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Completed the proof of parabolic existence.
Proved the Riemannian uniformisation theorem using the
method of continuity.
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The uniformisation theorem for Genus ≥ 2 : Variational
method

If g = e−f g0 and we want K(g) = K , then ∆f = Ke−f
− K0.

It is a semilinear PDE. Let K = −1. Let the area of g0 be
normalised to be 1.
One can prove existence by minimising a certain
functional. This approach is there in Kazdan-Warner
(“Curvature function for compact two manifolds”.)
Let E[f ] = 1

2

∫
M |∇f |2 −

∫
M K0f . We want to minimise this

functional over H1 with the constraint
∫

M
−e−f = 2πχ(M).

Why is this problem even sensible ? Zeroethly, ignore the
constraint for the next few minutes. Firstly, it is obvious
(Cauchy-Schwarz) that E(f) is finite for H1 functions.
Secondly, wit is bounded below by C-S again.
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The uniformisation theorem for Genus ≥ 2 : Variational
method : The Moser-Trudinger inequality

Now we come to the pesky constraint.
Firstly, there is a constant C (independent of p) such that
‖w‖Lp ≤ C

√
p‖w‖H1 . Indeed, locally, if w is compactly

supported, then w(x) = 1
2π

∫
R2 ∇eucw(x − y). y

|y |2 dy from
which Young’s inequality and a partition-of-unity give the
result.
A power series expansion, the above inequality, and
Poincaré ’s inequality show the Moser-Trudinger inequality
:
∫

M eβu
2
dA ≤ γ for some positive β, γ and all ‖u‖H1 ≤ 1 and>

u = 0.
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The uniformisation theorem for Genus ≥ 2 : Variational
method

By AM-GM, for any α > 0,
∫

M eα|u| ≤ γ exp

(
α
>

u +
α2
‖∇u‖2

L2

4β

)
.

Using |et
− 1| ≤ |t |e |t | and the inequality above, we see that

if uj → u weakly in H1, then euj → eu strongly in L2.
Therefore, the constraint is met by f above.
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The uniformisation theorem for Genus ≥ 2 : Variational
method : Coercivity

We now prove a better lower bound on E(f).
WLog we can assume that K0 < 0 by solving a linear
equation ∆f0 + K0,old = 2πχ(M) = K0,newe−f0 .
Since x → e−x is convex, by Jensen’s inequality
2π|χ(M)| =

>
e−f
≥ e−

>
f and hence

>
f ≥ −C.

Now a HW exercise asks you to prove the Poincaré
inequality :There exists a constant C such that
C‖∇f‖L2 ≥ ‖f −

>
f‖L2 .

Putting the above together, we see that E(f) is bounded
below (in a coercive manner). Indeed,
E(f) = 1

2

∫
M |∇(f −

>
f)|2 −

∫
M K0(f −

>
f) + 2π|χ(M)|

>
f ≥

−C + 1
C ‖f −

>
f‖2

H1 .
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inequality :

There exists a constant C such that
C‖∇f‖L2 ≥ ‖f −

>
f‖L2 .

Putting the above together, we see that E(f) is bounded
below (in a coercive manner). Indeed,
E(f) = 1

2

∫
M |∇(f −

>
f)|2 −

∫
M K0(f −

>
f) + 2π|χ(M)|

>
f ≥

−C + 1
C ‖f −

>
f‖2

H1 .

Vamsi Pritham Pingali Lecture 2 6/10



The uniformisation theorem for Genus ≥ 2 : Variational
method : Coercivity

We now prove a better lower bound on E(f).
WLog we can assume that K0 < 0 by solving a linear
equation ∆f0 + K0,old = 2πχ(M) = K0,newe−f0 .
Since x → e−x is convex, by Jensen’s inequality
2π|χ(M)| =

>
e−f
≥ e−

>
f and hence

>
f ≥ −C.

Now a HW exercise asks you to prove the Poincaré
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The uniformisation theorem for Genus ≥ 2 : Variational
method

Let f = u +
>

f . So
>

u = 0 and hence ‖u‖L2 ≤ C‖∇u‖L2 .

So there is a sequence fn ∈ H1 (satisfying the constraint)
such that E(fn)→ inf E.
By coercivity, un weakly converges to u in H1. By the M-T
arguments, e−kun → e−ku for every k strongly in L2.

Solving for
>

fn from the constraint,
>

fn = − ln
(

2π|χ(M)|∫
e−un

)
which converges to a number A . Define f = A + u. Hence
A =

>
f and it satisfies the constraint.

Since fn → f strongly in L2 and ‖f‖H1 ≤ lim inf ‖fn‖H1 , we
see that ‖∇f‖L2 ≤ lim inf ‖∇fn‖L2 .
Hence, E(f) = inf(E) and E(u) = inf E where f =

>
f + u.
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The uniformisation theorem for Genus ≥ 2 : Variational
method

E(u) = 1
2

∫
M |∇u|2 −

∫
K0u − 2π|χ(M)| ln

(
2π|χ(M)|∫

e−u

)
.

Let v ∈ C∞(M) with
>

v = 0. dE(u+tv)
dt |t=0 = 0.

Thus 0 =
∫

M〈∇v ,∇u〉 −
∫

K0v − 2π|χ(M)|

∫
e−uv∫
e−u .

Thus, u ∈ H1 is a distributional solution of
∆u = −K0 − 2π|χ(M)| e−u∫

e−u , i.e., f solves the desired PDE.

Now we need to show that f is smooth.
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The uniformisation theorem for Genus ≥ 2 : Variational
method

e−f
∈ L2 (actually Lp for all p) and hence f ∈ H2 by elliptic

regularity.
By Sobolev embedding, f ∈W1,p for all p < ∞. Hence,
e−f
∈ H1 and by elliptic regularity, f ∈ H3. By iteration, f is

smooth.
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Concluding thoughts

Try to replicate the above proof in genus 1. It works easily.
In genus 0, you will run into a wall. The crucial point is to
know the exact constant in the M-T inequality (for
coercivity).
That sharp M-T inequality was proved by Moser for the
sphere. Try reading up the proof. It is by “symmetrization”.
Reduces the problem to 1-D. (Not trivial in 1-D though !)
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