Lecture 3 during Covid

Vamsi Pritham Pingali

IISc

= 990

Vamsi Pritham Pingali

Lecture 3

2/6

・ロ・・母・・ヨ・・ヨ・ のへぐ

Proved the Riemannian uniformisation theorem for genus
 ≥ 2 using a variational method.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

• If $g = e^{-f}g_0$ and we want K(g) = K, then $\Delta f = Ke^{-f} - K_0$.

|★ 国 ▶ | ★ 国 ▶ |

• If $g = e^{-f}g_0$ and we want K(g) = K, then $\Delta f = Ke^{-f} - K_0$. It is a semilinear PDE.

三) -

• If $g = e^{-f}g_0$ and we want K(g) = K, then $\Delta f = Ke^{-f} - K_0$. It is a semilinear PDE. Let K = -1.

If g = e^{-f}g₀ and we want K(g) = K, then Δf = Ke^{-f} - K₀.
 It is a semilinear PDE. Let K = −1. Let the area of g₀ be normalised to be 1.

If g = e^{-f}g₀ and we want K(g) = K, then Δf = Ke^{-f} - K₀.
 It is a semilinear PDE. Let K = −1. Let the area of g₀ be normalised to be 1.

As before,

- If g = e^{-f}g₀ and we want K(g) = K, then Δf = Ke^{-f} K₀.
 It is a semilinear PDE. Let K = −1. Let the area of g₀ be normalised to be 1.
- As before, WLog $K_0 < 0$ everywhere.

3/6

- If g = e^{-f}g₀ and we want K(g) = K, then Δf = Ke^{-f} K₀.
 It is a semilinear PDE. Let K = −1. Let the area of g₀ be normalised to be 1.
- As before, WLog $K_0 < 0$ everywhere.
- We shall solve $\Delta f \epsilon f = -e^{-f} K_0 \epsilon f$ for some well chosen $\epsilon > 0$.

- If g = e^{-f}g₀ and we want K(g) = K, then Δf = Ke^{-f} K₀.
 It is a semilinear PDE. Let K = −1. Let the area of g₀ be normalised to be 1.
- As before, WLog $K_0 < 0$ everywhere.
- We shall solve $\Delta f \epsilon f = -e^{-f} K_0 \epsilon f$ for some well chosen $\epsilon > 0$. The point is that $\Delta \epsilon I$ is invertible by the Fredholm alternative.

▶ ▲ @ ▶ ▲ ⊇ ▶ ▲ ⊇ ▶ ...

- If g = e^{-f}g₀ and we want K(g) = K, then Δf = Ke^{-f} K₀.
 It is a semilinear PDE. Let K = −1. Let the area of g₀ be normalised to be 1.
- As before, WLog $K_0 < 0$ everywhere.
- We shall solve $\Delta f \epsilon f = -e^{-f} K_0 \epsilon f$ for some well chosen $\epsilon > 0$. The point is that $\Delta \epsilon I$ is invertible by the Fredholm alternative.
- The strategy is to find f_+ , f_- such that $f_+ \ge f_-$,

ヘロン 人間 とくほど 人 ほとう

- If g = e^{-f}g₀ and we want K(g) = K, then Δf = Ke^{-f} K₀.
 It is a semilinear PDE. Let K = −1. Let the area of g₀ be normalised to be 1.
- As before, WLog $K_0 < 0$ everywhere.
- We shall solve $\Delta f \epsilon f = -e^{-f} K_0 \epsilon f$ for some well chosen $\epsilon > 0$. The point is that $\Delta \epsilon I$ is invertible by the Fredholm alternative.
- The strategy is to find f_+ , f_- such that $f_+ \ge f_-$, and $\Delta f_+ \epsilon f_+ \le -e^{-f_+} K_0 \epsilon f_+$ and likewise for f_- .

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

- If g = e^{-f}g₀ and we want K(g) = K, then Δf = Ke^{-f} K₀.
 It is a semilinear PDE. Let K = −1. Let the area of g₀ be normalised to be 1.
- As before, WLog $K_0 < 0$ everywhere.
- We shall solve $\Delta f \epsilon f = -e^{-f} K_0 \epsilon f$ for some well chosen $\epsilon > 0$. The point is that $\Delta \epsilon I$ is invertible by the Fredholm alternative.
- The strategy is to find f₊, f₋ such that f₊ ≥ f₋, and Δf₊ − εf₊ ≤ −e^{-f₊} − K₀ − εf₊ and likewise for f₋. We shall show that such fuctions imply the existence of a solution f₋ ≤ f ≤ f₊.

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

- If g = e^{-f}g₀ and we want K(g) = K, then ∆f = Ke^{-f} K₀.
 It is a semilinear PDE. Let K = -1. Let the area of g₀ be normalised to be 1.
- As before, WLog $K_0 < 0$ everywhere.
- We shall solve $\Delta f \epsilon f = -e^{-f} K_0 \epsilon f$ for some well chosen $\epsilon > 0$. The point is that $\Delta \epsilon I$ is invertible by the Fredholm alternative.
- The strategy is to find f₊, f₋ such that f₊ ≥ f₋, and Δf₊ − εf₊ ≤ −e^{-f₊} − K₀ − εf₊ and likewise for f₋. We shall show that such fuctions imply the existence of a solution f₋ ≤ f ≤ f₊.
- By choosing large and small constants, we can trivially find f_{\pm} .

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

• Rather than giving the choice of ϵ right away, I shall postpone it to motivate its choice.

- ⊒ →

- Rather than giving the choice of *e* right away, I shall postpone it to motivate its choice.
- Consider the sequence f_i satisfying $\Delta f_i - \epsilon f_i = -e^{-f_{i-1}} - K_0 - \epsilon f_{i-1}$ with $f_0 = f_-$.

- Rather than giving the choice of *e* right away, I shall postpone it to motivate its choice.
- Consider the sequence f_i satisfying $\Delta f_i - \epsilon f_i = -e^{-f_{i-1}} - K_0 - \epsilon f_{i-1}$ with $f_0 = f_-$.
- For f_1 , note that $\Delta f_1 \epsilon f_1 \leq \Delta f_- \epsilon f_-$.

- Rather than giving the choice of *e* right away, I shall postpone it to motivate its choice.
- Consider the sequence f_i satisfying $\Delta f_i - \epsilon f_i = -e^{-f_{i-1}} - K_0 - \epsilon f_{i-1}$ with $f_0 = f_-$.
- For f_1 , note that $\Delta f_1 \epsilon f_1 \le \Delta f_- \epsilon f_-$. Hence $\Delta(f_1 f_-) \le \epsilon(f_1 f_-)$

- Rather than giving the choice of ϵ right away, I shall postpone it to motivate its choice.
- Consider the sequence f_i satisfying $\Delta f_i - \epsilon f_i = -e^{-f_{i-1}} - K_0 - \epsilon f_{i-1}$ with $f_0 = f_-$.
- For f_1 , note that $\Delta f_1 \epsilon f_1 \le \Delta f_- \epsilon f_-$. Hence $\Delta(f_1 f_-) \le \epsilon(f_1 f_-)$ which means by the min princ. that $f_1 \ge f_-$.

- Rather than giving the choice of *e* right away, I shall postpone it to motivate its choice.
- Consider the sequence f_i satisfying $\Delta f_i - \epsilon f_i = -e^{-f_{i-1}} - K_0 - \epsilon f_{i-1}$ with $f_0 = f_-$.
- For f_1 , note that $\Delta f_1 \epsilon f_1 \le \Delta f_- \epsilon f_-$. Hence $\Delta(f_1 f_-) \le \epsilon(f_1 f_-)$ which means by the min princ. that $f_1 \ge f_-$.
- If $T(f) = -e^{-f} \epsilon f K_0$, note that T(f) is decreasing in f on $[f_-, f_+]$ if $\epsilon > e^{-f_-}$.

ヘロト ヘアト ヘビト ヘビト

- Rather than giving the choice of *e* right away, I shall postpone it to motivate its choice.
- Consider the sequence f_i satisfying $\Delta f_i - \epsilon f_i = -e^{-f_{i-1}} - K_0 - \epsilon f_{i-1}$ with $f_0 = f_-$.
- For f_1 , note that $\Delta f_1 \epsilon f_1 \le \Delta f_- \epsilon f_-$. Hence $\Delta(f_1 f_-) \le \epsilon(f_1 f_-)$ which means by the min princ. that $f_1 \ge f_-$.
- If $T(f) = -e^{-f} \epsilon f K_0$, note that T(f) is decreasing in f on $[f_-, f_+]$ if $\epsilon > e^{-f_-}$. This is the choice we are after.

ヘロン 人間 とくほ とくほ とう

- Rather than giving the choice of *e* right away, I shall postpone it to motivate its choice.
- Consider the sequence f_i satisfying $\Delta f_i - \epsilon f_i = -e^{-f_{i-1}} - K_0 - \epsilon f_{i-1}$ with $f_0 = f_-$.
- For f_1 , note that $\Delta f_1 \epsilon f_1 \le \Delta f_- \epsilon f_-$. Hence $\Delta(f_1 f_-) \le \epsilon(f_1 f_-)$ which means by the min princ. that $f_1 \ge f_-$.
- If $T(f) = -e^{-f} \epsilon f K_0$, note that T(f) is decreasing in f on $[f_-, f_+]$ if $\epsilon > e^{-f_-}$. This is the choice we are after.
- So $\Delta f_1 \epsilon f_1 \ge T(f_+) \ge \Delta f_+ \epsilon f_+$ and hence

ヘロン 人間 とくほど 人 ほとう

- Rather than giving the choice of *e* right away, I shall postpone it to motivate its choice.
- Consider the sequence f_i satisfying $\Delta f_i - \epsilon f_i = -e^{-f_{i-1}} - K_0 - \epsilon f_{i-1}$ with $f_0 = f_-$.
- For f_1 , note that $\Delta f_1 \epsilon f_1 \le \Delta f_- \epsilon f_-$. Hence $\Delta(f_1 f_-) \le \epsilon(f_1 f_-)$ which means by the min princ. that $f_1 \ge f_-$.
- If $T(f) = -e^{-f} \epsilon f K_0$, note that T(f) is decreasing in f on $[f_-, f_+]$ if $\epsilon > e^{-f_-}$. This is the choice we are after.
- So $\Delta f_1 \epsilon f_1 \ge T(f_+) \ge \Delta f_+ \epsilon f_+$ and hence by the max. princ. $f_1 \le f_+$.

・ロ・ ・ 同・ ・ ヨ・ ・ ヨ・

• Inductively, we shall prove that $f_- = f_0 \le f_1 \le f_2 \le \ldots \le f_i \ldots \le f_+$.

5/6

- Inductively, we shall prove that $f_- = f_0 \le f_1 \le f_2 \le \ldots \le f_i \ldots \le f_+$.
- Indeed, $\Delta(f_i f_{i+1}) \epsilon(f_i f_{i+1}) = T(f_{i-1}) T(f_i) \ge 0.$

- Inductively, we shall prove that $f_- = f_0 \le f_1 \le f_2 \le \ldots \le f_i \ldots \le f_+$.
- Indeed, $\Delta(f_i f_{i+1}) \epsilon(f_i f_{i+1}) = T(f_{i-1}) T(f_i) \ge 0$. By the max. princ. $f_i \le f_{i+1}$.

- Inductively, we shall prove that $f_- = f_0 \le f_1 \le f_2 \le \ldots \le f_i \ldots \le f_+$.
- Indeed, $\Delta(f_i f_{i+1}) \epsilon(f_i f_{i+1}) = T(f_{i-1}) T(f_i) \ge 0$. By the max. princ. $f_i \le f_{i+1}$.
- $\Delta f_i \epsilon f_i = T(f_{i-1}) \le T(f_-) \le \Delta f_- \epsilon f_-$ and hence

- Inductively, we shall prove that $f_- = f_0 \le f_1 \le f_2 \le \ldots \le f_i \ldots \le f_+$.
- Indeed, $\Delta(f_i f_{i+1}) \epsilon(f_i f_{i+1}) = T(f_{i-1}) T(f_i) \ge 0$. By the max. princ. $f_i \le f_{i+1}$.
- $\Delta f_i \epsilon f_i = T(f_{i-1}) \le T(f_-) \le \Delta f_- \epsilon f_-$ and hence $f_i \ge f_-$.

- Inductively, we shall prove that $f_- = f_0 \le f_1 \le f_2 \le \ldots \le f_i \ldots \le f_+$.
- Indeed, $\Delta(f_i f_{i+1}) \epsilon(f_i f_{i+1}) = T(f_{i-1}) T(f_i) \ge 0$. By the max. princ. $f_i \le f_{i+1}$.
- $\Delta f_i \epsilon f_i = T(f_{i-1}) \le T(f_-) \le \Delta f_- \epsilon f_-$ and hence $f_i \ge f_-$. Likewise, $f_i \le f_+$.

5/6

• The limit $f(x) = \lim_{i \to \infty} f_i(x)$ exists,

★ Ξ → ★ Ξ →

 The limit f(x) = lim_{i→∞} f_i(x) exists, is measurable, and f₋ ≤ f ≤ f₊.

6/6

프 에 세 프 어

• The limit $f(x) = \lim_{i\to\infty} f_i(x)$ exists, is measurable, and $f_- \le f \le f_+$. Thus it is in L^2 and so is e^{-f} .

Lecture 3

- The limit $f(x) = \lim_{i\to\infty} f_i(x)$ exists, is measurable, and $f_- \le f \le f_+$. Thus it is in L^2 and so is e^{-f} .
- Let ϕ be a smooth function.

- The limit $f(x) = \lim_{i\to\infty} f_i(x)$ exists, is measurable, and $f_- \le f \le f_+$. Thus it is in L^2 and so is e^{-f} .
- Let ϕ be a smooth function. Then $\int (\Delta \phi \epsilon \phi) f_i = \int T(f_{i-1}) \phi$.

< 回 > < 回 > < 回 > .

- The limit $f(x) = \lim_{i\to\infty} f_i(x)$ exists, is measurable, and $f_- \le f \le f_+$. Thus it is in L^2 and so is e^{-f} .
- Let ϕ be a smooth function. Then $\int (\Delta \phi - \epsilon \phi) f_i = \int T(f_{i-1}) \phi.$ Writing $\Delta \phi = \Delta \phi + C - C$ and $\phi = \phi + C - C$ where C >> 1,

→ < @ → < E → < E → E</p>

- The limit $f(x) = \lim_{i\to\infty} f_i(x)$ exists, is measurable, and $f_- \le f \le f_+$. Thus it is in L^2 and so is e^{-f} .
- Let ϕ be a smooth function. Then $\int (\Delta \phi - \epsilon \phi) f_i = \int T(f_{i-1}) \phi.$ Writing $\Delta \phi = \Delta \phi + C - C$ and $\phi = \phi + C - C$ where C >> 1, we see using MCT that *f* is a distributional solution of the equation.

▶ ▲圖▶ ▲ 臣▶ ▲ 臣▶ …

- The limit $f(x) = \lim_{i\to\infty} f_i(x)$ exists, is measurable, and $f_- \le f \le f_+$. Thus it is in L^2 and so is e^{-f} .
- Let ϕ be a smooth function. Then $\int (\Delta \phi - \epsilon \phi) f_i = \int T(f_{i-1}) \phi.$ Writing $\Delta \phi = \Delta \phi + C - C$ and $\phi = \phi + C - C$ where C >> 1, we see using MCT that *f* is a distributional solution of the equation.
- By elliptic regularity and bootstrapping, *f* is smooth and hence the solution we are looking for.