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@ Completed the proof of parabolic existence.
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@ Completed the proof of parabolic existence.

@ Proved the Riemannian uniformisation theorem using the
method of continuity.
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The uniformisation theorem for Genus > 2 : Variational
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e If g= e gy and we want K(g) = K, then Af = Ke™" - K.
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e If g = e~"go and we want K(g) = K, then Af = Ke™' — K.
It is a semilinear PDE.
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The uniformisation theorem for Genus > 2 : Variational

method

e If g = e~"go and we want K(g) = K, then Af = Ke™' — K.
It is a semilinear PDE. Let K = —1.
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e If g= e gy and we want K(g) = K, then Af = Ke™" - K.
It is a semilinear PDE. Let K = —1. Let the area of gy be
normalised to be 1.
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The uniformisation theorem for Genus > 2 : Variational

method

e If g= e gy and we want K(g) = K, then Af = Ke™" - K.
It is a semilinear PDE. Let K = —1. Let the area of gy be
normalised to be 1.

@ One can prove existence by minimising a certain
functional.
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@ One can prove existence by minimising a certain

functional. This approach is there in Kazdan-Warner
(“Curvature function for compact two manifolds”.)
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e If g= e gy and we want K(g) = K, then Af = Ke™" - K.
It is a semilinear PDE. Let K = —1. Let the area of gy be
normalised to be 1.

@ One can prove existence by minimising a certain
functional. This approach is there in Kazdan-Warner
(“Curvature function for compact two manifolds”.)

o LetE[fl=3 [,IVf - [, Kof.
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The uniformisation theorem for Genus > 2 : Variational

method

e If g= e gy and we want K(g) = K, then Af = Ke™" - K.
It is a semilinear PDE. Let K = —1. Let the area of gy be
normalised to be 1.

@ One can prove existence by minimising a certain
functional. This approach is there in Kazdan-Warner
(“Curvature function for compact two manifolds”.)

o Let E[fl =3 [, IVf? - [, Kof. We want to minimise this
functional over H' with the constraint f —e~" = 2nx(M).
M
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e If g = e~"go and we want K(g) = K, then Af = Ke™' — K.
It is a semilinear PDE. Let K = —1. Let the area of gy be
normalised to be 1.

@ One can prove existence by minimising a certain
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(“Curvature function for compact two manifolds”.)

o Let E[fl =3 [, IVf? - [, Kof. We want to minimise this
functional over H' with the constraint f —e~" = 2nx(M).
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@ Why is this problem even sensible ? Zeroethly, ignore the
constraint for the next few minutes.
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e If g= e gy and we want K(g) = K, then Af = Ke™" - K.
It is a semilinear PDE. Let K = —1. Let the area of gy be
normalised to be 1.

@ One can prove existence by minimising a certain
functional. This approach is there in Kazdan-Warner
(“Curvature function for compact two manifolds”.)

o Let E[fl =3 [, IVf? - [, Kof. We want to minimise this
functional over H' with the constraint f —e~" = 2nx(M).
M

@ Why is this problem even sensible ? Zeroethly, ignore the
constraint for the next few minutes. Firstly, it is obvious
(Cauchy-Schwarz) that E(f) is finite for H' functions.
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The uniformisation theorem for Genus > 2 : Variational

method

e If g= e gy and we want K(g) = K, then Af = Ke™" - K.
It is a semilinear PDE. Let K = —1. Let the area of gy be
normalised to be 1.

@ One can prove existence by minimising a certain
functional. This approach is there in Kazdan-Warner
(“Curvature function for compact two manifolds”.)

o Let E[fl =3 [, IVf? - [, Kof. We want to minimise this
functional over H' with the constraint f —e~" = 2nx(M).
M

@ Why is this problem even sensible ? Zeroethly, ignore the
constraint for the next few minutes. Firstly, it is obvious
(Cauchy-Schwarz) that E(f) is finite for H' functions.
Secondly, wit is bounded below by C-S again.
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The uniformisation theorem for Genus > 2 : Variational

method : The Moser-Trudinger inequality

Vamsi Pritham Pingali Lecture 2



The uniformisation theorem for Genus > 2 : Variational
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@ Now we come to the pesky constraint.
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@ Now we come to the pesky constraint.

@ Firstly, there is a constant C (independent of p) such that
IwllLe < C/PIWII4t-
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@ Firstly, there is a constant C (independent of p) such that
IwllLe < C +/plwlly. Indeed, locally, if w is compactly
supported,
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The uniformisation theorem for Genus > 2 : Variational

method : The Moser-Trudinger inequality

@ Now we come to the pesky constraint.

@ Firstly, there is a constant C (independent of p) such that
IwllLe < C +/pllwlly. Indeed, locally, if w is compactly

supported, then w(x) = 2 [, Veuew(x — y).ly%dy
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The uniformisation theorem for Genus > 2 : Variational

method : The Moser-Trudinger inequality

@ Now we come to the pesky constraint.

@ Firstly, there is a constant C (independent of p) such that
IwllLe < C +/pllwlly. Indeed, locally, if w is compactly
supported, then w(x) = 2 [, Veuew(x — y).#dy from
which Young’s inequality and a partition-of-unity give the
result.
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@ Now we come to the pesky constraint.

@ Firstly, there is a constant C (independent of p) such that
IwllLe < C +/pllwlly. Indeed, locally, if w is compactly
supported, then w(x) = 2 [, Veuew(x — y).#dy from
which Young’s inequality and a partition-of-unity give the
result.

@ A power series expansion, the above inequality, and
Poincaré ’s inequality show the Moser-Trudinger inequality
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The uniformisation theorem for Genus > 2 : Variational

method : The Moser-Trudinger inequality

@ Now we come to the pesky constraint.

@ Firstly, there is a constant C (independent of p) such that
IwllLe < C +/pllwlly. Indeed, locally, if w is compactly
supported, then w(x) = 2 [, Veuew(x — y).#dy from
which Young’s inequality and a partition-of-unity give the
result.

@ A power series expansion, the above inequality, and
Poincaré ’s inequality show the Moser-Trudinger inequality
: fM e dA < y for some positive g,y and all [jul|; <1 and

fu=o.
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a?(IVul?,
© By AM-GM, forany a > 0, f, " < yexp|a fu+ —5*)
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The uniformisation theorem for Genus > 2 : Variational
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a ||VU||2
@ By AM-GM, for any a > 0, f/v/ edlul < yexp( fu+ )

@ Using |ef — 1] < |t|el!l and the inequality above,
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a ||VU||2
@ By AM-GM, for any a > 0, f/v/ edlul < yexp( fu+ )

@ Using |e! — 1] < |t|el!l and the inequality above, we see that
if u; > u weakly in H', then e — e strongly in L2.
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The uniformisation theorem for Genus > 2 : Variational

method

a ||VU||2
@ By AM-GM, for any a > 0, f/v/ edlul < yexp( fu+ )

@ Using |e! — 1] < |t|el!l and the inequality above, we see that
if u; > u weakly in H', then e — e strongly in L2.
@ Therefore, the constraint is met by f above.
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The uniformisation theorem for Genus > 2 : Variational

method : Coercivity
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The uniformisation theorem for Genus > 2 : Variational

method : Coercivity

@ We now prove a better lower bound on E(f).
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equation Afy + Ko,oid = 21tx(M)
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@ WLog we can assume that Ky < 0 by solving a linear
equation Afy + KO,oId =2nx(M) = Ko/newe_fo.
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@ We now prove a better lower bound on E(f).

@ WLog we can assume that Ky < 0 by solving a linear
equation Afy + Ko,old = 2nx(M) = Ko/newe_fo.

@ Since x — e~ ¥ is convex, by Jensen’s inequality
2rlx(M)| = fe~ > e~ f' and hence ff>-C.

@ Now a HW exercise asks you to prove the Poincaré
inequality :

Vamsi Pritham Pingali Lecture 2



The uniformisation theorem for Genus > 2 : Variational

method : Coercivity

@ We now prove a better lower bound on E(f).

@ WLog we can assume that Ky < 0 by solving a linear
equation Afy + Ko,old = 2nx(M) = Ko/newe_fo.

@ Since x — e~ ¥ is convex, by Jensen’s inequality
2rlx(M)| = fe~ > e~ f' and hence ff>-C.

@ Now a HW exercise asks you to prove the Poincaré

inequality :There exists a constant C such that
CIIVfll2 2 [If = f fll 2.
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@ We now prove a better lower bound on E(f).

@ WLog we can assume that Ky < 0 by solving a linear
equation Afy + Ko,old = 2nx(M) = Ko/newe_fo.

@ Since x — e~ ¥ is convex, by Jensen’s inequality
2rlx(M)| = fe~ > e~ f' and hence ff>-C.

@ Now a HW exercise asks you to prove the Poincaré

inequality :There exists a constant C such that
CIIVfll2 2 [If = f fll 2.

@ Putting the above together, we see that E(f) is bounded
below (in a coercive manner).
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We now prove a better lower bound on E(f).

WLog we can assume that Kp < 0 by solving a linear
equation Afy + Ko,old = 2nx(M) = Ko/newe_fo.

Since x — e~* is convex, by Jensen’s inequality
2rlx(M)| = fe~ > e~ f' and hence ff>-C.

Now a HW exercise asks you to prove the Poincaré

inequality :There exists a constant C such that
CIIVfll2 2 [If = f fll 2.

Putting the above together, we see that E(f) is bounded
below (in a coercive manner). Indeed,

E(f) =3[, IV(f= OB = [}, Ko(f = £ ) + 2rlx (M) £ f >
—C+&lf = f1I2,.
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The uniformisation theorem for Genus > 2 : Variational

method

o Letf=u+ff.
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@ Letf=u+ ff. So fu=0and hence |lull .z < ClIVull.
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@ So there is a sequence f, € H' (satisfying the constraint)
such that E(f,) — inf E.
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@ Letf=u+ ff. So fu=0and hence |lull .z < ClIVull.

@ So there is a sequence f, € H' (satisfying the constraint)
such that E(f,) — inf E.

@ By coercivity, u, weakly converges to u in H'. By the M-T
arguments, e KU — e=KU for every k strongly in L2.
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@ Letf=u+ ff. So fu=0and hence |lull .z < ClIVull.

@ So there is a sequence f, € H' (satisfying the constraint)
such that E(f,) — inf E.

@ By coercivity, u, weakly converges to u in H'. By the M-T
arguments, e KU — e=KU for every k strongly in L2.

@ Solving for f f, from the constraint, { f, = - (z}lg(ﬁf)l)
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@ Letf=u+ ff. So fu=0and hence |lull .z < ClIVull.

@ So there is a sequence f, € H' (satisfying the constraint)
such that E(f,) — inf E.

@ By coercivity, u, weakly converges to u in H'. By the M-T
arguments, e KU — e=KU for every k strongly in L2.

@ Solving for ff,, from the constraint, ff,, =— (z?g(ﬁ/n')l)
which converges to a number A.
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The uniformisation theorem for Genus > 2 : Variational

method

@ Letf=u+ ff. So fu=0and hence |lull .z < ClIVull.

@ So there is a sequence f, € H' (satisfying the constraint)
such that E(f,) — inf E.

@ By coercivity, u, weakly converges to u in H'. By the M-T
arguments, e KU — e=KU for every k strongly in L2.

@ Solving for ff,, from the constraint, ff,, =— (z?g(ﬁ/n')l)
which converges to a number A. Define f = A + u.
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The uniformisation theorem for Genus > 2 : Variational

method

@ Letf=u+ ff. So fu=0and hence |lull .z < ClIVull.

@ So there is a sequence f, € H' (satisfying the constraint)
such that E(f,) — inf E.

@ By coercivity, u, weakly converges to u in H'. By the M-T
arguments, e KU — e=KU for every k strongly in L2.
@ Solving for ff,, from the constraint, ff,, =— (2?76((2/"'»)

which converges to a number A. Define f = A + u. Hence
A= ff and it satisfies the constraint.
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@ Letf=u+ ff. So fu=0and hence |lull .z < ClIVull.

@ So there is a sequence f, € H' (satisfying the constraint)
such that E(f,) — inf E.

@ By coercivity, u, weakly converges to u in H'. By the M-T
arguments, e KU — e=KU for every k strongly in L2.
@ Solving for ff,, from the constraint, ff,, =— (2?76((2/"'»)

which converges to a number A. Define f = A + u. Hence
A= ff and it satisfies the constraint.

@ Since f, — f strongly in L2 and ||f||y1 < liminf ||fs]|41,
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@ Letf=u+ ff. So fu=0and hence |lull .z < ClIVull.

@ So there is a sequence f, € H' (satisfying the constraint)
such that E(f,) — inf E.

@ By coercivity, u, weakly converges to u in H'. By the M-T
arguments, e KU — e=KU for every k strongly in L2.

@ Solving for ff,, from the constraint, ff,, =— (z?g(ﬁ/n')l)

which converges to a number A. Define f = A + u. Hence
A= ff and it satisfies the constraint.

@ Since f, — f strongly in L2 and ||f||y1 < liminf ||fy]|41, we
see that ||Vf|[ 2 < liminf [|[Vfy]|,2.
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@ Letf=u+ ff. So fu=0and hence |lull .z < ClIVull.

@ So there is a sequence f, € H' (satisfying the constraint)
such that E(f,) — inf E.

@ By coercivity, u, weakly converges to u in H'. By the M-T
arguments, e KU — e=KU for every k strongly in L2.

@ Solving for ff,, from the constraint, ff,, =— (z?g(ﬁ/n')l)

which converges to a number A. Define f = A + u. Hence
A= ff and it satisfies the constraint.

@ Since f, — f strongly in L2 and ||f||y1 < liminf ||fy]|41, we
see that ||Vf|[ 2 < liminf [|[Vfy]|,2.

@ Hence, E(f) = inf(E) and E(u) = inf E where f = £ f+ u.
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The uniformisation theorem for Genus > 2 : Variational

method

© E(u) =} fj IVuP - [ Kou— 2ri(M)l n 24222},
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© E(u) =} fj IVuP - [ Kou— 2ri(M)l n 24222},

@ Let v e C®(M) with v =0.
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© E(u) =} fj IVuP - [ Kou— 2ri(M)l n 24222},

@ Let v e C®(M) with v =0. L) 5 = 0.
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The uniformisation theorem for Genus > 2 : Variational

method

© E(u) =} fj IVuP - [ Kou— 2ri(M)l n 24222},

@ Let v e C®(M) with v =0. L) 5 = 0.

o Thus 0 = [ (Vv,Vu)— [Kov - 2nlx(M)lffee_uuv.
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The uniformisation theorem for Genus > 2 : Variational

method

© E(u) =} fj IVuP - [ Kou— 2ri(M)l n 24222},

o Letve Co(M) with fv=0. EL, , _ 0.
@ Thus 0 = fM<Vv,Vu> - fKov— 2n|X(M)|ffee_uuv.
@ Thus, u e H' is a distributional solution of

Au = -Ko - 2rl(M)£5,
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The uniformisation theorem for Genus > 2 : Variational

method

® E(u) = sz IVul? - fKOU 27| x(M)|1n (%{":’)')
® Letve C¥(M) with fv = 0. EE) = 0.

o Thus 0 = [ (Vv,Vu)— [Kov - 2nlx(M)lffee_uuv.

@ Thus,ue H'isa distributlonal solution of
Au=-Ky - 2n|x(M )|f —, i.e., f solves the desired PDE.
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The uniformisation theorem for Genus > 2 : Variational

method

e E(u —sz|Vu|2 fKOU 2nt|x(M )“n(%@:)l)-

dE(u+tv) |
: dt

@ Letve C®(M) with fv =0 t—o = 0.

o Thus 0 = [ (Vv,Vu)— [Kov - 2nlx(M)lffee_uuv.

@ Thus,ue H'isa distributlonal solution of
Au=-Ky - 2n|x(M )|f —, i.e., f solves the desired PDE.

@ Now we need to show that f is smooth.
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The uniformisation theorem for Genus > 2 : Variational

method

e e e L2 (actually LP for all p)
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method

@ e ' e L2 (actually LP for all p) and hence f € H? by elliptic
regularity.
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The uniformisation theorem for Genus > 2 : Variational
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@ e " e L2 (actually LP for all p) and hence f € H? by elliptic
regularity.
@ By Sobolev embedding, f € WP for all p < c.
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The uniformisation theorem for Genus > 2 : Variational

method

@ e ' e L2 (actually LP for all p) and hence f € H? by elliptic
regularity.

@ By Sobolev embedding, f € W'P for all p < co. Hence,
e~" € H' and by elliptic regularity, f € H°.
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The uniformisation theorem for Genus > 2 : Variational

method

@ e ' e L2 (actually LP for all p) and hence f € H? by elliptic
regularity.

@ By Sobolev embedding, f € W'P for all p < co. Hence,
e~' € H' and by elliptic regularity, f € H3. By iteration, f is
smooth.
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Concluding thoughts

@ Try to replicate the above proof in genus 1.

Vamsi Pritham Pingali Lecture 2



Concluding thoughts

@ Try to replicate the above proof in genus 1. It works easily.

Vamsi Pritham Pingali Lecture 2



Concluding thoughts

@ Try to replicate the above proof in genus 1. It works easily.
@ In genus 0, you will run into a wall.
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@ Try to replicate the above proof in genus 1. It works easily.

@ In genus 0, you will run into a wall. The crucial point is to
know the exact constant in the M-T inequality (for
coercivity).
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Concluding thoughts

@ Try to replicate the above proof in genus 1. It works easily.

@ In genus 0, you will run into a wall. The crucial point is to
know the exact constant in the M-T inequality (for
coercivity).

@ That sharp M-T inequality was proved by Moser for the
sphere.
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Concluding thoughts

@ Try to replicate the above proof in genus 1. It works easily.

@ In genus 0, you will run into a wall. The crucial point is to
know the exact constant in the M-T inequality (for
coercivity).

@ That sharp M-T inequality was proved by Moser for the
sphere. Try reading up the proof. It is by “symmetrization”.
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Concluding thoughts

@ Try to replicate the above proof in genus 1. It works easily.

@ In genus 0, you will run into a wall. The crucial point is to
know the exact constant in the M-T inequality (for
coercivity).

@ That sharp M-T inequality was proved by Moser for the
sphere. Try reading up the proof. It is by “symmetrization”.
Reduces the problem to 1-D. (Not trivial in 1-D though !)
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