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1. Recap

(1) Sketched a proof of parabolic existence.
(2) Motivated the Riemannian uniformisation theorem.

Theorem 1.1. Every parabolic equation has a unique smooth solution for all time, i.e., on [0,∞)×M .

Proof. First we prove uniqueness. Indeed, if there are two solutions, then let v = u1−u2. It satisfies
dv
dt = −Lv, v(0) = 0. Now,

d(v, v)L2

dt
= −2(Lv, v) ≤ −δ(v, v)L2 .(1.1)

Hence,

(v, v)(t) ≤ (v, v)(0)e−δt.

Thus v ≡ 0. The estimate on v (an “Energy estimate”) is useful in its own right. One can similarly
prove that if dv

dt = −Lv + f , then (v, v)(t) ≤ C(1 + t).
Now we prove existence. Let en be a countable family of smooth eigenvectors with eigenvalues

λn > 0 of L spanning L2. Thus, u0 =
∑

n cnen for any u0 ∈ L2 (and f =
∑

n fnen). Since u0 ∈ L2, we

see that
∑

n |cn|2 <∞. First we prove that the quantity ‖u0‖2k =
∑

n |cn|2(1 +λn)2k is equivalent to

the Hk2θ norm. Indeed, if ‖u0‖k <∞, then (u0, L
ken)L2 = λkncn. If φ is a smooth section, then φ =∑

n φnen. Thus, Lkφ ∈ L2 satisfies (Lkφ, en) = φnλ
k
n. Therefore, (u0, L

kφ) =
∑

n cnλ
k
nφn and hence

Lku0 = fk in the sense of distributions where fk ∈ L2. Therefore, u0 ∈ Hkθ and ‖u0‖Hk2θ ≤ Ck‖u0‖k.
Conversely, if u0 ∈ H2kθ, then ‖Lku0‖L2 ≤ C‖u0‖H2kθ < ∞. Thus, (Lku0, en) = (u0, L

ken) = λkncn.

Therefore, ‖u0‖k <∞ and ‖u0‖2k ≤ C̃k‖u0‖2H2kθ .

Define the function u(t) =
∑

n cne
−λnten + fn

λn
(1 − e−λnt)en. Clearly u(t) ∈ L2. Moreover,

‖u(t)− u0‖2L2 =
∑

n |cn|2(1− e−λnt)2 which by DCT converges to 0 as t→ 0+.
Now we proceed to prove that u(t, x) is C∞ in x for every fixed t ≥ 0 and that we can differentiate

w.r.t x term-by-term. Since
∑

n cnen and
∑

n fnen are smooth (by assumption), their ‖.‖k norms
are finite for all (by the equivalence of norms above). Therefore, ‖u‖H2kθ ≤ Ck ∀ k. Hence u
is smooth in x for all fixed t ≥ 0. Moreover, by Sobolev embedding, the partial sum sN (t) =

‖
∑N

n=1 unen‖Ck,α ≤ C̃k independent of N . Therefore, by Arzela-Ascoli, every subsequence has a

subsequence that converges in C l and in fact the limits are all u(t) because sN (t) → u(t) in L2.
Therefore, u(t) ∈ C l for all l and the term-by-term derivatives in x converge.

Now note that if u(t) =
∑

n un(t)en where ‖sN (t)‖Hk ≤ Ck independent of N, t ≥ 0, then ‖sN (t)−
sN (t0)‖2k ≤

∑N
n=1(1 + λn)2k(2λ2n|cn|2 + λ2n|fn|2)|t− t0|2 ≤ Ck and hence ‖sN (t)− sN (t0)‖C0 < ε for

t − t0 small (if t0 = 0, then t ≥ 0). So u(t, x)is continuous in (t, x). Actually, this argument shows
that ∂lxu(t, x) is continuous too.

Likewise, ‖s′N (t)− s′N (t0)‖C0 < ε for t close to t0. So the term-by-term derivatives s′N (t) converge

uniformly to a continuous function v(t, x). Note that
∫ t
0 v(a)da = limN→∞

∫ t
0 s
′
N (a)da = u(s) and

hence by the FTC, u′(t, x) = v(t, x) and moreover, u′(t, x) is continuous in t, x. (Actually it shows
that all the partials in x are also continuous.) Inductively, we can prove that u is smooth on [0,∞)×M

1



2 COVID LECTURE 1

and that we can differentiate term-by-term.
Finally, an easy calculation shows that u satisfies the equation with the boundary conditions. �

2. Uniformisation theorem

Writing the resulting PDE down, we get (See list of formulas in Riemannian geometry on wikipedia
to get the correct formula),

∆f = Ke−f −K0,(2.1)

where K0 is the Gaussian curvature of g0, K is the new curvature, ∆f is locally, at a point where we

choose coordinates such that g0(p) is the Euclidean metric up to the second order, ∆f(p) = ∂2f
∂x2

+ ∂2f
∂y2

.

The question is - Can we solve this equation ? If so, is the solution unique ? The answer (which is
supposedly blowing in the wind) is provided by the Riemannian uniformisation theorem -

Theorem 2.1. In every conformal class of metrics [g] on a compact oriented surface, there exists a
unique (up to rescalings by positive constants) metric of constant curvature.

Proof. It is actually quite hard to prove (shockingly enough) this theorem for genus g = 0, i.e., for a
sphere ! (Of course there is one metric of positive constant curvature that even children (who do not
believe the flat-earth theory) know about. The issue is that are there other conformal classes ? (There
aren’t) If there are, how do you prove that they have such metrics ? The technique we are going to
describe below will run into serious challenges for g = 0.) In fact, this is no coincidence. It turns
out that one generalisation of this observation has been proven recently by Chen-Donaldson-Sun
(and apparently independently by Tian). It is called the Yau-Tian-Donaldson conjecture. Another
generalisation called the Yamabe problem was solved earlier.
Let us take the next case of g = 1. Note that by the Gauss-Bonnet theorem,

∫
KdA =

∫
M K0dA0 =

2π(2− 2g) = 0. Therefore we want K = 0. This means we have to solve

∆f = −K0.

Let’s prove uniqueness first. Indeed, if f1, f2 are two solutions, then ∆(f1 − f2) = 0. Multiplying by
f1 − f2 and integrating-by-parts we get

−
∫
M
|∇(f1 − f2)|2 = 0.

Therefore f1− f2 is a constant. The point of this calculation is “If you want to prove that the kernel
of some operator is trivial, multiply by something and integrate-by-parts”. Since the Laplacian is
elliptic, the Fredholm alternative shows that we are done for g = 1.
For higher genus, we want K < 0. Now we are faced with a nonlinear PDE. Here is a beautiful
method (originally due to Bernstein) to handle such PDE. It is called the method of continuity.
Consider the following family of PDE indexed by a number 0 ≤ t ≤ 1.

∆ft = −e−ft − tK0 + (1− t).(2.2)

At t = 0 there is obviously a solution φ0 = 0. If we prove that the set of t for which there exists a
smooth solution is both open and closed, then by connectedness, the set is [0, 1].

(1) Openness : Basically, given a solution at t = t0, we need to prove that there are solutions
nearby. Consider the following map,

T (t, f) = ∆f + e−f + tK0 − (1− t).(2.3)
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Naively speaking, if this was a map between finite dimensional things, then by implicit func-
tion theorem, if its derivative with respect to f is surjective then we will be done. Indeed,
there is an implicit function theorem on Banach spaces.

Theorem 2.2. Suppose X,Y, Z are Banach spaces, C ⊂ X × Y is open, and f : C → Z is
C1. Suppose (a, b) ∈ C and v → Df(a,b)(0, v) is a Banach space isomorphism from Y onto

Z. Then locally, z = f(x, y) can be solved for to yield a C1 function g such that y = g(x, z).

Remark 2.3. In fact, there is one for Banach manifolds, i.e., Hausdorff topological spaces
equipped with a maximal atlas consisting of open sets isomorphic to a open subsets of Banach
spaces with the transition functions being smooth, i.e., the Fréchet derivatives (in the usual
sense) exist as multilinear bounded maps. Typically they are required to be separable and
metrisable. In fact a theorem of Henderson states that such beasts are diffeomorphic to open
subsets of the separable Hilbert space.

Remark 2.4. The theorem follows from the inverse function theorem on Banach spaces,
whose proof is exactly word-to-word the same as the finite-dimensional one. (The contraction
mapping principle.) You may look at Lang’s book for it.

The appropriate Banach spaces to consider are R × Ck+2,α and Ck,α for a given integers
k ≥ 0 and α > 0. Why the α? (Hölder space) It is for a technical reason as we shall see in a
moment. The “derivative” with respect to f being surjective is the same as saying, for every
v ∈ Ck,α there exists a u ∈ Ck+2,α such that

d

ds
|s=0T (t0, ft0 + su) = v

⇒ ∆u− e−ft0u = v.(2.4)

Borrowing from our intuition from linear algebra (it is easy to verify that the above equation
for u is self-adjoint), i.e., using the Fredholm alternative, we simply need to show that the
kernel is trivial. Indeed if u is in the kernel, then

∆u = e−ft0u

⇒ −
∫
M
|∇u|2dA0 =

∫
M
u2e−ft0dA0.

which means that u = 0.
(2) Closedness : This is usually the harder part of any method of continuity. What does it mean

for the set to be closed ? It means that for any sequence tn → t such that ftn exist, there
exists a solution ft at t. In other words, if we can prove that a subsequence ftnk → ft in

C2,α then we will be done. Beautifully enough, the Arzela-Ascoli theorem implies that (do
this as an exercise) if β > α and a sequence wn is bounded independent of n in C2,β, then a
subsequence converges in C2,α! Thus, to show closedness, it is enough to prove that solutions
to equation 2.2 have a uniform C2,β estimate independent of t.

Indeed, such estimates are proven by improving upon lower order estimates -

Let’s see if we can at least prove that ‖ft‖C0 ≤ C. Indeed, at the maximum of ft, easy

calculus shows that ∆ft ≤ 0. (Second derivative test.) Therefore −e−ft(max)−tK0+(1−t) ≤
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0. This means that ft(max) ≤ C. Likewise ft(min) ≥ c.
Actually, now we have some standard results in PDE theory (read Kazdan’s notes for

instance) that say effectively the following : If the right hand side of ∆f = h is bounded
in Lp for all large p, then f is actually bounded in C1,α for some α > 0 (It is basically
Lp regularity + Sobolev embedding). There is another result (Schauder’s estimates) that
implies that if the right hand side of ∆f = h is bounded in C0,α and ‖f‖C0 ≤ C, then
actually ‖f‖C2,α ≤ C. So combining all of these, we get our desired estimates. (These are
called “a priori” estimates.)

As for uniqueness, suppose f1, f2 satisfy the equation for K < 0. Then

∆(f1 − f2) = K(e−f1 − e−f2)

⇒ −
∫
M
|∇(f1 − f2)|2 = K

∫
M

(f1 − f2)(e−f1 − e−f2).(2.5)

This means that f1 − f2 is a constant.
Actually, uniqueness is quite easy for all three cases K = 0, > 0, < 0 assuming the Killing-
Hopf theorem of the next section.

By the way, for K > 0, here is a way to prove some things : Firstly, in the conformal class
of the usual round metric, there exists a constant curvature metric (the round one). Then
assuming one knows complex geometry one proves that there is only one complex structure
on the sphere. (This involves a little bit of algebraic geometry.) Thus there is only one
conformal class and we are done.
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