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Proved the Riemannian uniformisation theorem for genus
≥ 2 using a variational method.
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The uniformisation theorem for Genus ≥ 2 : Method of
sub and super solutions

If g = e−f g0 and we want K(g) = K , then ∆f = Ke−f
− K0.

It is a semilinear PDE. Let K = −1. Let the area of g0 be
normalised to be 1.
As before, WLog K0 < 0 everywhere.
We shall solve ∆f − εf = −e−f

− K0 − εf for some well
chosen ε > 0. The point is that ∆ − εI is invertible by the
Fredholm alternative.
The strategy is to find f+, f− such that f+ ≥ f−, and
∆f+ − εf+ ≤ −e−f+ − K0 − εf+ and likewise for f−. We shall
show that such fuctions imply the existence of a solution
f− ≤ f ≤ f+.
By choosing large and small constants, we can trivially find
f±.
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The uniformisation theorem for Genus ≥ 2 : Method of
sub and super solutions

Rather than giving the choice of ε right away, I shall
postpone it to motivate its choice.
Consider the sequence fi satisfying
∆fi − εfi = −e−fi−1 − K0 − εfi−1 with f0 = f−.
For f1, note that ∆f1 − εf1 ≤ ∆f− − εf−. Hence
∆(f1 − f−) ≤ ε(f1 − f−) which means by the min princ. that
f1 ≥ f−.
If T(f) = −e−f

− εf −K0, note that T(f) is decreasing in f on
[f−, f+] if ε > e−f− . This is the choice we are after.
So ∆f1 − εf1 ≥ T(f+) ≥ ∆f+ − εf+ and hence by the max.
princ. f1 ≤ f+.
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The uniformisation theorem for Genus ≥ 2 : Method of
sub and super solutions

Inductively, we shall prove that
f− = f0 ≤ f1 ≤ f2 ≤ . . . ≤ fi . . . ≤ f+.
Indeed, ∆(fi − fi+1) − ε(fi − fi+1) = T(fi−1) − T(fi) ≥ 0. By
the max. princ. fi ≤ fi+1.
∆fi − εfi = T(fi−1) ≤ T(f−) ≤ ∆f− − εf− and hence fi ≥ f−.
Likewise, fi ≤ f+.
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The uniformisation theorem for Genus ≥ 2 : Method of
sub and super solutions

The limit f(x) = limi→∞ fi(x) exists, is measurable, and
f− ≤ f ≤ f+. Thus it is in L2 and so is e−f .
Let φ be a smooth function. Then∫

(∆φ − εφ)fi =
∫

T(fi−1)φ. Writing ∆φ = ∆φ+ C − C and
φ = φ+ C − C where C >> 1, we see using MCT that f is
a distributional solution of the equation.
By elliptic regularity and bootstrapping, f is smooth and
hence the solution we are looking for.
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