Lecture 16 - UM 102 (Spring 2021)

Vamsi Pritham Pingali

IISc

Recap

• Defined Hermitian and Skew-Hermitian

∃ ► < ∃ ►</p>

• Defined Hermitian and Skew-Hermitian linear maps and matrices.

- Defined Hermitian and Skew-Hermitian linear maps and matrices.
- Proved that they had

э

- Defined Hermitian and Skew-Hermitian linear maps and matrices.
- Proved that they had real eigenvalues and that

- Defined Hermitian and Skew-Hermitian linear maps and matrices.
- Proved that they had real eigenvalues and that they could be diagonalised

- Defined Hermitian and Skew-Hermitian linear maps and matrices.
- Proved that they had real eigenvalues and that they could be diagonalised using unitary matrices.

• A wide variety of

• A wide variety of natural laws

• A wide variety of natural laws involve functions

• A wide variety of natural laws involve functions that satisfy

• A wide variety of natural laws involve functions that satisfy differential equations.

3/10

- A wide variety of natural laws involve functions that satisfy differential equations.
- In particular,

- A wide variety of natural laws involve functions that satisfy differential equations.
- In particular, Newton's laws are

- A wide variety of natural laws involve functions that satisfy differential equations.
- In particular, Newton's laws are $m \frac{d^2 \vec{r}}{dt^2} = \vec{F}$.

- A wide variety of natural laws involve functions that satisfy differential equations.
- In particular, Newton's laws are $m\frac{d^2\vec{r}}{dt^2} = \vec{F}$. Equations of the form $F(t, \vec{y}, \vec{y}', \dots, \vec{y}^{(n)}) = 0$ are called

- A wide variety of natural laws involve functions that satisfy differential equations.
- In particular, Newton's laws are $m \frac{d^2 \vec{r}}{dt^2} = \vec{F}$. Equations of the form $F(t, \vec{y}, \vec{y'}, \dots, \vec{y^{(n)}}) = 0$ are called *Ordinary Differential Equations*

- A wide variety of natural laws involve functions that satisfy differential equations.
- In particular, Newton's laws are $m\frac{d^2\vec{r}}{dt^2} = \vec{F}$. Equations of the form $F(t, \vec{y}, \vec{y}', \dots, \vec{y}^{(n)}) = 0$ are called *Ordinary Differential Equations* of order *n*.

- A wide variety of natural laws involve functions that satisfy differential equations.
- In particular, Newton's laws are $m\frac{d^2\vec{r}}{dt^2} = \vec{F}$. Equations of the form $F(t, \vec{y}, \vec{y}', \dots, \vec{y}^{(n)}) = 0$ are called *Ordinary Differential Equations* of order *n*. If *F* is

- A wide variety of natural laws involve functions that satisfy differential equations.
- In particular, Newton's laws are $m\frac{d^2\vec{r}}{dt^2} = \vec{F}$. Equations of the form $F(t, \vec{y}, \vec{y}', \dots, \vec{y}^{(n)}) = 0$ are called *Ordinary Differential Equations* of order *n*. If *F* is *linear* in *y*, *y*', ... etc then

- A wide variety of natural laws involve functions that satisfy differential equations.
- In particular, Newton's laws are m d²r/dt² = F. Equations of the form F(t, y, y', ..., y'⁽ⁿ⁾) = 0 are called Ordinary Differential Equations of order n. If F is linear in y, y', ... etc then the ODE is said to be linear.

- A wide variety of natural laws involve functions that satisfy differential equations.
- In particular, Newton's laws are m d²r/dt² = F. Equations of the form F(t, y, y', ..., y'⁽ⁿ⁾) = 0 are called Ordinary Differential Equations of order n. If F is linear in y, y', ... etc then the ODE is said to be linear. If y = 0 is a solution of

- A wide variety of natural laws involve functions that satisfy differential equations.
- In particular, Newton's laws are $m\frac{d^2\vec{r}}{dt^2} = \vec{F}$. Equations of the form $F(t, \vec{y}, \vec{y}', \dots, \vec{y}^{(n)}) = 0$ are called *Ordinary Differential Equations* of order *n*. If *F* is *linear* in *y*, *y*', ... etc then the ODE is said to be linear. If $\vec{y} = 0$ is a solution of a linear ODE

- A wide variety of natural laws involve functions that satisfy differential equations.
- In particular, Newton's laws are m d²r/dt² = F. Equations of the form F(t, y, y', ..., y'(n)) = 0 are called Ordinary Differential Equations of order n. If F is linear in y, y', ... etc then the ODE is said to be linear. If y = 0 is a solution of a linear ODE then it is called a homogeneous linear equation.

- A wide variety of natural laws involve functions that satisfy differential equations.
- In particular, Newton's laws are m d²r/dt² = F. Equations of the form F(t, y, y', ..., y'(n)) = 0 are called Ordinary Differential Equations of order n. If F is linear in y, y', ... etc then the ODE is said to be linear. If y = 0 is a solution of a linear ODE then it is called a homogeneous linear equation.
- Often, ODE come with

- A wide variety of natural laws involve functions that satisfy differential equations.
- In particular, Newton's laws are m d²r/dt² = F. Equations of the form F(t, y, y', ..., y'(n)) = 0 are called Ordinary Differential Equations of order n. If F is linear in y, y', ... etc then the ODE is said to be linear. If y = 0 is a solution of a linear ODE then it is called a homogeneous linear equation.
- Often, ODE come with boundary conditions

- A wide variety of natural laws involve functions that satisfy differential equations.
- In particular, Newton's laws are m d²r/dt² = F. Equations of the form F(t, y, y', ..., y'(n)) = 0 are called Ordinary Differential Equations of order n. If F is linear in y, y', ... etc then the ODE is said to be linear. If y = 0 is a solution of a linear ODE then it is called a homogeneous linear equation.
- Often, ODE come with *boundary conditions* like y(0) = 0, y'(0) = 4, y''(1) = 2, etc.

- A wide variety of natural laws involve functions that satisfy differential equations.
- In particular, Newton's laws are m d²r/dt² = F. Equations of the form F(t, y, y', ..., y'(n)) = 0 are called Ordinary Differential Equations of order n. If F is linear in y, y', ... etc then the ODE is said to be linear. If y = 0 is a solution of a linear ODE then it is called a homogeneous linear equation.
- Often, ODE come with boundary conditions like y(0) = 0, y'(0) = 4, y''(1) = 2, etc.
- Given an ODE

- A wide variety of natural laws involve functions that satisfy differential equations.
- In particular, Newton's laws are m d²r/dt² = F. Equations of the form F(t, y, y', ..., y'(n)) = 0 are called Ordinary Differential Equations of order n. If F is linear in y, y', ... etc then the ODE is said to be linear. If y = 0 is a solution of a linear ODE then it is called a homogeneous linear equation.
- Often, ODE come with *boundary conditions* like y(0) = 0, y'(0) = 4, y''(1) = 2, etc.
- Given an ODE one can ask

- A wide variety of natural laws involve functions that satisfy differential equations.
- In particular, Newton's laws are m d²r/dt² = F. Equations of the form F(t, y, y', ..., y'(n)) = 0 are called Ordinary Differential Equations of order n. If F is linear in y, y', ... etc then the ODE is said to be linear. If y = 0 is a solution of a linear ODE then it is called a homogeneous linear equation.
- Often, ODE come with boundary conditions like y(0) = 0, y'(0) = 4, y''(1) = 2, etc.
- Given an ODE one can ask "Is there a solution satisfying the boundary conditions ?",

- A wide variety of natural laws involve functions that satisfy differential equations.
- In particular, Newton's laws are m d²r/dt² = F. Equations of the form F(t, y, y', ..., y'(n)) = 0 are called Ordinary Differential Equations of order n. If F is linear in y, y', ... etc then the ODE is said to be linear. If y = 0 is a solution of a linear ODE then it is called a homogeneous linear equation.
- Often, ODE come with boundary conditions like y(0) = 0, y'(0) = 4, y''(1) = 2, etc.
- Given an ODE one can ask "Is there a solution satisfying the boundary conditions ?", "Is it unique?"

- A wide variety of natural laws involve functions that satisfy differential equations.
- In particular, Newton's laws are m d²r/dt² = F. Equations of the form F(t, y, y', ..., y'(n)) = 0 are called Ordinary Differential Equations of order n. If F is linear in y, y', ... etc then the ODE is said to be linear. If y = 0 is a solution of a linear ODE then it is called a homogeneous linear equation.
- Often, ODE come with boundary conditions like y(0) = 0, y'(0) = 4, y''(1) = 2, etc.
- Given an ODE one can ask "Is there a solution satisfying the boundary conditions ?", "Is it unique?" "Can we write a formula for it?" and

- A wide variety of natural laws involve functions that satisfy differential equations.
- In particular, Newton's laws are m d²r/dt² = F. Equations of the form F(t, y, y', ..., y'(n)) = 0 are called Ordinary Differential Equations of order n. If F is linear in y, y', ... etc then the ODE is said to be linear. If y = 0 is a solution of a linear ODE then it is called a homogeneous linear equation.
- Often, ODE come with boundary conditions like y(0) = 0, y'(0) = 4, y''(1) = 2, etc.
- Given an ODE one can ask "Is there a solution satisfying the boundary conditions ?", "Is it unique?" "Can we write a formula for it?" and "Can we compute it using an efficient algorithm?"

- A wide variety of natural laws involve functions that satisfy differential equations.
- In particular, Newton's laws are m d²r/dt² = F. Equations of the form F(t, y, y', ..., y'(n)) = 0 are called Ordinary Differential Equations of order n. If F is linear in y, y', ... etc then the ODE is said to be linear. If y = 0 is a solution of a linear ODE then it is called a homogeneous linear equation.
- Often, ODE come with boundary conditions like y(0) = 0, y'(0) = 4, y''(1) = 2, etc.
- Given an ODE one can ask "Is there a solution satisfying the boundary conditions ?", "Is it unique?" "Can we write a formula for it?" and "Can we compute it using an efficient algorithm?" The answer to all these questions is

- A wide variety of natural laws involve functions that satisfy differential equations.
- In particular, Newton's laws are m d²r/dt² = F. Equations of the form F(t, y, y', ..., y'(n)) = 0 are called Ordinary Differential Equations of order n. If F is linear in y, y', ... etc then the ODE is said to be linear. If y = 0 is a solution of a linear ODE then it is called a homogeneous linear equation.
- Often, ODE come with boundary conditions like y(0) = 0, y'(0) = 4, y''(1) = 2, etc.
- Given an ODE one can ask "Is there a solution satisfying the boundary conditions ?", "Is it unique?" "Can we write a formula for it?" and "Can we compute it using an efficient algorithm?" The answer to all these questions is NO in general.

- A wide variety of natural laws involve functions that satisfy differential equations.
- In particular, Newton's laws are m d²r/dt² = F. Equations of the form F(t, y, y', ..., y'(n)) = 0 are called Ordinary Differential Equations of order n. If F is linear in y, y', ... etc then the ODE is said to be linear. If y = 0 is a solution of a linear ODE then it is called a homogeneous linear equation.
- Often, ODE come with boundary conditions like y(0) = 0, y'(0) = 4, y''(1) = 2, etc.
- Given an ODE one can ask "Is there a solution satisfying the boundary conditions ?", "Is it unique?" "Can we write a formula for it?" and "Can we compute it using an efficient algorithm?" The answer to all these questions is NO in general. But it is YES in important cases.

- A wide variety of natural laws involve functions that satisfy differential equations.
- In particular, Newton's laws are m d²r/dt² = F. Equations of the form F(t, y, y', ..., y'(n)) = 0 are called Ordinary Differential Equations of order n. If F is linear in y, y', ... etc then the ODE is said to be linear. If y = 0 is a solution of a linear ODE then it is called a homogeneous linear equation.
- Often, ODE come with boundary conditions like y(0) = 0, y'(0) = 4, y''(1) = 2, etc.
- Given an ODE one can ask "Is there a solution satisfying the boundary conditions ?", "Is it unique?" "Can we write a formula for it?" and "Can we compute it using an efficient algorithm?" The answer to all these questions is NO in general. But it is YES in important cases.
- The study of differential equations is

- A wide variety of natural laws involve functions that satisfy differential equations.
- In particular, Newton's laws are m d²r/dt² = F. Equations of the form F(t, y, y', ..., y'(n)) = 0 are called Ordinary Differential Equations of order n. If F is linear in y, y', ... etc then the ODE is said to be linear. If y = 0 is a solution of a linear ODE then it is called a homogeneous linear equation.
- Often, ODE come with boundary conditions like y(0) = 0, y'(0) = 4, y''(1) = 2, etc.
- Given an ODE one can ask "Is there a solution satisfying the boundary conditions ?", "Is it unique?" "Can we write a formula for it?" and "Can we compute it using an efficient algorithm?" The answer to all these questions is NO in general. But it is YES in important cases.
- The study of differential equations is akin to theology.

- A wide variety of natural laws involve functions that satisfy differential equations.
- In particular, Newton's laws are m d²r/dt² = F. Equations of the form F(t, y, y', ..., y'(n)) = 0 are called Ordinary Differential Equations of order n. If F is linear in y, y', ... etc then the ODE is said to be linear. If y = 0 is a solution of a linear ODE then it is called a homogeneous linear equation.
- Often, ODE come with boundary conditions like y(0) = 0, y'(0) = 4, y''(1) = 2, etc.
- Given an ODE one can ask "Is there a solution satisfying the boundary conditions ?", "Is it unique?" "Can we write a formula for it?" and "Can we compute it using an efficient algorithm?" The answer to all these questions is NO in general. But it is YES in important cases.
- The study of differential equations is akin to theology. The central questions are about

- A wide variety of natural laws involve functions that satisfy differential equations.
- In particular, Newton's laws are m d²r/dt² = F. Equations of the form F(t, y, y', ..., y'(n)) = 0 are called Ordinary Differential Equations of order n. If F is linear in y, y', ... etc then the ODE is said to be linear. If y = 0 is a solution of a linear ODE then it is called a homogeneous linear equation.
- Often, ODE come with boundary conditions like y(0) = 0, y'(0) = 4, y''(1) = 2, etc.
- Given an ODE one can ask "Is there a solution satisfying the boundary conditions ?", "Is it unique?" "Can we write a formula for it?" and "Can we compute it using an efficient algorithm?" The answer to all these questions is NO in general. But it is YES in important cases.
- The study of differential equations is akin to theology. The central questions are about existence and uniqueness.

▶ ★ 문 ▶

æ

• Solve y' = 0 for a differentiable function y.

- Solve y' = 0 for a differentiable function y.
- Before you rush

- Solve y' = 0 for a differentiable function y.
- Before you rush to an answer,

- Solve y' = 0 for a differentiable function y.
- Before you rush to an answer, we need to know

- Solve y' = 0 for a differentiable function y.
- Before you rush to an answer, we need to know what the *domain*

- Solve y' = 0 for a differentiable function y.
- Before you rush to an answer, we need to know what the *domain* is.

- Solve y' = 0 for a differentiable function y.
- Before you rush to an answer, we need to know what the *domain* is. For instance, if

- Solve y' = 0 for a differentiable function y.
- Before you rush to an answer, we need to know what the domain is. For instance, if y : (0,1) ∪ (2,3) → ℝ,

- Solve y' = 0 for a differentiable function y.
- Before you rush to an answer, we need to know what the *domain* is. For instance, if $y : (0,1) \cup (2,3) \rightarrow \mathbb{R}$, the answer is not just

- Solve y' = 0 for a differentiable function y.
- Before you rush to an answer, we need to know what the *domain* is. For instance, if $y : (0,1) \cup (2,3) \rightarrow \mathbb{R}$, the answer is not just "constant".

- Solve y' = 0 for a differentiable function y.
- Before you rush to an answer, we need to know what the domain is. For instance, if $y : (0,1) \cup (2,3) \rightarrow \mathbb{R}$, the answer is not just "constant". It is $y = c_1$ on (0,1) and $y = c_2$ on (2,3)!

- Solve y' = 0 for a differentiable function y.
- Before you rush to an answer, we need to know what the domain is. For instance, if $y : (0,1) \cup (2,3) \rightarrow \mathbb{R}$, the answer is not just "constant". It is $y = c_1$ on (0,1) and $y = c_2$ on (2,3)!

4/10

- Solve y' = 0 for a differentiable function y.
- Before you rush to an answer, we need to know what the domain is. For instance, if $y : (0,1) \cup (2,3) \rightarrow \mathbb{R}$, the answer is not just "constant". It is $y = c_1$ on (0,1) and $y = c_2$ on (2,3)!
- So solve y' = 0 on (a, b).
- Proof:

- Solve y' = 0 for a differentiable function y.
- Before you rush to an answer, we need to know what the domain is. For instance, if $y : (0,1) \cup (2,3) \rightarrow \mathbb{R}$, the answer is not just "constant". It is $y = c_1$ on (0,1) and $y = c_2$ on (2,3)!
- So solve y' = 0 on (a, b).
- Proof: If $y(x_1) \neq y(x_2)$,

- Solve y' = 0 for a differentiable function y.
- Before you rush to an answer, we need to know what the domain is. For instance, if $y : (0,1) \cup (2,3) \rightarrow \mathbb{R}$, the answer is not just "constant". It is $y = c_1$ on (0,1) and $y = c_2$ on (2,3)!

• So solve
$$y' = 0$$
 on (a, b) .

• Proof: If $y(x_1) \neq y(x_2)$, then since y is differentiable

4/10

- Solve y' = 0 for a differentiable function y.
- Before you rush to an answer, we need to know what the domain is. For instance, if $y : (0,1) \cup (2,3) \rightarrow \mathbb{R}$, the answer is not just "constant". It is $y = c_1$ on (0,1) and $y = c_2$ on (2,3)!

• Proof: If $y(x_1) \neq y(x_2)$, then since y is differentiable on (x_1, x_2) , and

4/10

- Solve y' = 0 for a differentiable function y.
- Before you rush to an answer, we need to know what the domain is. For instance, if $y : (0,1) \cup (2,3) \rightarrow \mathbb{R}$, the answer is not just "constant". It is $y = c_1$ on (0,1) and $y = c_2$ on (2,3)!
- So solve *y*′ = 0 on (*a*, *b*).
- Proof: If $y(x_1) \neq y(x_2)$, then since y is differentiable on (x_1, x_2) , and it is continuous on $[x_1, x_2]$,

- Solve y' = 0 for a differentiable function y.
- Before you rush to an answer, we need to know what the domain is. For instance, if $y : (0,1) \cup (2,3) \rightarrow \mathbb{R}$, the answer is not just "constant". It is $y = c_1$ on (0,1) and $y = c_2$ on (2,3)!

• Proof: If $y(x_1) \neq y(x_2)$, then since y is differentiable on (x_1, x_2) , and it is continuous on $[x_1, x_2]$, by LMVT $0 \neq y(x_2) - y(x_1) = y'(\theta)(x_2 - x_1) = 0$.

- Solve y' = 0 for a differentiable function y.
- Before you rush to an answer, we need to know what the domain is. For instance, if $y : (0,1) \cup (2,3) \rightarrow \mathbb{R}$, the answer is not just "constant". It is $y = c_1$ on (0,1) and $y = c_2$ on (2,3)!

• So solve
$$y' = 0$$
 on (a, b) .

• Proof: If $y(x_1) \neq y(x_2)$, then since y is differentiable on (x_1, x_2) , and it is continuous on $[x_1, x_2]$, by LMVT $0 \neq y(x_2) - y(x_1) = y'(\theta)(x_2 - x_1) = 0$. A contradiction!

- Solve y' = 0 for a differentiable function y.
- Before you rush to an answer, we need to know what the domain is. For instance, if $y : (0,1) \cup (2,3) \rightarrow \mathbb{R}$, the answer is not just "constant". It is $y = c_1$ on (0,1) and $y = c_2$ on (2,3)!
- So solve *y*′ = 0 on (*a*, *b*).
- Proof: If $y(x_1) \neq y(x_2)$, then since y is differentiable on (x_1, x_2) , and it is continuous on $[x_1, x_2]$, by LMVT $0 \neq y(x_2) - y(x_1) = y'(\theta)(x_2 - x_1) = 0$. A contradiction! Thus y is a constant.

- Solve y' = 0 for a differentiable function y.
- Before you rush to an answer, we need to know what the domain is. For instance, if $y : (0,1) \cup (2,3) \rightarrow \mathbb{R}$, the answer is not just "constant". It is $y = c_1$ on (0,1) and $y = c_2$ on (2,3)!
- So solve *y*′ = 0 on (*a*, *b*).
- Proof: If $y(x_1) \neq y(x_2)$, then since y is differentiable on (x_1, x_2) , and it is continuous on $[x_1, x_2]$, by LMVT $0 \neq y(x_2) - y(x_1) = y'(\theta)(x_2 - x_1) = 0$. A contradiction! Thus y is a constant.
- The same result works for \mathbb{R} .

4/10

A slightly less stupid one

æ

• A drop of

포 🛌 포

• A drop of Strep. Pneum. is

• A drop of Strep. Pneum. is placed on a petri dish.

• A drop of Strep. Pneum. is placed on a petri dish. What happens after some time?

• A drop of Strep. Pneum. is placed on a petri dish. What happens after some time? Ans: You catch Pneumonia.

- A drop of Strep. Pneum. is placed on a petri dish. What happens after some time? Ans: You catch Pneumonia.
- Let N(t) be the number.

- A drop of Strep. Pneum. is placed on a petri dish. What happens after some time? Ans: You catch Pneumonia.
- Let N(t) be the number. Then N'(t) = kN is

- A drop of Strep. Pneum. is placed on a petri dish. What happens after some time? Ans: You catch Pneumonia.
- Let N(t) be the number. Then N'(t) = kN is a simple approximation

- A drop of Strep. Pneum. is placed on a petri dish. What happens after some time? Ans: You catch Pneumonia.
- Let N(t) be the number. Then N'(t) = kN is a simple approximation for a reasonable amount of time.

- A drop of Strep. Pneum. is placed on a petri dish. What happens after some time? Ans: You catch Pneumonia.
- Let N(t) be the number. Then N'(t) = kN is a simple approximation for a reasonable amount of time.

• Solve
$$y' = ky$$
, $y(0) = A$ on \mathbb{R} .

- A drop of Strep. Pneum. is placed on a petri dish. What happens after some time? Ans: You catch Pneumonia.
- Let N(t) be the number. Then N'(t) = kN is a simple approximation for a reasonable amount of time.

• Solve
$$y' = ky$$
, $y(0) = A$ on \mathbb{R} .

•
$$y(t) = Ae^{kt}$$
 is the answer:

- A drop of Strep. Pneum. is placed on a petri dish. What happens after some time? Ans: You catch Pneumonia.
- Let N(t) be the number. Then N'(t) = kN is a simple approximation for a reasonable amount of time.

• Solve
$$y' = ky$$
, $y(0) = A$ on \mathbb{R} .

•
$$y(t) = Ae^{kt}$$
 is the answer: Let $z(t) = y(t)e^{-kt}$.

- A drop of Strep. Pneum. is placed on a petri dish. What happens after some time? Ans: You catch Pneumonia.
- Let N(t) be the number. Then N'(t) = kN is a simple approximation for a reasonable amount of time.

• Solve
$$y' = ky$$
, $y(0) = A$ on \mathbb{R} .

•
$$y(t) = Ae^{kt}$$
 is the answer: Let $z(t) = y(t)e^{-kt}$. Then $z'(t) = 0$ and $z(0) = A$.

- A drop of Strep. Pneum. is placed on a petri dish. What happens after some time? Ans: You catch Pneumonia.
- Let N(t) be the number. Then N'(t) = kN is a simple approximation for a reasonable amount of time.

• Solve
$$y' = ky$$
, $y(0) = A$ on \mathbb{R} .

•
$$y(t) = Ae^{kt}$$
 is the answer: Let $z(t) = y(t)e^{-kt}$. Then $z'(t) = 0$ and $z(0) = A$. Thus $z(t) = A$.

▲□ ▶ ▲ □ ▶ ▲ □ ▶ ...

æ

• Two drops of

æ

• Two drops of two kinds of bacteria

æ

• Two drops of two kinds of bacteria are placed on two petri dishes.

• Two drops of two kinds of bacteria are placed on two petri dishes. What happens?

• Two drops of two kinds of bacteria are placed on two petri dishes. What happens? Ans: You win the Darwin award for stupidity.

- Two drops of two kinds of bacteria are placed on two petri dishes. What happens? Ans: You win the Darwin award for stupidity.
- Let N_1 , N_2 be the numbers.

- Two drops of two kinds of bacteria are placed on two petri dishes. What happens? Ans: You win the Darwin award for stupidity.
- Let N_1, N_2 be the numbers. $N'_1 = k_1 N_1, N'_2 = k_2 N_2$.

- Two drops of two kinds of bacteria are placed on two petri dishes. What happens? Ans: You win the Darwin award for stupidity.
- Let N_1, N_2 be the numbers. $N'_1 = k_1 N_1, N'_2 = k_2 N_2$.
- As before, $N_1 = A_1 e^{k_1 t}$, $N_2 = A_2 e^{k_2 t}$.

- Two drops of two kinds of bacteria are placed on two petri dishes. What happens? Ans: You win the Darwin award for stupidity.
- Let N_1, N_2 be the numbers. $N'_1 = k_1 N_1, N'_2 = k_2 N_2$.
- As before, $N_1 = A_1 e^{k_1 t}$, $N_2 = A_2 e^{k_2 t}$.
- What if they are placed on

- Two drops of two kinds of bacteria are placed on two petri dishes. What happens? Ans: You win the Darwin award for stupidity.
- Let N_1, N_2 be the numbers. $N'_1 = k_1 N_1, N'_2 = k_2 N_2$.
- As before, $N_1 = A_1 e^{k_1 t}$, $N_2 = A_2 e^{k_2 t}$.
- What if they are placed on the same petri-dish?

- Two drops of two kinds of bacteria are placed on two petri dishes. What happens? Ans: You win the Darwin award for stupidity.
- Let N_1, N_2 be the numbers. $N'_1 = k_1 N_1, N'_2 = k_2 N_2$.
- As before, $N_1 = A_1 e^{k_1 t}$, $N_2 = A_2 e^{k_2 t}$.
- What if they are placed on the same petri-dish? The actual answer may be different.

- Two drops of two kinds of bacteria are placed on two petri dishes. What happens? Ans: You win the Darwin award for stupidity.
- Let N_1, N_2 be the numbers. $N'_1 = k_1 N_1, N'_2 = k_2 N_2$.
- As before, $N_1 = A_1 e^{k_1 t}$, $N_2 = A_2 e^{k_2 t}$.
- What if they are placed on the same petri-dish? The actual answer may be different. I am going to pull out equations from

- Two drops of two kinds of bacteria are placed on two petri dishes. What happens? Ans: You win the Darwin award for stupidity.
- Let N_1, N_2 be the numbers. $N'_1 = k_1 N_1, N'_2 = k_2 N_2$.
- As before, $N_1 = A_1 e^{k_1 t}$, $N_2 = A_2 e^{k_2 t}$.
- What if they are placed on the same petri-dish? The actual answer may be different. I am going to pull out equations from my *mind*.

- Two drops of two kinds of bacteria are placed on two petri dishes. What happens? Ans: You win the Darwin award for stupidity.
- Let N_1, N_2 be the numbers. $N'_1 = k_1 N_1, N'_2 = k_2 N_2$.
- As before, $N_1 = A_1 e^{k_1 t}$, $N_2 = A_2 e^{k_2 t}$.
- What if they are placed on the same petri-dish? The actual answer may be different. I am going to pull out equations from my *mind*.
- Solve x' = ax + by, y' = cx + dy on \mathbb{R} .

- Two drops of two kinds of bacteria are placed on two petri dishes. What happens? Ans: You win the Darwin award for stupidity.
- Let N_1, N_2 be the numbers. $N'_1 = k_1 N_1, N'_2 = k_2 N_2$.
- As before, $N_1 = A_1 e^{k_1 t}$, $N_2 = A_2 e^{k_2 t}$.
- What if they are placed on the same petri-dish? The actual answer may be different. I am going to pull out equations from my *mind*.
- Solve x' = ax + by, y' = cx + dy on \mathbb{R} . The idea is to

- Two drops of two kinds of bacteria are placed on two petri dishes. What happens? Ans: You win the Darwin award for stupidity.
- Let N_1, N_2 be the numbers. $N'_1 = k_1 N_1, N'_2 = k_2 N_2$.
- As before, $N_1 = A_1 e^{k_1 t}$, $N_2 = A_2 e^{k_2 t}$.
- What if they are placed on the same petri-dish? The actual answer may be different. I am going to pull out equations from my *mind*.
- Solve x' = ax + by, y' = cx + dy on ℝ. The idea is to linearly change to u, v

- Two drops of two kinds of bacteria are placed on two petri dishes. What happens? Ans: You win the Darwin award for stupidity.
- Let N_1, N_2 be the numbers. $N'_1 = k_1 N_1, N'_2 = k_2 N_2$.
- As before, $N_1 = A_1 e^{k_1 t}$, $N_2 = A_2 e^{k_2 t}$.
- What if they are placed on the same petri-dish? The actual answer may be different. I am going to pull out equations from my *mind*.
- Solve x' = ax + by, y' = cx + dy on ℝ. The idea is to linearly change to u, v such that u' = k₁u, v' = k₂v.

- Two drops of two kinds of bacteria are placed on two petri dishes. What happens? Ans: You win the Darwin award for stupidity.
- Let N_1, N_2 be the numbers. $N'_1 = k_1 N_1, N'_2 = k_2 N_2$.
- As before, $N_1 = A_1 e^{k_1 t}$, $N_2 = A_2 e^{k_2 t}$.
- What if they are placed on the same petri-dish? The actual answer may be different. I am going to pull out equations from my *mind*.
- Solve x' = ax + by, y' = cx + dy on \mathbb{R} . The idea is to linearly change to u, v such that $u' = k_1 u, v' = k_2 v$. This idea is

- Two drops of two kinds of bacteria are placed on two petri dishes. What happens? Ans: You win the Darwin award for stupidity.
- Let N_1, N_2 be the numbers. $N'_1 = k_1 N_1, N'_2 = k_2 N_2$.
- As before, $N_1 = A_1 e^{k_1 t}$, $N_2 = A_2 e^{k_2 t}$.
- What if they are placed on the same petri-dish? The actual answer may be different. I am going to pull out equations from my *mind*.
- Solve x' = ax + by, y' = cx + dy on ℝ. The idea is to linearly change to u, v such that u' = k₁u, v' = k₂v. This idea is best implemented using matrices.

• Let
$$v = \begin{bmatrix} x \\ y \end{bmatrix}$$
 and

• Let
$$v = \begin{bmatrix} x \\ y \end{bmatrix}$$
 and $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$.

• Let
$$v = \begin{bmatrix} x \\ y \end{bmatrix}$$
 and $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$. Then we want to solve

• Let
$$v = \begin{bmatrix} x \\ y \end{bmatrix}$$
 and $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$. Then we want to solve $\frac{dv}{dt} = Av$.

• Let
$$v = \begin{bmatrix} x \\ y \end{bmatrix}$$
 and $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$. Then we want to solve $\frac{dv}{dt} = Av$. Naively, one can attempt

• Let
$$v = \begin{bmatrix} x \\ y \end{bmatrix}$$
 and $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$. Then we want to solve $\frac{dv}{dt} = Av$. Naively, one can attempt $v = e^{At}v_0$.

• Let
$$v = \begin{bmatrix} x \\ y \end{bmatrix}$$
 and $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$. Then we want to solve $\frac{dv}{dt} = Av$. Naively, one can attempt $v = e^{At}v_0$. Surprisingly, such an attempt works but

• Let
$$v = \begin{bmatrix} x \\ y \end{bmatrix}$$
 and $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$. Then we want to solve $\frac{dv}{dt} = Av$. Naively, one can attempt $v = e^{At}v_0$. Surprisingly, such an attempt works but we shall choose a different route.

• Let
$$v = \begin{bmatrix} x \\ y \end{bmatrix}$$
 and $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$. Then we want to solve $\frac{dv}{dt} = Av$. Naively, one can attempt $v = e^{At}v_0$. Surprisingly, such an attempt works but we shall choose a different route.

• Assume that A is diagonalisable, i.e.,

• Let
$$v = \begin{bmatrix} x \\ y \end{bmatrix}$$
 and $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$. Then we want to solve $\frac{dv}{dt} = Av$. Naively, one can attempt $v = e^{At}v_0$. Surprisingly, such an attempt works but we shall choose a different route.

• Assume that A is diagonalisable, i.e., $P^{-1}AP = D$ or $A = PDP^{-1}$.

• Let
$$v = \begin{bmatrix} x \\ y \end{bmatrix}$$
 and $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$. Then we want to solve $\frac{dv}{dt} = Av$. Naively, one can attempt $v = e^{At}v_0$. Surprisingly, such an attempt works but we shall choose a different route.

• Assume that A is diagonalisable, i.e., $P^{-1}AP = D$ or $A = PDP^{-1}$. Then $\frac{dv}{dt} = PDP^{-1}v$.

• Let
$$v = \begin{bmatrix} x \\ y \end{bmatrix}$$
 and $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$. Then we want to solve $\frac{dv}{dt} = Av$. Naively, one can attempt $v = e^{At}v_0$. Surprisingly, such an attempt works but we shall choose a different route.

• Assume that A is diagonalisable, i.e., $P^{-1}AP = D$ or $A = PDP^{-1}$. Then $\frac{dv}{dt} = PDP^{-1}v$. Let $w = P^{-1}v$.

- Let v = \$\begin{bmatrix} x \ y \end{bmatrix}\$ and \$A = \$\begin{bmatrix} a & b \ c & d \end{bmatrix}\$. Then we want to solve \$\begin{bmatrix} dv \ dt = Av\$. Naively, one can attempt \$v = e^{At}v_0\$. Surprisingly, such an attempt works but we shall choose a different route.
 Assume that \$A\$ is diagonalisable, i.e., \$P^{-1}AP = D\$ or \$A = DDD^{-1}\$. Thus, \$dv = DDD^{-1}\$. Thus, \$dv = DDD^{-1}\$. Thus, \$P^{-1}AP = D\$ or \$A = DDD^{-1}\$. Thus, \$dv = DDD^{-1}\$.
 - $A = PDP^{-1}$. Then $\frac{dv}{dt} = PDP^{-1}v$. Let $w = P^{-1}v$. Then $\frac{dw}{dt} = Dw$.

• Let
$$v = \begin{bmatrix} x \\ y \end{bmatrix}$$
 and $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$. Then we want to solve $\frac{dv}{dt} = Av$. Naively, one can attempt $v = e^{At}v_0$. Surprisingly, such an attempt works but we shall choose a different route.

• Assume that A is diagonalisable, i.e., $P^{-1}AP = D$ or $A = PDP^{-1}$. Then $\frac{dv}{dt} = PDP^{-1}v$. Let $w = P^{-1}v$. Then $\frac{dw}{dt} = Dw$. Thus $w'_i(t) = \lambda_i w_i$ and hence

Assume that A is diagonalisable, i.e.,
$$P = AP = D$$
 of $A = PDP^{-1}$. Then $\frac{dv}{dt} = PDP^{-1}v$. Let $w = P^{-1}v$. Then $\frac{dw}{dt} = Dw$. Thus $w'_i(t) = \lambda_i w_i$ and hence $w_i = w_i(0)e^{\lambda_i t}$ and $v = Pw$.

$$\frac{dw}{dt} = Dw$$
. Thus $w'_i(t) = \lambda_i w_i$ and hence $w_i = w_i(0)e^{\lambda_i t}$ and $v = Pw$.

• In other words,

• Let
$$v = \begin{bmatrix} x \\ y \end{bmatrix}$$
 and $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$. Then we want to solve $\frac{dv}{dt} = Av$. Naively, one can attempt $v = e^{At}v_0$. Surprisingly, such an attempt works but we shall choose a different route.

- Assume that A is diagonalisable, i.e., $P^{-1}AP = D$ or $A = PDP^{-1}$. Then $\frac{dv}{dt} = PDP^{-1}v$. Let $w = P^{-1}v$. Then $\frac{dw}{dt} = Dw$. Thus $w'_i(t) = \lambda_i w_i$ and hence $w_i = w_i(0)e^{\lambda_i t}$ and v = Pw.
- In other words, if A is diagonalisable,

• Let
$$v = \begin{bmatrix} x \\ y \end{bmatrix}$$
 and $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$. Then we want to solve
 $\frac{dv}{dt} = Av$. Naively, one can attempt $v = e^{At}v_0$. Surprisingly,
such an attempt works but we shall choose a different route.

- Assume that A is diagonalisable, i.e., $P^{-1}AP = D$ or $A = PDP^{-1}$. Then $\frac{dv}{dt} = PDP^{-1}v$. Let $w = P^{-1}v$. Then $\frac{dw}{dt} = Dw$. Thus $w'_i(t) = \lambda_i w_i$ and hence $w_i = w_i(0)e^{\lambda_i t}$ and v = Pw.
- In other words, if A is diagonalisable, the set of solutions

• Let
$$v = \begin{bmatrix} x \\ y \end{bmatrix}$$
 and $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$. Then we want to solve $\frac{dv}{dt} = Av$. Naively, one can attempt $v = e^{At}v_0$. Surprisingly, such an attempt works but we shall choose a different route.

- Assume that A is diagonalisable, i.e., $P^{-1}AP = D$ or $A = PDP^{-1}$. Then $\frac{dv}{dt} = PDP^{-1}v$. Let $w = P^{-1}v$. Then $\frac{dw}{dt} = Dw$. Thus $w'_i(t) = \lambda_i w_i$ and hence $w_i = w_i(0)e^{\lambda_i t}$ and v = Pw.
- In other words, if A is diagonalisable, the set of solutions forms a vector space

• Let
$$v = \begin{bmatrix} x \\ y \end{bmatrix}$$
 and $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$. Then we want to solve $\frac{dv}{dt} = Av$. Naively, one can attempt $v = e^{At}v_0$. Surprisingly, such an attempt works but we shall choose a different route.

- Assume that A is diagonalisable, i.e., $P^{-1}AP = D$ or $A = PDP^{-1}$. Then $\frac{dv}{dt} = PDP^{-1}v$. Let $w = P^{-1}v$. Then $\frac{dw}{dt} = Dw$. Thus $w'_i(t) = \lambda_i w_i$ and hence $w_i = w_i(0)e^{\lambda_i t}$ and v = Pw.
- In other words, if A is diagonalisable, the set of solutions forms a vector space of dimension n

• Let
$$v = \begin{bmatrix} x \\ y \end{bmatrix}$$
 and $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$. Then we want to solve $\frac{dv}{dt} = Av$. Naively, one can attempt $v = e^{At}v_0$. Surprisingly, such an attempt works but we shall choose a different route.

- Assume that A is diagonalisable, i.e., $P^{-1}AP = D$ or $A = PDP^{-1}$. Then $\frac{dv}{dt} = PDP^{-1}v$. Let $w = P^{-1}v$. Then $\frac{dw}{dt} = Dw$. Thus $w'_i(t) = \lambda_i w_i$ and hence $w_i = w_i(0)e^{\lambda_i t}$ and v = Pw.
- In other words, if A is diagonalisable, the set of solutions forms a vector space of dimension n spanned by

• Let
$$v = \begin{bmatrix} x \\ y \end{bmatrix}$$
 and $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$. Then we want to solve $\frac{dv}{dt} = Av$. Naively, one can attempt $v = e^{At}v_0$. Surprisingly, such an attempt works but we shall choose a different route.

- Assume that A is diagonalisable, i.e., $P^{-1}AP = D$ or $A = PDP^{-1}$. Then $\frac{dv}{dt} = PDP^{-1}v$. Let $w = P^{-1}v$. Then $\frac{dw}{dt} = Dw$. Thus $w'_i(t) = \lambda_i w_i$ and hence $w_i = w_i(0)e^{\lambda_i t}$ and v = Pw.
- In other words, if A is diagonalisable, the set of solutions forms a vector space of dimension n spanned by e^{λ_it}Pe_i.

• Let
$$v = \begin{bmatrix} x \\ y \end{bmatrix}$$
 and $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$. Then we want to solve $\frac{dv}{dt} = Av$. Naively, one can attempt $v = e^{At}v_0$. Surprisingly, such an attempt works but we shall choose a different route.

- Assume that A is diagonalisable, i.e., $P^{-1}AP = D$ or $A = PDP^{-1}$. Then $\frac{dv}{dt} = PDP^{-1}v$. Let $w = P^{-1}v$. Then $\frac{dw}{dt} = Dw$. Thus $w'_i(t) = \lambda_i w_i$ and hence $w_i = w_i(0)e^{\lambda_i t}$ and v = Pw.
- In other words, if A is diagonalisable, the set of solutions forms a vector space of dimension n spanned by e^{λ_it}Pe_i.
 If A = A^T

• Let
$$v = \begin{bmatrix} x \\ y \end{bmatrix}$$
 and $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$. Then we want to solve $\frac{dv}{dt} = Av$. Naively, one can attempt $v = e^{At}v_0$. Surprisingly, such an attempt works but we shall choose a different route.

- Assume that A is diagonalisable, i.e., $P^{-1}AP = D$ or $A = PDP^{-1}$. Then $\frac{dv}{dt} = PDP^{-1}v$. Let $w = P^{-1}v$. Then $\frac{dw}{dt} = Dw$. Thus $w'_i(t) = \lambda_i w_i$ and hence $w_i = w_i(0)e^{\lambda_i t}$ and v = Pw.
- In other words, if A is diagonalisable, the set of solutions forms a vector space of dimension n spanned by e^{λ_it}Pe_i.
- If $A = A^T$ then by the Spectral Theorem

• Let
$$v = \begin{bmatrix} x \\ y \end{bmatrix}$$
 and $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$. Then we want to solve $\frac{dv}{dt} = Av$. Naively, one can attempt $v = e^{At}v_0$. Surprisingly, such an attempt works but we shall choose a different route.

- Assume that A is diagonalisable, i.e., $P^{-1}AP = D$ or $A = PDP^{-1}$. Then $\frac{dv}{dt} = PDP^{-1}v$. Let $w = P^{-1}v$. Then $\frac{dw}{dt} = Dw$. Thus $w'_i(t) = \lambda_i w_i$ and hence $w_i = w_i(0)e^{\lambda_i t}$ and v = Pw.
- In other words, if A is diagonalisable, the set of solutions forms a vector space of dimension n spanned by e^{λ_it}Pe_i.
- If $A = A^T$ then by the Spectral Theorem A is diagonalisable

• Let $v = \begin{bmatrix} x \\ y \end{bmatrix}$ and $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$. Then we want to solve $\frac{dv}{dt} = Av$. Naively, one can attempt $v = e^{At}v_0$. Surprisingly, such an attempt works but we shall choose a different route.

- Assume that A is diagonalisable, i.e., $P^{-1}AP = D$ or $A = PDP^{-1}$. Then $\frac{dv}{dt} = PDP^{-1}v$. Let $w = P^{-1}v$. Then $\frac{dw}{dt} = Dw$. Thus $w'_i(t) = \lambda_i w_i$ and hence $w_i = w_i(0)e^{\lambda_i t}$ and v = Pw.
- In other words, if A is diagonalisable, the set of solutions forms a vector space of dimension n spanned by e^{λ_it}Pe_i.
- If $A = A^T$ then by the Spectral Theorem A is diagonalisable by an orthogonal matrix.

• Let $v = \begin{bmatrix} x \\ y \end{bmatrix}$ and $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$. Then we want to solve $\frac{dv}{dt} = Av$. Naively, one can attempt $v = e^{At}v_0$. Surprisingly, such an attempt works but we shall choose a different route.

- Assume that A is diagonalisable, i.e., $P^{-1}AP = D$ or $A = PDP^{-1}$. Then $\frac{dv}{dt} = PDP^{-1}v$. Let $w = P^{-1}v$. Then $\frac{dw}{dt} = Dw$. Thus $w'_i(t) = \lambda_i w_i$ and hence $w_i = w_i(0)e^{\lambda_i t}$ and v = Pw.
- In other words, if A is diagonalisable, the set of solutions forms a vector space of dimension n spanned by e^{λ_it}Pe_i.
- If A = A^T then by the Spectral Theorem A is diagonalisable by an orthogonal matrix. In that case,

• Let $v = \begin{bmatrix} x \\ y \end{bmatrix}$ and $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$. Then we want to solve $\frac{dv}{dt} = Av$. Naively, one can attempt $v = e^{At}v_0$. Surprisingly, such an attempt works but we shall choose a different route.

- Assume that A is diagonalisable, i.e., $P^{-1}AP = D$ or $A = PDP^{-1}$. Then $\frac{dv}{dt} = PDP^{-1}v$. Let $w = P^{-1}v$. Then $\frac{dw}{dt} = Dw$. Thus $w'_i(t) = \lambda_i w_i$ and hence $w_i = w_i(0)e^{\lambda_i t}$ and v = Pw.
- In other words, if A is diagonalisable, the set of solutions forms a vector space of dimension n spanned by e^{λ_it}Pe_i.
- If A = A^T then by the Spectral Theorem A is diagonalisable by an orthogonal matrix. In that case, the above strategy applies.

日ト・ヨト

æ

æ

• Solve for all differentiable functions

문 문 문

• Solve for all differentiable functions x(t), y(t) on \mathbb{R} :

э

Solve for all differentiable functions x(t), y(t) on ℝ:
 x' = 3x - 2y, y' = x.

- Solve for all differentiable functions x(t), y(t) on ℝ:
 x' = 3x 2y, y' = x.
- The matrix A is

∃ ► < ∃ ►</p>

• Solve for all differentiable functions x(t), y(t) on \mathbb{R} : x' = 3x - 2y, y' = x.

• The matrix A is
$$A = \begin{bmatrix} 3 & -2 \\ 1 & 0 \end{bmatrix}$$
.

Solve for all differentiable functions x(t), y(t) on ℝ:
 x' = 3x - 2y, y' = x.

• The matrix A is
$$A = \begin{bmatrix} 3 & -2 \\ 1 & 0 \end{bmatrix}$$
. It is not symmetric.

個 とくきとくきと

- Solve for all differentiable functions x(t), y(t) on ℝ:
 x' = 3x 2y, y' = x.
- The matrix A is $A = \begin{bmatrix} 3 & -2 \\ 1 & 0 \end{bmatrix}$. It is not symmetric. We shall still attempt to diagonalise it.

- Solve for all differentiable functions x(t), y(t) on ℝ:
 x' = 3x 2y, y' = x.
- The matrix A is $A = \begin{bmatrix} 3 & -2 \\ 1 & 0 \end{bmatrix}$. It is not symmetric. We shall still attempt to diagonalise it.
- The eigenvalues are

- Solve for all differentiable functions x(t), y(t) on ℝ:
 x' = 3x 2y, y' = x.
- The matrix A is $A = \begin{bmatrix} 3 & -2 \\ 1 & 0 \end{bmatrix}$. It is not symmetric. We shall still attempt to diagonalise it.
- The eigenvalues are 1,2.

- Solve for all differentiable functions x(t), y(t) on ℝ:
 x' = 3x 2y, y' = x.
- The matrix A is $A = \begin{bmatrix} 3 & -2 \\ 1 & 0 \end{bmatrix}$. It is not symmetric. We shall still attempt to diagonalise it.
- The eigenvalues are 1, 2. Corresponding eigenvectors are

- Solve for all differentiable functions x(t), y(t) on ℝ:
 x' = 3x 2y, y' = x.
- The matrix A is $A = \begin{bmatrix} 3 & -2 \\ 1 & 0 \end{bmatrix}$. It is not symmetric. We shall still attempt to diagonalise it.
- The eigenvalues are 1, 2. Corresponding eigenvectors are (1, 1) and (2, 1) respectively.

- Solve for all differentiable functions x(t), y(t) on ℝ:
 x' = 3x 2y, y' = x.
- The matrix A is $A = \begin{bmatrix} 3 & -2 \\ 1 & 0 \end{bmatrix}$. It is not symmetric. We shall still attempt to diagonalise it.
- The eigenvalues are 1, 2. Corresponding eigenvectors are (1,1) and (2,1) respectively. $P^{-1}AP = D$ where $P = \begin{bmatrix} 1 & 2 \\ 1 & 1 \end{bmatrix}$ and $D = \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix}$.

- Solve for all differentiable functions x(t), y(t) on ℝ:
 x' = 3x 2y, y' = x.
- The matrix A is $A = \begin{bmatrix} 3 & -2 \\ 1 & 0 \end{bmatrix}$. It is not symmetric. We shall still attempt to diagonalise it.
- The eigenvalues are 1, 2. Corresponding eigenvectors are (1,1) and (2,1) respectively. $P^{-1}AP = D$ where $P = \begin{bmatrix} 1 & 2 \\ 1 & 1 \end{bmatrix}$ and $D = \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix}$. Let $w = P^{-1}v$. Then $\frac{dw}{dt} = Dw$.

- Solve for all differentiable functions x(t), y(t) on ℝ:
 x' = 3x 2y, y' = x.
- The matrix A is $A = \begin{bmatrix} 3 & -2 \\ 1 & 0 \end{bmatrix}$. It is not symmetric. We shall still attempt to diagonalise it.
- The eigenvalues are 1, 2. Corresponding eigenvectors are (1,1) and (2,1) respectively. $P^{-1}AP = D$ where $P = \begin{bmatrix} 1 & 2 \\ 1 & 1 \end{bmatrix}$ and $D = \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix}$. Let $w = P^{-1}v$. Then $\frac{dw}{dt} = Dw$. Hence $w(t) = ae^te_1 + be^{2t}e_2$.

- Solve for all differentiable functions x(t), y(t) on ℝ:
 x' = 3x 2y, y' = x.
- The matrix A is $A = \begin{bmatrix} 3 & -2 \\ 1 & 0 \end{bmatrix}$. It is not symmetric. We shall still attempt to diagonalise it.
- The eigenvalues are 1, 2. Corresponding eigenvectors are (1,1) and (2,1) respectively. $P^{-1}AP = D$ where $P = \begin{bmatrix} 1 & 2 \\ 1 & 1 \end{bmatrix}$ and $D = \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix}$. Let $w = P^{-1}v$. Then $\frac{dw}{dt} = Dw$. Hence $w(t) = ae^te_1 + be^{2t}e_2$. • Now $\begin{bmatrix} x \\ y \end{bmatrix} = Pw = ae^t \begin{bmatrix} 1 \\ 1 \end{bmatrix} + be^{2t} \begin{bmatrix} 2 \\ 1 \end{bmatrix}$.

æ

• In this case,

æ

• In this case, we need to solve

• In this case, we need to solve $\frac{dw_i}{dt} = \lambda_i w_i$ where

글▶ ◀ 글▶

• In this case, we need to solve $\frac{dw_i}{dt} = \lambda_i w_i$ where λ_i is complex.

- In this case, we need to solve $\frac{dw_i}{dt} = \lambda_i w_i$ where λ_i is complex.
- In other words,

- In this case, we need to solve $\frac{dw_i}{dt} = \lambda_i w_i$ where λ_i is complex.
- In other words, $\frac{dw}{dt} = (a + b\sqrt{-1})w$

- In this case, we need to solve $\frac{dw_i}{dt} = \lambda_i w_i$ where λ_i is complex.
- In other words, $\frac{dw}{dt} = (a + b\sqrt{-1})w$ where $w = u + \sqrt{-1}v$.

9/10

- In this case, we need to solve $\frac{dw_i}{dt} = \lambda_i w_i$ where λ_i is complex.
- In other words, $\frac{dw}{dt} = (a + b\sqrt{-1})w$ where $w = u + \sqrt{-1}v$. One way to do it is

- In this case, we need to solve $\frac{dw_i}{dt} = \lambda_i w_i$ where λ_i is complex.
- In other words, $\frac{dw}{dt} = (a + b\sqrt{-1})w$ where $w = u + \sqrt{-1}v$. One way to do it is $w(t) = w_0 e^{at} (\cos(bt) + \sqrt{-1}\sin(bt))$ and

- In this case, we need to solve $\frac{dw_i}{dt} = \lambda_i w_i$ where λ_i is complex.
- In other words, $\frac{dw}{dt} = (a + b\sqrt{-1})w$ where $w = u + \sqrt{-1}v$. One way to do it is $w(t) = w_0 e^{at}(\cos(bt) + \sqrt{-1}\sin(bt))$ and $w_0 \in \mathbb{C}$.

- In this case, we need to solve $\frac{dw_i}{dt} = \lambda_i w_i$ where λ_i is complex.
- In other words, $\frac{dw}{dt} = (a + b\sqrt{-1})w$ where $w = u + \sqrt{-1}v$. One way to do it is $w(t) = w_0 e^{at}(\cos(bt) + \sqrt{-1}\sin(bt))$ and $w_0 \in \mathbb{C}$. While one can verify that

- In this case, we need to solve $\frac{dw_i}{dt} = \lambda_i w_i$ where λ_i is complex.
- In other words, $\frac{dw}{dt} = (a + b\sqrt{-1})w$ where $w = u + \sqrt{-1}v$. One way to do it is $w(t) = w_0 e^{at}(\cos(bt) + \sqrt{-1}\sin(bt))$ and $w_0 \in \mathbb{C}$. While one can verify that this solves the equation

- In this case, we need to solve $\frac{dw_i}{dt} = \lambda_i w_i$ where λ_i is complex.
- In other words, $\frac{dw}{dt} = (a + b\sqrt{-1})w$ where $w = u + \sqrt{-1}v$. One way to do it is $w(t) = w_0 e^{at}(\cos(bt) + \sqrt{-1}\sin(bt))$ and $w_0 \in \mathbb{C}$. While one can verify that this solves the equation how does one prove that

- In this case, we need to solve $\frac{dw_i}{dt} = \lambda_i w_i$ where λ_i is complex.
- In other words, $\frac{dw}{dt} = (a + b\sqrt{-1})w$ where $w = u + \sqrt{-1}v$. One way to do it is $w(t) = w_0 e^{at}(\cos(bt) + \sqrt{-1}\sin(bt))$ and $w_0 \in \mathbb{C}$. While one can verify that this solves the equation how does one prove that it is *the* solution?

- In this case, we need to solve $\frac{dw_i}{dt} = \lambda_i w_i$ where λ_i is complex.
- In other words, $\frac{dw}{dt} = (a + b\sqrt{-1})w$ where $w = u + \sqrt{-1}v$. One way to do it is $w(t) = w_0 e^{at}(\cos(bt) + \sqrt{-1}\sin(bt))$ and $w_0 \in \mathbb{C}$. While one can verify that this solves the equation how does one prove that it is *the* solution?
- Ans:

- In this case, we need to solve $\frac{dw_i}{dt} = \lambda_i w_i$ where λ_i is complex.
- In other words, $\frac{dw}{dt} = (a + b\sqrt{-1})w$ where $w = u + \sqrt{-1}v$. One way to do it is $w(t) = w_0 e^{at}(\cos(bt) + \sqrt{-1}\sin(bt))$ and $w_0 \in \mathbb{C}$. While one can verify that this solves the equation how does one prove that it is *the* solution?
- Ans: Same as before.

- In this case, we need to solve $\frac{dw_i}{dt} = \lambda_i w_i$ where λ_i is complex.
- In other words, $\frac{dw}{dt} = (a + b\sqrt{-1})w$ where $w = u + \sqrt{-1}v$. One way to do it is $w(t) = w_0 e^{at}(\cos(bt) + \sqrt{-1}\sin(bt))$ and $w_0 \in \mathbb{C}$. While one can verify that this solves the equation how does one prove that it is *the* solution?
- Ans: Same as before. $z(t) = w(t)e^{-at}(\cos(bt) - \sqrt{-1}\sin(bt)).$

- In this case, we need to solve $\frac{dw_i}{dt} = \lambda_i w_i$ where λ_i is complex.
- In other words, $\frac{dw}{dt} = (a + b\sqrt{-1})w$ where $w = u + \sqrt{-1}v$. One way to do it is $w(t) = w_0 e^{at}(\cos(bt) + \sqrt{-1}\sin(bt))$ and $w_0 \in \mathbb{C}$. While one can verify that this solves the equation how does one prove that it is *the* solution?
- Ans: Same as before. $z(t) = w(t)e^{-at}(\cos(bt) - \sqrt{-1}\sin(bt))$. In your HW,

9/10

- In this case, we need to solve $\frac{dw_i}{dt} = \lambda_i w_i$ where λ_i is complex.
- In other words, $\frac{dw}{dt} = (a + b\sqrt{-1})w$ where $w = u + \sqrt{-1}v$. One way to do it is $w(t) = w_0 e^{at}(\cos(bt) + \sqrt{-1}\sin(bt))$ and $w_0 \in \mathbb{C}$. While one can verify that this solves the equation how does one prove that it is *the* solution?
- Ans: Same as before. $z(t) = w(t)e^{-at}(\cos(bt) - \sqrt{-1}\sin(bt))$. In your HW, you will show that

- In this case, we need to solve $\frac{dw_i}{dt} = \lambda_i w_i$ where λ_i is complex.
- In other words, $\frac{dw}{dt} = (a + b\sqrt{-1})w$ where $w = u + \sqrt{-1}v$. One way to do it is $w(t) = w_0 e^{at}(\cos(bt) + \sqrt{-1}\sin(bt))$ and $w_0 \in \mathbb{C}$. While one can verify that this solves the equation how does one prove that it is *the* solution?
- Ans: Same as before.

 $z(t) = w(t)e^{-at}(\cos(bt) - \sqrt{-1}\sin(bt))$. In your HW, you will show that the product rule still holds

9/10

- In this case, we need to solve $\frac{dw_i}{dt} = \lambda_i w_i$ where λ_i is complex.
- In other words, $\frac{dw}{dt} = (a + b\sqrt{-1})w$ where $w = u + \sqrt{-1}v$. One way to do it is $w(t) = w_0 e^{at}(\cos(bt) + \sqrt{-1}\sin(bt))$ and $w_0 \in \mathbb{C}$. While one can verify that this solves the equation how does one prove that it is *the* solution?
- Ans: Same as before.

 $z(t) = w(t)e^{-at}(\cos(bt) - \sqrt{-1}\sin(bt))$. In your HW, you will show that the product rule still holds in this complex setting.

- In this case, we need to solve $\frac{dw_i}{dt} = \lambda_i w_i$ where λ_i is complex.
- In other words, $\frac{dw}{dt} = (a + b\sqrt{-1})w$ where $w = u + \sqrt{-1}v$. One way to do it is $w(t) = w_0 e^{at}(\cos(bt) + \sqrt{-1}\sin(bt))$ and $w_0 \in \mathbb{C}$. While one can verify that this solves the equation how does one prove that it is *the* solution?
- Ans: Same as before.

 $z(t) = w(t)e^{-at}(\cos(bt) - \sqrt{-1}\sin(bt))$. In your HW, you will show that the product rule still holds in this complex setting. Thus z'(t) = 0.

- In this case, we need to solve $\frac{dw_i}{dt} = \lambda_i w_i$ where λ_i is complex.
- In other words, $\frac{dw}{dt} = (a + b\sqrt{-1})w$ where $w = u + \sqrt{-1}v$. One way to do it is $w(t) = w_0 e^{at}(\cos(bt) + \sqrt{-1}\sin(bt))$ and $w_0 \in \mathbb{C}$. While one can verify that this solves the equation how does one prove that it is *the* solution?
- Ans: Same as before.

 $z(t) = w(t)e^{-at}(\cos(bt) - \sqrt{-1}\sin(bt))$. In your HW, you will show that the product rule still holds in this complex setting. Thus z'(t) = 0. Hence the real and imaginary parts of z(t)

- In this case, we need to solve $\frac{dw_i}{dt} = \lambda_i w_i$ where λ_i is complex.
- In other words, $\frac{dw}{dt} = (a + b\sqrt{-1})w$ where $w = u + \sqrt{-1}v$. One way to do it is $w(t) = w_0 e^{at}(\cos(bt) + \sqrt{-1}\sin(bt))$ and $w_0 \in \mathbb{C}$. While one can verify that this solves the equation how does one prove that it is *the* solution?
- Ans: Same as before.

 $z(t) = w(t)e^{-at}(\cos(bt) - \sqrt{-1}\sin(bt))$. In your HW, you will show that the product rule still holds in this complex setting. Thus z'(t) = 0. Hence the real and imaginary parts of z(t) are constants.

- In this case, we need to solve $\frac{dw_i}{dt} = \lambda_i w_i$ where λ_i is complex.
- In other words, $\frac{dw}{dt} = (a + b\sqrt{-1})w$ where $w = u + \sqrt{-1}v$. One way to do it is $w(t) = w_0 e^{at}(\cos(bt) + \sqrt{-1}\sin(bt))$ and $w_0 \in \mathbb{C}$. While one can verify that this solves the equation how does one prove that it is *the* solution?
- Ans: Same as before.

 $z(t) = w(t)e^{-at}(\cos(bt) - \sqrt{-1}\sin(bt))$. In your HW, you will show that the product rule still holds in this complex setting. Thus z'(t) = 0. Hence the real and imaginary parts of z(t) are constants.

That is,

- In this case, we need to solve $\frac{dw_i}{dt} = \lambda_i w_i$ where λ_i is complex.
- In other words, $\frac{dw}{dt} = (a + b\sqrt{-1})w$ where $w = u + \sqrt{-1}v$. One way to do it is $w(t) = w_0 e^{at}(\cos(bt) + \sqrt{-1}\sin(bt))$ and $w_0 \in \mathbb{C}$. While one can verify that this solves the equation how does one prove that it is *the* solution?
- Ans: Same as before.

 $z(t) = w(t)e^{-at}(\cos(bt) - \sqrt{-1}\sin(bt))$. In your HW, you will show that the product rule still holds in this complex setting. Thus z'(t) = 0. Hence the real and imaginary parts of z(t) are constants.

• That is,
$$v(t) = Pw$$
 where

9/10

- In this case, we need to solve $\frac{dw_i}{dt} = \lambda_i w_i$ where λ_i is complex.
- In other words, $\frac{dw}{dt} = (a + b\sqrt{-1})w$ where $w = u + \sqrt{-1}v$. One way to do it is $w(t) = w_0 e^{at}(\cos(bt) + \sqrt{-1}\sin(bt))$ and $w_0 \in \mathbb{C}$. While one can verify that this solves the equation how does one prove that it is *the* solution?
- Ans: Same as before.

 $z(t) = w(t)e^{-at}(\cos(bt) - \sqrt{-1}\sin(bt))$. In your HW, you will show that the product rule still holds in this complex setting. Thus z'(t) = 0. Hence the real and imaginary parts of z(t) are constants.

• That is, v(t) = Pw where w and P are allowed to be complex.

• In the above example

• In the above example one can convert

• In the above example one can convert the *system* of *first-order* ODE

• In the above example one can convert the *system* of *first-order* ODE to a *single second-order* ODE:

• In the above example one can convert the system of first-order ODE to a single second-order ODE: y'' - 3y' + 2y = 0. (

• In the above example one can convert the system of first-order ODE to a single second-order ODE: y'' - 3y' + 2y = 0. (Any system of ODE

10/10

• In the above example one can convert the system of first-order ODE to a single second-order ODE: y'' - 3y' + 2y = 0. (Any system of ODE of any order

• In the above example one can convert the system of first-order ODE to a single second-order ODE: y'' - 3y' + 2y = 0. (Any system of ODE of any order can be converted to

 In the above example one can convert the system of first-order ODE to a single second-order ODE: y" - 3y' + 2y = 0. (Any system of ODE of any order can be converted to a system of first-order ODE.)

• In the above example one can convert the system of first-order ODE to a single second-order ODE: y'' - 3y' + 2y = 0. (Any system of ODE of any order can be converted to a system of first-order ODE.) The solution is

• In the above example one can convert the system of first-order ODE to a single second-order ODE: y'' - 3y' + 2y = 0. (Any system of ODE of any order can be converted to a system of first-order ODE.) The solution is $y(t) = ae^t + be^{2t}$.

- In the above example one can convert the system of first-order ODE to a single second-order ODE: y'' 3y' + 2y = 0. (Any system of ODE of any order can be converted to a system of first-order ODE.) The solution is $y(t) = ae^t + be^{2t}$.
- Another way to

- In the above example one can convert the system of first-order ODE to a single second-order ODE: y'' 3y' + 2y = 0. (Any system of ODE of any order can be converted to a system of first-order ODE.) The solution is $y(t) = ae^t + be^{2t}$.
- Another way to directly handle

- In the above example one can convert the system of first-order ODE to a single second-order ODE: y'' 3y' + 2y = 0. (Any system of ODE of any order can be converted to a system of first-order ODE.) The solution is $y(t) = ae^t + be^{2t}$.
- Another way to directly handle a second-order

- In the above example one can convert the system of first-order ODE to a single second-order ODE: y'' 3y' + 2y = 0. (Any system of ODE of any order can be converted to a system of first-order ODE.) The solution is $y(t) = ae^t + be^{2t}$.
- Another way to directly handle a second-order single ODE

- In the above example one can convert the system of first-order ODE to a single second-order ODE: y'' 3y' + 2y = 0. (Any system of ODE of any order can be converted to a system of first-order ODE.) The solution is $y(t) = ae^t + be^{2t}$.
- Another way to directly handle a second-order single ODE that is linear and homogeneous

- In the above example one can convert the system of first-order ODE to a single second-order ODE: y'' 3y' + 2y = 0. (Any system of ODE of any order can be converted to a system of first-order ODE.) The solution is $y(t) = ae^t + be^{2t}$.
- Another way to directly handle a second-order single ODE that is linear and homogeneous and has constant coefficients, i.e.,

- In the above example one can convert the system of first-order ODE to a single second-order ODE: y'' 3y' + 2y = 0. (Any system of ODE of any order can be converted to a system of first-order ODE.) The solution is $y(t) = ae^t + be^{2t}$.
- Another way to directly handle a second-order single ODE that is linear and homogeneous and has constant coefficients, i.e., y'' + Py' + Qy = 0 (where

- In the above example one can convert the system of first-order ODE to a single second-order ODE: y'' 3y' + 2y = 0. (Any system of ODE of any order can be converted to a system of first-order ODE.) The solution is $y(t) = ae^t + be^{2t}$.
- Another way to directly handle a second-order single ODE that is linear and homogeneous and has constant coefficients, i.e., y'' + Py' + Qy = 0 (where $P, Q \in \mathbb{R}$) is to

- In the above example one can convert the system of first-order ODE to a single second-order ODE: y'' 3y' + 2y = 0. (Any system of ODE of any order can be converted to a system of first-order ODE.) The solution is $y(t) = ae^t + be^{2t}$.
- Another way to directly handle a second-order single ODE that is linear and homogeneous and has constant coefficients, i.e., y" + Py' + Qy = 0 (where P, Q ∈ ℝ) is to take the derivative linear map D

- In the above example one can convert the system of first-order ODE to a single second-order ODE: y'' 3y' + 2y = 0. (Any system of ODE of any order can be converted to a system of first-order ODE.) The solution is $y(t) = ae^t + be^{2t}$.
- Another way to directly handle a second-order single ODE that is linear and homogeneous and has constant coefficients, i.e., y" + Py' + Qy = 0 (where P, Q ∈ ℝ) is to take the derivative linear map D and write it as D² + PD + Q = 0.

- In the above example one can convert the system of first-order ODE to a single second-order ODE: y'' 3y' + 2y = 0. (Any system of ODE of any order can be converted to a system of first-order ODE.) The solution is $y(t) = ae^t + be^{2t}$.
- Another way to directly handle a second-order single ODE that is linear and homogeneous and has constant coefficients, i.e., y" + Py' + Qy = 0 (where P, Q ∈ ℝ) is to take the derivative linear map D and write it as D² + PD + Q = 0.
- If the roots are

- In the above example one can convert the system of first-order ODE to a single second-order ODE: y'' 3y' + 2y = 0. (Any system of ODE of any order can be converted to a system of first-order ODE.) The solution is $y(t) = ae^t + be^{2t}$.
- Another way to directly handle a second-order single ODE that is linear and homogeneous and has constant coefficients, i.e., y" + Py' + Qy = 0 (where P, Q ∈ ℝ) is to take the derivative linear map D and write it as D² + PD + Q = 0.
- If the roots are $\lambda_1 \neq \lambda_2$,

- In the above example one can convert the system of first-order ODE to a single second-order ODE: y'' 3y' + 2y = 0. (Any system of ODE of any order can be converted to a system of first-order ODE.) The solution is $y(t) = ae^t + be^{2t}$.
- Another way to directly handle a second-order single ODE that is linear and homogeneous and has constant coefficients, i.e., y" + Py' + Qy = 0 (where P, Q ∈ ℝ) is to take the derivative linear map D and write it as D² + PD + Q = 0.

• If the roots are $\lambda_1 \neq \lambda_2$, and $\lambda_1, \lambda_2 \in \mathbb{R}$ (

- In the above example one can convert the system of first-order ODE to a single second-order ODE: y'' 3y' + 2y = 0. (Any system of ODE of any order can be converted to a system of first-order ODE.) The solution is $y(t) = ae^t + be^{2t}$.
- Another way to directly handle a second-order single ODE that is linear and homogeneous and has constant coefficients, i.e., y" + Py' + Qy = 0 (where P, Q ∈ ℝ) is to take the derivative linear map D and write it as D² + PD + Q = 0.
- If the roots are $\lambda_1 \neq \lambda_2$, and $\lambda_1, \lambda_2 \in \mathbb{R}$ (we shall deal with the

- In the above example one can convert the system of first-order ODE to a single second-order ODE: y'' 3y' + 2y = 0. (Any system of ODE of any order can be converted to a system of first-order ODE.) The solution is $y(t) = ae^t + be^{2t}$.
- Another way to directly handle a second-order single ODE that is linear and homogeneous and has constant coefficients, i.e., y" + Py' + Qy = 0 (where P, Q ∈ ℝ) is to take the derivative linear map D and write it as D² + PD + Q = 0.
- If the roots are $\lambda_1 \neq \lambda_2$, and $\lambda_1, \lambda_2 \in \mathbb{R}$ (we shall deal with the other cases later)

- In the above example one can convert the system of first-order ODE to a single second-order ODE: y'' 3y' + 2y = 0. (Any system of ODE of any order can be converted to a system of first-order ODE.) The solution is $y(t) = ae^t + be^{2t}$.
- Another way to directly handle a second-order single ODE that is linear and homogeneous and has constant coefficients, i.e., y" + Py' + Qy = 0 (where P, Q ∈ ℝ) is to take the derivative linear map D and write it as D² + PD + Q = 0.
- If the roots are $\lambda_1 \neq \lambda_2$, and $\lambda_1, \lambda_2 \in \mathbb{R}$ (we shall deal with the other cases later) then we can try $y = ae^{\lambda_1 t} + be^{\lambda_2 t}$.

- In the above example one can convert the system of first-order ODE to a single second-order ODE: y'' 3y' + 2y = 0. (Any system of ODE of any order can be converted to a system of first-order ODE.) The solution is $y(t) = ae^t + be^{2t}$.
- Another way to directly handle a second-order single ODE that is linear and homogeneous and has constant coefficients, i.e., y" + Py' + Qy = 0 (where P, Q ∈ ℝ) is to take the derivative linear map D and write it as D² + PD + Q = 0.
- If the roots are λ₁ ≠ λ₂, and λ₁, λ₂ ∈ ℝ (we shall deal with the other cases later) then we can try y = ae^{λ₁t} + be^{λ₂t}. Indeed it works.

- In the above example one can convert the system of first-order ODE to a single second-order ODE: y'' 3y' + 2y = 0. (Any system of ODE of any order can be converted to a system of first-order ODE.) The solution is $y(t) = ae^t + be^{2t}$.
- Another way to directly handle a second-order single ODE that is linear and homogeneous and has constant coefficients, i.e., y" + Py' + Qy = 0 (where P, Q ∈ ℝ) is to take the derivative linear map D and write it as D² + PD + Q = 0.
- If the roots are $\lambda_1 \neq \lambda_2$, and $\lambda_1, \lambda_2 \in \mathbb{R}$ (we shall deal with the other cases later) then we can try $y = ae^{\lambda_1 t} + be^{\lambda_2 t}$. Indeed it works. One can prove that

- In the above example one can convert the system of first-order ODE to a single second-order ODE: y'' 3y' + 2y = 0. (Any system of ODE of any order can be converted to a system of first-order ODE.) The solution is $y(t) = ae^t + be^{2t}$.
- Another way to directly handle a second-order single ODE that is linear and homogeneous and has constant coefficients, i.e., y" + Py' + Qy = 0 (where P, Q ∈ ℝ) is to take the derivative linear map D and write it as D² + PD + Q = 0.
- If the roots are λ₁ ≠ λ₂, and λ₁, λ₂ ∈ ℝ (we shall deal with the other cases later) then we can try y = ae^{λ₁t} + be^{λ₂t}. Indeed it works. One can prove that it is *the* only kind of solution:

- In the above example one can convert the system of first-order ODE to a single second-order ODE: y'' 3y' + 2y = 0. (Any system of ODE of any order can be converted to a system of first-order ODE.) The solution is $y(t) = ae^t + be^{2t}$.
- Another way to directly handle a second-order single ODE that is linear and homogeneous and has constant coefficients, i.e., y" + Py' + Qy = 0 (where P, Q ∈ ℝ) is to take the derivative linear map D and write it as D² + PD + Q = 0.
- If the roots are λ₁ ≠ λ₂, and λ₁, λ₂ ∈ ℝ (we shall deal with the other cases later) then we can try y = ae^{λ₁t} + be^{λ₂t}. Indeed it works. One can prove that it is *the* only kind of solution: Indeed, recasting as a

- In the above example one can convert the system of first-order ODE to a single second-order ODE: y'' 3y' + 2y = 0. (Any system of ODE of any order can be converted to a system of first-order ODE.) The solution is $y(t) = ae^t + be^{2t}$.
- Another way to directly handle a second-order single ODE that is linear and homogeneous and has constant coefficients, i.e., y" + Py' + Qy = 0 (where P, Q ∈ ℝ) is to take the derivative linear map D and write it as D² + PD + Q = 0.
- If the roots are λ₁ ≠ λ₂, and λ₁, λ₂ ∈ ℝ (we shall deal with the other cases later) then we can try y = ae^{λ₁t} + be^{λ₂t}. Indeed it works. One can prove that it is *the* only kind of solution: Indeed, recasting as a first-order system as above

- In the above example one can convert the system of first-order ODE to a single second-order ODE: y'' 3y' + 2y = 0. (Any system of ODE of any order can be converted to a system of first-order ODE.) The solution is $y(t) = ae^t + be^{2t}$.
- Another way to directly handle a second-order single ODE that is linear and homogeneous and has constant coefficients, i.e., y" + Py' + Qy = 0 (where P, Q ∈ ℝ) is to take the derivative linear map D and write it as D² + PD + Q = 0.
- If the roots are λ₁ ≠ λ₂, and λ₁, λ₂ ∈ ℝ (we shall deal with the other cases later) then we can try y = ae^{λ₁t} + be^{λ₂t}. Indeed it works. One can prove that it is *the* only kind of solution: Indeed, recasting as a first-order system as above the eigenvalues are distinct

- In the above example one can convert the system of first-order ODE to a single second-order ODE: y'' 3y' + 2y = 0. (Any system of ODE of any order can be converted to a system of first-order ODE.) The solution is $y(t) = ae^t + be^{2t}$.
- Another way to directly handle a second-order single ODE that is linear and homogeneous and has constant coefficients, i.e., y" + Py' + Qy = 0 (where P, Q ∈ ℝ) is to take the derivative linear map D and write it as D² + PD + Q = 0.
- If the roots are λ₁ ≠ λ₂, and λ₁, λ₂ ∈ ℝ (we shall deal with the other cases later) then we can try y = ae^{λ₁t} + be^{λ₂t}. Indeed it works. One can prove that it is *the* only kind of solution: Indeed, recasting as a first-order system as above the eigenvalues are distinct and hence A is diagonalisable.

- In the above example one can convert the system of first-order ODE to a single second-order ODE: y'' 3y' + 2y = 0. (Any system of ODE of any order can be converted to a system of first-order ODE.) The solution is $y(t) = ae^t + be^{2t}$.
- Another way to directly handle a second-order single ODE that is linear and homogeneous and has constant coefficients, i.e., y" + Py' + Qy = 0 (where P, Q ∈ ℝ) is to take the derivative linear map D and write it as D² + PD + Q = 0.
- If the roots are λ₁ ≠ λ₂, and λ₁, λ₂ ∈ ℝ (we shall deal with the other cases later) then we can try y = ae^{λ₁t} + be^{λ₂t}. Indeed it works. One can prove that it is *the* only kind of solution: Indeed, recasting as a first-order system as above the eigenvalues are distinct and hence A is diagonalisable. We already proved that

- In the above example one can convert the system of first-order ODE to a single second-order ODE: y'' 3y' + 2y = 0. (Any system of ODE of any order can be converted to a system of first-order ODE.) The solution is $y(t) = ae^t + be^{2t}$.
- Another way to directly handle a second-order single ODE that is linear and homogeneous and has constant coefficients, i.e., y" + Py' + Qy = 0 (where P, Q ∈ ℝ) is to take the derivative linear map D and write it as D² + PD + Q = 0.
- If the roots are λ₁ ≠ λ₂, and λ₁, λ₂ ∈ ℝ (we shall deal with the other cases later) then we can try y = ae^{λ₁t} + be^{λ₂t}. Indeed it works. One can prove that it is *the* only kind of solution: Indeed, recasting as a first-order system as above the eigenvalues are distinct and hence A is diagonalisable. We already proved that in that case

- In the above example one can convert the system of first-order ODE to a single second-order ODE: y'' - 3y' + 2y = 0. (Any system of ODE of any order can be converted to a system of first-order ODE.) The solution is $y(t) = ae^t + be^{2t}$.
- Another way to directly handle a second-order single ODE that is linear and homogeneous and has constant coefficients, i.e., y'' + Py' + Qy = 0 (where $P, Q \in \mathbb{R}$) is to take the derivative linear map D and write it as $D^2 + PD + Q = 0$.
- If the roots are $\lambda_1 \neq \lambda_2$, and $\lambda_1, \lambda_2 \in \mathbb{R}$ (we shall deal with the other cases later) then we can try $y = ae^{\lambda_1 t} + be^{\lambda_2 t}$. Indeed it works. One can prove that it is the only kind of solution: Indeed, recasting as a first-order system as above the eigenvalues are distinct and hence A is diagonalisable. We already proved that in that case the solution is

- In the above example one can convert the system of first-order ODE to a single second-order ODE: y'' 3y' + 2y = 0. (Any system of ODE of any order can be converted to a system of first-order ODE.) The solution is $y(t) = ae^t + be^{2t}$.
- Another way to directly handle a second-order single ODE that is linear and homogeneous and has constant coefficients, i.e., y'' + Py' + Qy = 0 (where $P, Q \in \mathbb{R}$) is to take the derivative linear map D and write it as $D^2 + PD + Q = 0$.
- If the roots are λ₁ ≠ λ₂, and λ₁, λ₂ ∈ ℝ (we shall deal with the other cases later) then we can try y = ae^{λ₁t} + be^{λ₂t}. Indeed it works. One can prove that it is *the* only kind of solution: Indeed, recasting as a first-order system as above the eigenvalues are distinct and hence A is diagonalisable. We already proved that in that case the solution is two-dimensional as a vector space

- In the above example one can convert the system of first-order ODE to a single second-order ODE: y'' 3y' + 2y = 0. (Any system of ODE of any order can be converted to a system of first-order ODE.) The solution is $y(t) = ae^t + be^{2t}$.
- Another way to directly handle a second-order single ODE that is linear and homogeneous and has constant coefficients, i.e., y" + Py' + Qy = 0 (where P, Q ∈ ℝ) is to take the derivative linear map D and write it as D² + PD + Q = 0.
- If the roots are λ₁ ≠ λ₂, and λ₁, λ₂ ∈ ℝ (we shall deal with the other cases later) then we can try y = ae^{λ₁t} + be^{λ₂t}. Indeed it works. One can prove that it is *the* only kind of solution: Indeed, recasting as a first-order system as above the eigenvalues are distinct and hence A is diagonalisable. We already proved that in that case the solution is two-dimensional as a vector space and that this is the only solution.