better lower bound on *E*(*f*).
- WLog we can assume that $K_0 < 0$ by solving a linear equation $\Delta f_0 + K_{0,old} = 2\pi \chi(M) = K_{0,new} e^{-f_0}$.
- Since $x \to e^{-x}$ is convex, by Jensen's inequality
- We now prove a better lower bound on *E*(*f*).
- WLog we can assume that $K_0 < 0$ by solving a linear equation $\Delta f_0 + K_{0,old} = 2\pi \chi(M) = K_{0,new} e^{-f_0}$.
- Since $x \to e^{-x}$ is convex, by Jensen's inequality $2\pi |\chi(M)| = \int e^{-f} \ge e^{-\int f}$ and hence

- We now prove a better lower bound on *E*(*f*).
- WLog we can assume that $K_0 < 0$ by solving a linear equation $\Delta f_0 + K_{0,old} = 2\pi \chi(M) = K_{0,new} e^{-f_0}$.
- Since $x \to e^{-x}$ is convex, by Jensen's inequality $2\pi |\chi(M)| = \int e^{-f} \ge e^{-\int f}$ and hence $\int f \ge -C$.

- We now prove a better lower bound on *E*(*f*).
- WLog we can assume that $K_0 < 0$ by solving a linear equation $\Delta f_0 + K_{0,old} = 2\pi \chi(M) = K_{0,new} e^{-f_0}$.
- Since $x \to e^{-x}$ is convex, by Jensen's inequality $2\pi |\chi(M)| = \int e^{-f} \ge e^{-\int f}$ and hence $\int f \ge -C$.
- Now a HW exercise asks you to prove the Poincaré inequality :

- We now prove a better lower bound on *E*(*f*).
- WLog we can assume that $K_0 < 0$ by solving a linear equation $\Delta f_0 + K_{0,old} = 2\pi \chi(M) = K_{0,new} e^{-f_0}$.
- Since $x \to e^{-x}$ is convex, by Jensen's inequality $2\pi |\chi(M)| = \int e^{-f} \ge e^{-\int f}$ and hence $\int f \ge -C$.
- Now a HW exercise asks you to prove the Poincaré inequality :There exists a constant C such that C ||∇f||_{L²} ≥ ||f − ∫ f||_{L²}.

- We now prove a better lower bound on *E*(*f*).
- WLog we can assume that $K_0 < 0$ by solving a linear equation $\Delta f_0 + K_{0,old} = 2\pi \chi(M) = K_{0,new} e^{-f_0}$.
- Since $x \to e^{-x}$ is convex, by Jensen's inequality $2\pi |\chi(M)| = \int e^{-f} \ge e^{-\int f}$ and hence $\int f \ge -C$.
- Now a HW exercise asks you to prove the Poincaré inequality :There exists a constant C such that C ||∇f||_{L²} ≥ ||f − ∫ f||_{L²}.
- Putting the above together, we see that *E*(*f*) is bounded below (in a coercive manner).

Lecture 2

- We now prove a better lower bound on *E*(*f*).
- WLog we can assume that $K_0 < 0$ by solving a linear equation $\Delta f_0 + K_{0,old} = 2\pi \chi(M) = K_{0,new} e^{-f_0}$.
- Since $x \to e^{-x}$ is convex, by Jensen's inequality $2\pi |\chi(M)| = \int e^{-f} \ge e^{-\int f}$ and hence $\int f \ge -C$.
- Now a HW exercise asks you to prove the Poincaré inequality :There exists a constant *C* such that C ||∇f||_{L²} ≥ ||f − ∫ f||_{L²}.
- Putting the above together, we see that E(f) is bounded below (in a coercive manner). Indeed, $E(f) = \frac{1}{2} \int_{M} |\nabla (f - \int f)|^2 - \int_{M} K_0(f - \int f) + 2\pi |\chi(M)| \int f \ge -C + \frac{1}{C} ||f - \int f||^2_{H^1}.$

イロト 不得 とくほ とくほ とうほ

▶ < ∃ >

• Let
$$f = u + \int f$$
.

▶ < ∃ >

• Let
$$f = u + \int f$$
. So $\int u = 0$ and hence $||u||_{L^2} \le C ||\nabla u||_{L^2}$.

▶ < ∃ >

- Let $f = u + \int f$. So $\int u = 0$ and hence $||u||_{L^2} \le C ||\nabla u||_{L^2}$.
- So there is a sequence $f_n \in H^1$ (satisfying the constraint) such that $E(f_n) \rightarrow \inf E$.

- Let $f = u + \int f$. So $\int u = 0$ and hence $||u||_{L^2} \leq C ||\nabla u||_{L^2}$.
- So there is a sequence $f_n \in H^1$ (satisfying the constraint) such that $E(f_n) \rightarrow \inf E$.
- By coercivity, u_n weakly converges to u in H^1 .

- Let $f = u + \int f$. So $\int u = 0$ and hence $||u||_{L^2} \leq C ||\nabla u||_{L^2}$.
- So there is a sequence $f_n \in H^1$ (satisfying the constraint) such that $E(f_n) \rightarrow \inf E$.
- By coercivity, u_n weakly converges to u in H¹. By the M-T arguments, e^{-ku_n} → e^{-ku} for every k strongly in L².

- Let $f = u + \int f$. So $\int u = 0$ and hence $||u||_{L^2} \leq C ||\nabla u||_{L^2}$.
- So there is a sequence $f_n \in H^1$ (satisfying the constraint) such that $E(f_n) \rightarrow \inf E$.
- By coercivity, u_n weakly converges to u in H¹. By the M-T arguments, e^{-ku_n} → e^{-ku} for every k strongly in L².
- Solving for $\int f_n$ from the constraint, $\int f_n = -\ln\left(\frac{2\pi |\chi(M)|}{\int e^{-u_n}}\right)$

- Let $f = u + \int f$. So $\int u = 0$ and hence $||u||_{L^2} \leq C ||\nabla u||_{L^2}$.
- So there is a sequence $f_n \in H^1$ (satisfying the constraint) such that $E(f_n) \rightarrow \inf E$.
- By coercivity, u_n weakly converges to u in H¹. By the M-T arguments, e^{-ku_n} → e^{-ku} for every k strongly in L².
- Solving for $\int f_n$ from the constraint, $\int f_n = -\ln\left(\frac{2\pi |\chi(M)|}{\int e^{-u_n}}\right)$ which converges to a number *A*.

- Let $f = u + \int f$. So $\int u = 0$ and hence $||u||_{L^2} \leq C ||\nabla u||_{L^2}$.
- So there is a sequence $f_n \in H^1$ (satisfying the constraint) such that $E(f_n) \rightarrow \inf E$.
- By coercivity, u_n weakly converges to u in H¹. By the M-T arguments, e^{-ku_n} → e^{-ku} for every k strongly in L².
- Solving for $\int f_n$ from the constraint, $\int f_n = -\ln\left(\frac{2\pi|\chi(M)|}{\int e^{-u_n}}\right)$ which converges to a number *A*. Define f = A + u.

- Let $f = u + \int f$. So $\int u = 0$ and hence $||u||_{L^2} \leq C ||\nabla u||_{L^2}$.
- So there is a sequence $f_n \in H^1$ (satisfying the constraint) such that $E(f_n) \rightarrow \inf E$.
- By coercivity, u_n weakly converges to u in H¹. By the M-T arguments, e^{-ku_n} → e^{-ku} for every k strongly in L².
- Solving for $\int f_n$ from the constraint, $\int f_n = -\ln\left(\frac{2\pi |\chi(M)|}{\int e^{-u_n}}\right)$ which converges to a number *A*. Define f = A + u. Hence $A = \int f$ and it satisfies the constraint.

▶ ▲ 圖 ▶ ▲ 国 ▶ ▲ 国 ▶

- Let $f = u + \int f$. So $\int u = 0$ and hence $||u||_{L^2} \leq C ||\nabla u||_{L^2}$.
- So there is a sequence $f_n \in H^1$ (satisfying the constraint) such that $E(f_n) \rightarrow \inf E$.
- By coercivity, u_n weakly converges to u in H¹. By the M-T arguments, e^{-ku_n} → e^{-ku} for every k strongly in L².
- Solving for $\int f_n$ from the constraint, $\int f_n = -\ln\left(\frac{2\pi|\chi(M)|}{\int e^{-u_n}}\right)$ which converges to a number *A*. Define f = A + u. Hence $A = \int f$ and it satisfies the constraint.
- Since $f_n \to f$ strongly in L^2 and $||f||_{H^1} \le \liminf ||f_n||_{H^1}$,

・ロト ・ 理 ト ・ ヨ ト ・

- Let $f = u + \int f$. So $\int u = 0$ and hence $||u||_{L^2} \leq C ||\nabla u||_{L^2}$.
- So there is a sequence $f_n \in H^1$ (satisfying the constraint) such that $E(f_n) \rightarrow \inf E$.
- By coercivity, u_n weakly converges to u in H¹. By the M-T arguments, e^{-ku_n} → e^{-ku} for every k strongly in L².
- Solving for $\int f_n$ from the constraint, $\int f_n = -\ln\left(\frac{2\pi |\chi(M)|}{\int e^{-u_n}}\right)$ which converges to a number *A*. Define f = A + u. Hence $A = \int f$ and it satisfies the constraint.
- Since $f_n \to f$ strongly in L^2 and $||f||_{H^1} \le \liminf ||f_n||_{H^1}$, we see that $||\nabla f||_{L^2} \le \liminf ||\nabla f_n||_{L^2}$.

Lecture 2

医水理 医水理 医水理 医

- Let $f = u + \int f$. So $\int u = 0$ and hence $||u||_{L^2} \leq C ||\nabla u||_{L^2}$.
- So there is a sequence $f_n \in H^1$ (satisfying the constraint) such that $E(f_n) \rightarrow \inf E$.
- By coercivity, u_n weakly converges to u in H¹. By the M-T arguments, e^{-ku_n} → e^{-ku} for every k strongly in L².
- Solving for $\int f_n$ from the constraint, $\int f_n = -\ln\left(\frac{2\pi |\chi(M)|}{\int e^{-u_n}}\right)$ which converges to a number *A*. Define f = A + u. Hence $A = \int f$ and it satisfies the constraint.
- Since $f_n \to f$ strongly in L^2 and $||f||_{H^1} \le \liminf ||f_n||_{H^1}$, we see that $||\nabla f||_{L^2} \le \liminf ||\nabla f_n||_{L^2}$.
- Hence, $E(f) = \inf(E)$ and $E(u) = \inf E$ where $f = \int f + u$.

▲ 御 ▶ ▲ 臣 ▶ ▲ 臣 ▶ …

•
$$E(u) = \frac{1}{2} \int_{M} |\nabla u|^2 - \int K_0 u - 2\pi |\chi(M)| \ln \left(\frac{2\pi |\chi(M)|}{\int e^{-u}} \right).$$

•
$$E(u) = \frac{1}{2} \int_{M} |\nabla u|^2 - \int K_0 u - 2\pi |\chi(M)| \ln\left(\frac{2\pi |\chi(M)|}{\int e^{-u}}\right).$$

• Let
$$v \in C^{\infty}(M)$$
 with $\oint v = 0$.

•
$$E(u) = \frac{1}{2} \int_{M} |\nabla u|^2 - \int K_0 u - 2\pi |\chi(M)| \ln\left(\frac{2\pi |\chi(M)|}{\int e^{-u}}\right).$$

• Let $v \in C^{\infty}(M)$ with $\int v = 0$. $\frac{dE(u+tv)}{dt}|_{t=0} = 0.$

•
$$E(u) = \frac{1}{2} \int_{M} |\nabla u|^2 - \int K_0 u - 2\pi |\chi(M)| \ln\left(\frac{2\pi |\chi(M)|}{\int e^{-u}}\right)$$

• Let $v \in C^{\infty}(M)$ with $\int v = 0$. $\frac{dE(u+tv)}{dt}|_{t=0} = 0$.
• Thus $0 = \int_{M} \langle \nabla v, \nabla u \rangle - \int K_0 v - 2\pi |\chi(M)| \frac{\int e^{-u}v}{\int e^{-u}}$.

•
$$E(u) = \frac{1}{2} \int_{M} |\nabla u|^2 - \int K_0 u - 2\pi |\chi(M)| \ln \left(\frac{2\pi |\chi(M)|}{\int e^{-u}}\right)$$

• Let
$$v \in C^{\infty}(M)$$
 with $\int v = 0$. $\frac{dE(u+tv)}{dt}|_{t=0} = 0$.

• Thus
$$0 = \int_M \langle \nabla v, \nabla u \rangle - \int K_0 v - 2\pi |\chi(M)| \frac{\int e^{-u} v}{\int e^{-u}}.$$

• Thus,
$$u \in H^1$$
 is a distributional solution of $\Delta u = -K_0 - 2\pi |\chi(M)| \frac{e^{-u}}{\int e^{-u}}$,

프 에 에 프 어 - -

•
$$E(u) = \frac{1}{2} \int_{M} |\nabla u|^2 - \int K_0 u - 2\pi |\chi(M)| \ln\left(\frac{2\pi |\chi(M)|}{\int e^{-u}}\right).$$

• Let
$$v \in C^{\infty}(M)$$
 with $\int v = 0$. $\frac{dE(u+tv)}{dt}|_{t=0} = 0$.

• Thus
$$0 = \int_M \langle \nabla v, \nabla u \rangle - \int K_0 v - 2\pi |\chi(M)| \frac{\int e^{-u} v}{\int e^{-u}}.$$

• Thus,
$$u \in H^1$$
 is a distributional solution of $\Delta u = -K_0 - 2\pi |\chi(M)| \frac{e^{-u}}{\int e^{-u}}$, i.e., *f* solves the desired PDE.

프 🖌 🔺 프 🛌

•
$$E(u) = \frac{1}{2} \int_{M} |\nabla u|^2 - \int K_0 u - 2\pi |\chi(M)| \ln \left(\frac{2\pi |\chi(M)|}{\int e^{-u}} \right).$$

• Let
$$v \in C^{\infty}(M)$$
 with $\int v = 0$. $\frac{dE(u+tv)}{dt}|_{t=0} = 0$.

• Thus
$$0 = \int_M \langle \nabla v, \nabla u \rangle - \int K_0 v - 2\pi |\chi(M)| \frac{\int e^{-u} v}{\int e^{-u}}.$$

• Thus, $u \in H^1$ is a distributional solution of $\Delta u = -K_0 - 2\pi |\chi(M)| \frac{e^{-u}}{\int e^{-u}}$, i.e., *f* solves the desired PDE.

Lecture 2

• Now we need to show that f is smooth.

8/10

•
$$e^{-f} \in L^2$$
 (actually L^p for all p)

e^{-f} ∈ L² (actually L^p for all *p*) and hence *f* ∈ H² by elliptic regularity.

- $e^{-f} \in L^2$ (actually L^p for all p) and hence $f \in H^2$ by elliptic regularity.
- By Sobolev embedding, $f \in W^{1,p}$ for all $p < \infty$.

9/10

- *e*^{-f} ∈ L² (actually L^p for all *p*) and hence *f* ∈ H² by elliptic regularity.
- By Sobolev embedding, $f \in W^{1,p}$ for all $p < \infty$. Hence, $e^{-f} \in H^1$ and by elliptic regularity, $f \in H^3$.

- *e*^{-f} ∈ L² (actually L^p for all *p*) and hence *f* ∈ H² by elliptic regularity.
- By Sobolev embedding, *f* ∈ *W*^{1,p} for all *p* < ∞. Hence, *e*^{-f} ∈ *H*¹ and by elliptic regularity, *f* ∈ *H*³. By iteration, *f* is smooth.

Concluding thoughts

Vamsi Pritham Pingali

Lecture 2

10/10

ヨト ・ヨトー

æ

• Try to replicate the above proof in genus 1.

표 ▶ ★ 표 ▶ ...

æ

• Try to replicate the above proof in genus 1. It works easily.

프 🖌 🛪 프 🛌

ъ
- Try to replicate the above proof in genus 1. It works easily.
- In genus 0, you will run into a wall.

프 🖌 🛪 프 🕨

э

- Try to replicate the above proof in genus 1. It works easily.
- In genus 0, you will run into a wall. The crucial point is to know the exact constant in the M-T inequality (for coercivity).

- Try to replicate the above proof in genus 1. It works easily.
- In genus 0, you will run into a wall. The crucial point is to know the exact constant in the M-T inequality (for coercivity).
- That sharp M-T inequality was proved by Moser for the sphere.

- Try to replicate the above proof in genus 1. It works easily.
- In genus 0, you will run into a wall. The crucial point is to know the exact constant in the M-T inequality (for coercivity).
- That sharp M-T inequality was proved by Moser for the sphere. Try reading up the proof. It is by "symmetrization".

- Try to replicate the above proof in genus 1. It works easily.
- In genus 0, you will run into a wall. The crucial point is to know the exact constant in the M-T inequality (for coercivity).
- That sharp M-T inequality was proved by Moser for the sphere. Try reading up the proof. It is by "symmetrization". Reduces the problem to 1-D. (Not trivial in 1-D though !)