Lecture 16 - UM 102 (Spring 2021)

Vamsi Pritham Pingali

IISc

Recap

Recap

- Defined Hermitian and Skew-Hermitian
- Defined Hermitian and Skew-Hermitian linear maps and matrices.
- Defined Hermitian and Skew-Hermitian linear maps and matrices.
- Proved that they had
- Defined Hermitian and Skew-Hermitian linear maps and matrices.
- Proved that they had real eigenvalues and that
- Defined Hermitian and Skew-Hermitian linear maps and matrices.
- Proved that they had real eigenvalues and that they could be diagonalised
- Defined Hermitian and Skew-Hermitian linear maps and matrices.
- Proved that they had real eigenvalues and that they could be diagonalised using unitary matrices.

An ODE to a Grecian urn

An ODE to a Grecian urn

- A wide variety of

An ODE to a Grecian urn

- A wide variety of natural laws

An ODE to a Grecian urn

- A wide variety of natural laws involve functions

An ODE to a Grecian urn

- A wide variety of natural laws involve functions that satisfy

An ODE to a Grecian urn

- A wide variety of natural laws involve functions that satisfy differential equations.

An ODE to a Grecian urn

- A wide variety of natural laws involve functions that satisfy differential equations.
- In particular,

An ODE to a Grecian urn

- A wide variety of natural laws involve functions that satisfy differential equations.
- In particular, Newton's laws are

An ODE to a Grecian urn

- A wide variety of natural laws involve functions that satisfy differential equations.
- In particular, Newton's laws are $m \frac{d^{2} \vec{r}}{d t^{2}}=\vec{F}$.

An ODE to a Grecian urn

- A wide variety of natural laws involve functions that satisfy differential equations.
- In particular, Newton's laws are $m \frac{d^{2} \vec{r}}{d t^{2}}=\vec{F}$. Equations of the form $F\left(t, \vec{y}, \vec{y}^{\prime}, \ldots, \vec{y}^{(n)}\right)=0$ are called

An ODE to a Grecian urn

- A wide variety of natural laws involve functions that satisfy differential equations.
- In particular, Newton's laws are $m \frac{d^{2} \vec{r}}{d t^{2}}=\vec{F}$. Equations of the form $F\left(t, \vec{y}, \vec{y}^{\prime}, \ldots, \vec{y}^{(n)}\right)=0$ are called Ordinary Differential Equations

An ODE to a Grecian urn

- A wide variety of natural laws involve functions that satisfy differential equations.
- In particular, Newton's laws are $m \frac{d^{2} \vec{r}}{d t^{2}}=\vec{F}$. Equations of the form $F\left(t, \vec{y}, \vec{y}^{\prime}, \ldots, \vec{y}^{(n)}\right)=0$ are called Ordinary Differential Equations of order n.

An ODE to a Grecian urn

- A wide variety of natural laws involve functions that satisfy differential equations.
- In particular, Newton's laws are $m \frac{d^{2} \vec{r}}{d t^{2}}=\vec{F}$. Equations of the form $F\left(t, \vec{y}, \vec{y}^{\prime}, \ldots, \vec{y}^{(n)}\right)=0$ are called Ordinary Differential Equations of order n. If F is

An ODE to a Grecian urn

- A wide variety of natural laws involve functions that satisfy differential equations.
- In particular, Newton's laws are $m \frac{d^{2} \vec{r}}{d t^{2}}=\vec{F}$. Equations of the form $F\left(t, \vec{y}, \vec{y}^{\prime}, \ldots, \vec{y}^{(n)}\right)=0$ are called Ordinary Differential Equations of order n. If F is linear in y, y^{\prime}, \ldots etc then

An ODE to a Grecian urn

- A wide variety of natural laws involve functions that satisfy differential equations.
- In particular, Newton's laws are $m \frac{d^{2} \vec{r}}{d t^{2}}=\vec{F}$. Equations of the form $F\left(t, \vec{y}, \vec{y}^{\prime}, \ldots, \vec{y}^{(n)}\right)=0$ are called Ordinary Differential Equations of order n. If F is linear in y, y^{\prime}, \ldots etc then the ODE is said to be linear.

An ODE to a Grecian urn

- A wide variety of natural laws involve functions that satisfy differential equations.
- In particular, Newton's laws are $m \frac{d^{2} \vec{r}}{d t^{2}}=\vec{F}$. Equations of the form $F\left(t, \vec{y}, \vec{y}^{\prime}, \ldots, \vec{y}^{(n)}\right)=0$ are called Ordinary Differential Equations of order n. If F is linear in y, y^{\prime}, \ldots etc then the ODE is said to be linear. If $\vec{y}=0$ is a solution of

An ODE to a Grecian urn

- A wide variety of natural laws involve functions that satisfy differential equations.
- In particular, Newton's laws are $m \frac{d^{2} \vec{r}}{d t^{2}}=\vec{F}$. Equations of the form $F\left(t, \vec{y}, \vec{y}^{\prime}, \ldots, \vec{y}^{(n)}\right)=0$ are called Ordinary Differential Equations of order n. If F is linear in y, y^{\prime}, \ldots etc then the ODE is said to be linear. If $\vec{y}=0$ is a solution of a linear ODE

An ODE to a Grecian urn

- A wide variety of natural laws involve functions that satisfy differential equations.
- In particular, Newton's laws are $m \frac{d^{2} \vec{r}}{d t^{2}}=\vec{F}$. Equations of the form $F\left(t, \vec{y}, \vec{y}^{\prime}, \ldots, \vec{y}^{(n)}\right)=0$ are called Ordinary Differential Equations of order n. If F is linear in y, y^{\prime}, \ldots etc then the ODE is said to be linear. If $\vec{y}=0$ is a solution of a linear ODE then it is called a homogeneous linear equation.

An ODE to a Grecian urn

- A wide variety of natural laws involve functions that satisfy differential equations.
- In particular, Newton's laws are $m \frac{d^{2} \vec{r}}{d t^{2}}=\vec{F}$. Equations of the form $F\left(t, \vec{y}, \vec{y}^{\prime}, \ldots, \vec{y}^{(n)}\right)=0$ are called Ordinary Differential Equations of order n. If F is linear in y, y^{\prime}, \ldots etc then the ODE is said to be linear. If $\vec{y}=0$ is a solution of a linear ODE then it is called a homogeneous linear equation.
- Often, ODE come with

An ODE to a Grecian urn

- A wide variety of natural laws involve functions that satisfy differential equations.
- In particular, Newton's laws are $m \frac{d^{2} \vec{r}}{d t^{2}}=\vec{F}$. Equations of the form $F\left(t, \vec{y}, \vec{y}^{\prime}, \ldots, \vec{y}^{(n)}\right)=0$ are called Ordinary Differential Equations of order n. If F is linear in y, y^{\prime}, \ldots etc then the ODE is said to be linear. If $\vec{y}=0$ is a solution of a linear ODE then it is called a homogeneous linear equation.
- Often, ODE come with boundary conditions

An ODE to a Grecian urn

- A wide variety of natural laws involve functions that satisfy differential equations.
- In particular, Newton's laws are $m \frac{d^{2} \vec{r}}{d t^{2}}=\vec{F}$. Equations of the form $F\left(t, \vec{y}, \vec{y}^{\prime}, \ldots, \vec{y}^{(n)}\right)=0$ are called Ordinary Differential Equations of order n. If F is linear in y, y^{\prime}, \ldots etc then the ODE is said to be linear. If $\vec{y}=0$ is a solution of a linear ODE then it is called a homogeneous linear equation.
- Often, ODE come with boundary conditions like $y(0)=0, y^{\prime}(0)=4, y^{\prime \prime}(1)=2$, etc.

An ODE to a Grecian urn

- A wide variety of natural laws involve functions that satisfy differential equations.
- In particular, Newton's laws are $m \frac{d^{2} \vec{r}}{d t^{2}}=\vec{F}$. Equations of the form $F\left(t, \vec{y}, \vec{y}^{\prime}, \ldots, \vec{y}^{(n)}\right)=0$ are called Ordinary Differential Equations of order n. If F is linear in y, y^{\prime}, \ldots etc then the ODE is said to be linear. If $\vec{y}=0$ is a solution of a linear ODE then it is called a homogeneous linear equation.
- Often, ODE come with boundary conditions like $y(0)=0, y^{\prime}(0)=4, y^{\prime \prime}(1)=2$, etc.
- Given an ODE

An ODE to a Grecian urn

- A wide variety of natural laws involve functions that satisfy differential equations.
- In particular, Newton's laws are $m \frac{d^{2} \vec{r}}{d t^{2}}=\vec{F}$. Equations of the form $F\left(t, \vec{y}, \vec{y}^{\prime}, \ldots, \vec{y}^{(n)}\right)=0$ are called Ordinary Differential Equations of order n. If F is linear in y, y^{\prime}, \ldots etc then the ODE is said to be linear. If $\vec{y}=0$ is a solution of a linear ODE then it is called a homogeneous linear equation.
- Often, ODE come with boundary conditions like $y(0)=0, y^{\prime}(0)=4, y^{\prime \prime}(1)=2$, etc.
- Given an ODE one can ask

An ODE to a Grecian urn

- A wide variety of natural laws involve functions that satisfy differential equations.
- In particular, Newton's laws are $m \frac{d^{2} \vec{r}}{d t^{2}}=\vec{F}$. Equations of the form $F\left(t, \vec{y}, \vec{y}^{\prime}, \ldots, \vec{y}^{(n)}\right)=0$ are called Ordinary Differential Equations of order n. If F is linear in y, y^{\prime}, \ldots etc then the ODE is said to be linear. If $\vec{y}=0$ is a solution of a linear ODE then it is called a homogeneous linear equation.
- Often, ODE come with boundary conditions like $y(0)=0, y^{\prime}(0)=4, y^{\prime \prime}(1)=2$, etc.
- Given an ODE one can ask "Is there a solution satisfying the boundary conditions ?",

An ODE to a Grecian urn

- A wide variety of natural laws involve functions that satisfy differential equations.
- In particular, Newton's laws are $m \frac{d^{2} \vec{r}}{d t^{2}}=\vec{F}$. Equations of the form $F\left(t, \vec{y}, \vec{y}^{\prime}, \ldots, \vec{y}^{(n)}\right)=0$ are called Ordinary Differential Equations of order n. If F is linear in y, y^{\prime}, \ldots etc then the ODE is said to be linear. If $\vec{y}=0$ is a solution of a linear ODE then it is called a homogeneous linear equation.
- Often, ODE come with boundary conditions like $y(0)=0, y^{\prime}(0)=4, y^{\prime \prime}(1)=2$, etc.
- Given an ODE one can ask "Is there a solution satisfying the boundary conditions ?", "Is it unique?"

An ODE to a Grecian urn

- A wide variety of natural laws involve functions that satisfy differential equations.
- In particular, Newton's laws are $m \frac{d^{2} \vec{r}}{d t^{2}}=\vec{F}$. Equations of the form $F\left(t, \vec{y}, \vec{y}^{\prime}, \ldots, \vec{y}^{(n)}\right)=0$ are called Ordinary Differential Equations of order n. If F is linear in y, y^{\prime}, \ldots etc then the ODE is said to be linear. If $\vec{y}=0$ is a solution of a linear ODE then it is called a homogeneous linear equation.
- Often, ODE come with boundary conditions like $y(0)=0, y^{\prime}(0)=4, y^{\prime \prime}(1)=2$, etc.
- Given an ODE one can ask "Is there a solution satisfying the boundary conditions ?", "Is it unique?" "Can we write a formula for it?" and

An ODE to a Grecian urn

- A wide variety of natural laws involve functions that satisfy differential equations.
- In particular, Newton's laws are $m \frac{d^{2} \vec{r}}{d t^{2}}=\vec{F}$. Equations of the form $F\left(t, \vec{y}, \vec{y}^{\prime}, \ldots, \vec{y}^{(n)}\right)=0$ are called Ordinary Differential Equations of order n. If F is linear in y, y^{\prime}, \ldots etc then the ODE is said to be linear. If $\vec{y}=0$ is a solution of a linear ODE then it is called a homogeneous linear equation.
- Often, ODE come with boundary conditions like $y(0)=0, y^{\prime}(0)=4, y^{\prime \prime}(1)=2$, etc.
- Given an ODE one can ask "Is there a solution satisfying the boundary conditions ?", "Is it unique?" "Can we write a formula for it?" and "Can we compute it using an efficient algorithm?"

An ODE to a Grecian urn

- A wide variety of natural laws involve functions that satisfy differential equations.
- In particular, Newton's laws are $m \frac{d^{2} \vec{r}}{d t^{2}}=\vec{F}$. Equations of the form $F\left(t, \vec{y}, \vec{y}^{\prime}, \ldots, \vec{y}^{(n)}\right)=0$ are called Ordinary Differential Equations of order n. If F is linear in y, y^{\prime}, \ldots etc then the ODE is said to be linear. If $\vec{y}=0$ is a solution of a linear ODE then it is called a homogeneous linear equation.
- Often, ODE come with boundary conditions like $y(0)=0, y^{\prime}(0)=4, y^{\prime \prime}(1)=2$, etc.
- Given an ODE one can ask "Is there a solution satisfying the boundary conditions ?", "Is it unique?" "Can we write a formula for it?" and "Can we compute it using an efficient algorithm?" The answer to all these questions is

An ODE to a Grecian urn

- A wide variety of natural laws involve functions that satisfy differential equations.
- In particular, Newton's laws are $m \frac{d^{2} \vec{r}}{d t^{2}}=\vec{F}$. Equations of the form $F\left(t, \vec{y}, \vec{y}^{\prime}, \ldots, \vec{y}^{(n)}\right)=0$ are called Ordinary Differential Equations of order n. If F is linear in y, y^{\prime}, \ldots etc then the ODE is said to be linear. If $\vec{y}=0$ is a solution of a linear ODE then it is called a homogeneous linear equation.
- Often, ODE come with boundary conditions like $y(0)=0, y^{\prime}(0)=4, y^{\prime \prime}(1)=2$, etc.
- Given an ODE one can ask "Is there a solution satisfying the boundary conditions ?", "Is it unique?" "Can we write a formula for it?" and "Can we compute it using an efficient algorithm?" The answer to all these questions is NO in general.

An ODE to a Grecian urn

- A wide variety of natural laws involve functions that satisfy differential equations.
- In particular, Newton's laws are $m \frac{d^{2} \vec{r}}{d t^{2}}=\vec{F}$. Equations of the form $F\left(t, \vec{y}, \vec{y}^{\prime}, \ldots, \vec{y}^{(n)}\right)=0$ are called Ordinary Differential Equations of order n. If F is linear in y, y^{\prime}, \ldots etc then the ODE is said to be linear. If $\vec{y}=0$ is a solution of a linear ODE then it is called a homogeneous linear equation.
- Often, ODE come with boundary conditions like $y(0)=0, y^{\prime}(0)=4, y^{\prime \prime}(1)=2$, etc.
- Given an ODE one can ask "Is there a solution satisfying the boundary conditions ?", "Is it unique?" "Can we write a formula for it?" and "Can we compute it using an efficient algorithm?" The answer to all these questions is NO in general. But it is YES in important cases.

An ODE to a Grecian urn

- A wide variety of natural laws involve functions that satisfy differential equations.
- In particular, Newton's laws are $m \frac{d^{2} \vec{r}}{d t^{2}}=\vec{F}$. Equations of the form $F\left(t, \vec{y}, \vec{y}^{\prime}, \ldots, \vec{y}^{(n)}\right)=0$ are called Ordinary Differential Equations of order n. If F is linear in y, y^{\prime}, \ldots etc then the ODE is said to be linear. If $\vec{y}=0$ is a solution of a linear ODE then it is called a homogeneous linear equation.
- Often, ODE come with boundary conditions like $y(0)=0, y^{\prime}(0)=4, y^{\prime \prime}(1)=2$, etc.
- Given an ODE one can ask "Is there a solution satisfying the boundary conditions ?", "Is it unique?" "Can we write a formula for it?" and "Can we compute it using an efficient algorithm?" The answer to all these questions is NO in general. But it is YES in important cases.
- The study of differential equations is

An ODE to a Grecian urn

- A wide variety of natural laws involve functions that satisfy differential equations.
- In particular, Newton's laws are $m \frac{d^{2} \vec{r}}{d t^{2}}=\vec{F}$. Equations of the form $F\left(t, \vec{y}, \vec{y}^{\prime}, \ldots, \vec{y}^{(n)}\right)=0$ are called Ordinary Differential Equations of order n. If F is linear in y, y^{\prime}, \ldots etc then the ODE is said to be linear. If $\vec{y}=0$ is a solution of a linear ODE then it is called a homogeneous linear equation.
- Often, ODE come with boundary conditions like $y(0)=0, y^{\prime}(0)=4, y^{\prime \prime}(1)=2$, etc.
- Given an ODE one can ask "Is there a solution satisfying the boundary conditions ?", "Is it unique?" "Can we write a formula for it?" and "Can we compute it using an efficient algorithm?" The answer to all these questions is NO in general. But it is YES in important cases.
- The study of differential equations is akin to theology.

An ODE to a Grecian urn

- A wide variety of natural laws involve functions that satisfy differential equations.
- In particular, Newton's laws are $m \frac{d^{2} \vec{r}}{d t^{2}}=\vec{F}$. Equations of the form $F\left(t, \vec{y}, \vec{y}^{\prime}, \ldots, \vec{y}^{(n)}\right)=0$ are called Ordinary Differential Equations of order n. If F is linear in y, y^{\prime}, \ldots etc then the ODE is said to be linear. If $\vec{y}=0$ is a solution of a linear ODE then it is called a homogeneous linear equation.
- Often, ODE come with boundary conditions like $y(0)=0, y^{\prime}(0)=4, y^{\prime \prime}(1)=2$, etc.
- Given an ODE one can ask "Is there a solution satisfying the boundary conditions ?", "Is it unique?" "Can we write a formula for it?" and "Can we compute it using an efficient algorithm?" The answer to all these questions is NO in general. But it is YES in important cases.
- The study of differential equations is akin to theology. The central questions are about

An ODE to a Grecian urn

- A wide variety of natural laws involve functions that satisfy differential equations.
- In particular, Newton's laws are $m \frac{d^{2} \vec{r}}{d t^{2}}=\vec{F}$. Equations of the form $F\left(t, \vec{y}, \vec{y}^{\prime}, \ldots, \vec{y}^{(n)}\right)=0$ are called Ordinary Differential Equations of order n. If F is linear in y, y^{\prime}, \ldots etc then the ODE is said to be linear. If $\vec{y}=0$ is a solution of a linear ODE then it is called a homogeneous linear equation.
- Often, ODE come with boundary conditions like $y(0)=0, y^{\prime}(0)=4, y^{\prime \prime}(1)=2$, etc.
- Given an ODE one can ask "Is there a solution satisfying the boundary conditions ?", "Is it unique?" "Can we write a formula for it?" and "Can we compute it using an efficient algorithm?" The answer to all these questions is NO in general. But it is YES in important cases.
- The study of differential equations is akin to theology. The central questions are about existence and uniqueness.

A stupid ODE

A stupid ODE

- Solve $y^{\prime}=0$ for a differentiable function y.

A stupid ODE

- Solve $y^{\prime}=0$ for a differentiable function y.
- Before you rush

A stupid ODE

- Solve $y^{\prime}=0$ for a differentiable function y.
- Before you rush to an answer,

A stupid ODE

- Solve $y^{\prime}=0$ for a differentiable function y.
- Before you rush to an answer, we need to know

A stupid ODE

- Solve $y^{\prime}=0$ for a differentiable function y.
- Before you rush to an answer, we need to know what the domain

A stupid ODE

- Solve $y^{\prime}=0$ for a differentiable function y.
- Before you rush to an answer, we need to know what the domain is.

A stupid ODE

- Solve $y^{\prime}=0$ for a differentiable function y.
- Before you rush to an answer, we need to know what the domain is. For instance, if

A stupid ODE

- Solve $y^{\prime}=0$ for a differentiable function y.
- Before you rush to an answer, we need to know what the domain is. For instance, if $y:(0,1) \cup(2,3) \rightarrow \mathbb{R}$,

A stupid ODE

- Solve $y^{\prime}=0$ for a differentiable function y.
- Before you rush to an answer, we need to know what the domain is. For instance, if $y:(0,1) \cup(2,3) \rightarrow \mathbb{R}$, the answer is not just

A stupid ODE

- Solve $y^{\prime}=0$ for a differentiable function y.
- Before you rush to an answer, we need to know what the domain is. For instance, if $y:(0,1) \cup(2,3) \rightarrow \mathbb{R}$, the answer is not just "constant".

A stupid ODE

- Solve $y^{\prime}=0$ for a differentiable function y.
- Before you rush to an answer, we need to know what the domain is. For instance, if $y:(0,1) \cup(2,3) \rightarrow \mathbb{R}$, the answer is not just "constant". It is $y=c_{1}$ on $(0,1)$ and $y=c_{2}$ on $(2,3)$!

A stupid ODE

- Solve $y^{\prime}=0$ for a differentiable function y.
- Before you rush to an answer, we need to know what the domain is. For instance, if $y:(0,1) \cup(2,3) \rightarrow \mathbb{R}$, the answer is not just "constant". It is $y=c_{1}$ on $(0,1)$ and $y=c_{2}$ on $(2,3)$!
- So solve $y^{\prime}=0$ on (a, b).

A stupid ODE

- Solve $y^{\prime}=0$ for a differentiable function y.
- Before you rush to an answer, we need to know what the domain is. For instance, if $y:(0,1) \cup(2,3) \rightarrow \mathbb{R}$, the answer is not just "constant". It is $y=c_{1}$ on $(0,1)$ and $y=c_{2}$ on $(2,3)$!
- So solve $y^{\prime}=0$ on (a, b).
- Proof:

A stupid ODE

- Solve $y^{\prime}=0$ for a differentiable function y.
- Before you rush to an answer, we need to know what the domain is. For instance, if $y:(0,1) \cup(2,3) \rightarrow \mathbb{R}$, the answer is not just "constant". It is $y=c_{1}$ on $(0,1)$ and $y=c_{2}$ on $(2,3)$!
- So solve $y^{\prime}=0$ on (a, b).
- Proof: If $y\left(x_{1}\right) \neq y\left(x_{2}\right)$,

A stupid ODE

- Solve $y^{\prime}=0$ for a differentiable function y.
- Before you rush to an answer, we need to know what the domain is. For instance, if $y:(0,1) \cup(2,3) \rightarrow \mathbb{R}$, the answer is not just "constant". It is $y=c_{1}$ on $(0,1)$ and $y=c_{2}$ on $(2,3)$!
- So solve $y^{\prime}=0$ on (a, b).
- Proof: If $y\left(x_{1}\right) \neq y\left(x_{2}\right)$, then since y is differentiable

A stupid ODE

- Solve $y^{\prime}=0$ for a differentiable function y.
- Before you rush to an answer, we need to know what the domain is. For instance, if $y:(0,1) \cup(2,3) \rightarrow \mathbb{R}$, the answer is not just "constant". It is $y=c_{1}$ on $(0,1)$ and $y=c_{2}$ on $(2,3)$!
- So solve $y^{\prime}=0$ on (a, b).
- Proof: If $y\left(x_{1}\right) \neq y\left(x_{2}\right)$, then since y is differentiable on $\left(x_{1}, x_{2}\right)$, and

A stupid ODE

- Solve $y^{\prime}=0$ for a differentiable function y.
- Before you rush to an answer, we need to know what the domain is. For instance, if $y:(0,1) \cup(2,3) \rightarrow \mathbb{R}$, the answer is not just "constant". It is $y=c_{1}$ on $(0,1)$ and $y=c_{2}$ on $(2,3)$!
- So solve $y^{\prime}=0$ on (a, b).
- Proof: If $y\left(x_{1}\right) \neq y\left(x_{2}\right)$, then since y is differentiable on $\left(x_{1}, x_{2}\right)$, and it is continuous on $\left[x_{1}, x_{2}\right]$,

A stupid ODE

- Solve $y^{\prime}=0$ for a differentiable function y.
- Before you rush to an answer, we need to know what the domain is. For instance, if $y:(0,1) \cup(2,3) \rightarrow \mathbb{R}$, the answer is not just "constant". It is $y=c_{1}$ on $(0,1)$ and $y=c_{2}$ on $(2,3)$!
- So solve $y^{\prime}=0$ on (a, b).
- Proof: If $y\left(x_{1}\right) \neq y\left(x_{2}\right)$, then since y is differentiable on $\left(x_{1}, x_{2}\right)$, and it is continuous on [x_{1}, x_{2}], by LMVT $0 \neq y\left(x_{2}\right)-y\left(x_{1}\right)=y^{\prime}(\theta)\left(x_{2}-x_{1}\right)=0$.

A stupid ODE

- Solve $y^{\prime}=0$ for a differentiable function y.
- Before you rush to an answer, we need to know what the domain is. For instance, if $y:(0,1) \cup(2,3) \rightarrow \mathbb{R}$, the answer is not just "constant". It is $y=c_{1}$ on $(0,1)$ and $y=c_{2}$ on $(2,3)$!
- So solve $y^{\prime}=0$ on (a, b).
- Proof: If $y\left(x_{1}\right) \neq y\left(x_{2}\right)$, then since y is differentiable on $\left(x_{1}, x_{2}\right)$, and it is continuous on [x_{1}, x_{2}], by LMVT $0 \neq y\left(x_{2}\right)-y\left(x_{1}\right)=y^{\prime}(\theta)\left(x_{2}-x_{1}\right)=0$. A contradiction!

A stupid ODE

- Solve $y^{\prime}=0$ for a differentiable function y.
- Before you rush to an answer, we need to know what the domain is. For instance, if $y:(0,1) \cup(2,3) \rightarrow \mathbb{R}$, the answer is not just "constant". It is $y=c_{1}$ on $(0,1)$ and $y=c_{2}$ on $(2,3)$!
- So solve $y^{\prime}=0$ on (a, b).
- Proof: If $y\left(x_{1}\right) \neq y\left(x_{2}\right)$, then since y is differentiable on $\left(x_{1}, x_{2}\right)$, and it is continuous on [x_{1}, x_{2}], by LMVT $0 \neq y\left(x_{2}\right)-y\left(x_{1}\right)=y^{\prime}(\theta)\left(x_{2}-x_{1}\right)=0$. A contradiction! Thus y is a constant.

A stupid ODE

- Solve $y^{\prime}=0$ for a differentiable function y.
- Before you rush to an answer, we need to know what the domain is. For instance, if $y:(0,1) \cup(2,3) \rightarrow \mathbb{R}$, the answer is not just "constant". It is $y=c_{1}$ on $(0,1)$ and $y=c_{2}$ on $(2,3)$!
- So solve $y^{\prime}=0$ on (a, b).
- Proof: If $y\left(x_{1}\right) \neq y\left(x_{2}\right)$, then since y is differentiable on $\left(x_{1}, x_{2}\right)$, and it is continuous on [x_{1}, x_{2}], by LMVT $0 \neq y\left(x_{2}\right)-y\left(x_{1}\right)=y^{\prime}(\theta)\left(x_{2}-x_{1}\right)=0$. A contradiction! Thus y is a constant.
- The same result works for \mathbb{R}.

A slightly less stupid one

A slightly less stupid one

- A drop of

A slightly less stupid one

- A drop of Strep. Pneum. is

A slightly less stupid one

- A drop of Strep. Pneum. is placed on a petri dish.

A slightly less stupid one

- A drop of Strep. Pneum. is placed on a petri dish. What happens after some time?

A slightly less stupid one

- A drop of Strep. Pneum. is placed on a petri dish. What happens after some time? Ans: You catch Pneumonia.

A slightly less stupid one

- A drop of Strep. Pneum. is placed on a petri dish. What happens after some time? Ans: You catch Pneumonia.
- Let $N(t)$ be the number.

A slightly less stupid one

- A drop of Strep. Pneum. is placed on a petri dish. What happens after some time? Ans: You catch Pneumonia.
- Let $N(t)$ be the number. Then $N^{\prime}(t)=k N$ is

A slightly less stupid one

- A drop of Strep. Pneum. is placed on a petri dish. What happens after some time? Ans: You catch Pneumonia.
- Let $N(t)$ be the number. Then $N^{\prime}(t)=k N$ is a simple approximation

A slightly less stupid one

- A drop of Strep. Pneum. is placed on a petri dish. What happens after some time? Ans: You catch Pneumonia.
- Let $N(t)$ be the number. Then $N^{\prime}(t)=k N$ is a simple approximation for a reasonable amount of time.

A slightly less stupid one

- A drop of Strep. Pneum. is placed on a petri dish. What happens after some time? Ans: You catch Pneumonia.
- Let $N(t)$ be the number. Then $N^{\prime}(t)=k N$ is a simple approximation for a reasonable amount of time.
- Solve $y^{\prime}=k y, y(0)=A$ on \mathbb{R}.

A slightly less stupid one

- A drop of Strep. Pneum. is placed on a petri dish. What happens after some time? Ans: You catch Pneumonia.
- Let $N(t)$ be the number. Then $N^{\prime}(t)=k N$ is a simple approximation for a reasonable amount of time.
- Solve $y^{\prime}=k y, y(0)=A$ on \mathbb{R}.
- $y(t)=A e^{k t}$ is the answer:

A slightly less stupid one

- A drop of Strep. Pneum. is placed on a petri dish. What happens after some time? Ans: You catch Pneumonia.
- Let $N(t)$ be the number. Then $N^{\prime}(t)=k N$ is a simple approximation for a reasonable amount of time.
- Solve $y^{\prime}=k y, y(0)=A$ on \mathbb{R}.
- $y(t)=A e^{k t}$ is the answer: Let $z(t)=y(t) e^{-k t}$.

A slightly less stupid one

- A drop of Strep. Pneum. is placed on a petri dish. What happens after some time? Ans: You catch Pneumonia.
- Let $N(t)$ be the number. Then $N^{\prime}(t)=k N$ is a simple approximation for a reasonable amount of time.
- Solve $y^{\prime}=k y, y(0)=A$ on \mathbb{R}.
- $y(t)=A e^{k t}$ is the answer: Let $z(t)=y(t) e^{-k t}$. Then $z^{\prime}(t)=0$ and $z(0)=A$.

A slightly less stupid one

- A drop of Strep. Pneum. is placed on a petri dish. What happens after some time? Ans: You catch Pneumonia.
- Let $N(t)$ be the number. Then $N^{\prime}(t)=k N$ is a simple approximation for a reasonable amount of time.
- Solve $y^{\prime}=k y, y(0)=A$ on \mathbb{R}.
- $y(t)=A e^{k t}$ is the answer: Let $z(t)=y(t) e^{-k t}$. Then $z^{\prime}(t)=0$ and $z(0)=A$. Thus $z(t)=A$.

A system

A system

- Two drops of

A system

- Two drops of two kinds of bacteria
- Two drops of two kinds of bacteria are placed on two petri dishes.
- Two drops of two kinds of bacteria are placed on two petri dishes. What happens?
- Two drops of two kinds of bacteria are placed on two petri dishes. What happens? Ans: You win the Darwin award for stupidity.
- Two drops of two kinds of bacteria are placed on two petri dishes. What happens? Ans: You win the Darwin award for stupidity.
- Let N_{1}, N_{2} be the numbers.
- Two drops of two kinds of bacteria are placed on two petri dishes. What happens? Ans: You win the Darwin award for stupidity.
- Let N_{1}, N_{2} be the numbers. $N_{1}^{\prime}=k_{1} N_{1}, N_{2}^{\prime}=k_{2} N_{2}$.

A system

- Two drops of two kinds of bacteria are placed on two petri dishes. What happens? Ans: You win the Darwin award for stupidity.
- Let N_{1}, N_{2} be the numbers. $N_{1}^{\prime}=k_{1} N_{1}, N_{2}^{\prime}=k_{2} N_{2}$.
- As before, $N_{1}=A_{1} e^{k_{1} t}, N_{2}=A_{2} e^{k_{2} t}$.

A system

- Two drops of two kinds of bacteria are placed on two petri dishes. What happens? Ans: You win the Darwin award for stupidity.
- Let N_{1}, N_{2} be the numbers. $N_{1}^{\prime}=k_{1} N_{1}, N_{2}^{\prime}=k_{2} N_{2}$.
- As before, $N_{1}=A_{1} e^{k_{1} t}, N_{2}=A_{2} e^{k_{2} t}$.
- What if they are placed on

A system

- Two drops of two kinds of bacteria are placed on two petri dishes. What happens? Ans: You win the Darwin award for stupidity.
- Let N_{1}, N_{2} be the numbers. $N_{1}^{\prime}=k_{1} N_{1}, N_{2}^{\prime}=k_{2} N_{2}$.
- As before, $N_{1}=A_{1} e^{k_{1} t}, N_{2}=A_{2} e^{k_{2} t}$.
- What if they are placed on the same petri-dish?

A system

- Two drops of two kinds of bacteria are placed on two petri dishes. What happens? Ans: You win the Darwin award for stupidity.
- Let N_{1}, N_{2} be the numbers. $N_{1}^{\prime}=k_{1} N_{1}, N_{2}^{\prime}=k_{2} N_{2}$.
- As before, $N_{1}=A_{1} e^{k_{1} t}, N_{2}=A_{2} e^{k_{2} t}$.
- What if they are placed on the same petri-dish? The actual answer may be different.

A system

- Two drops of two kinds of bacteria are placed on two petri dishes. What happens? Ans: You win the Darwin award for stupidity.
- Let N_{1}, N_{2} be the numbers. $N_{1}^{\prime}=k_{1} N_{1}, N_{2}^{\prime}=k_{2} N_{2}$.
- As before, $N_{1}=A_{1} e^{k_{1} t}, N_{2}=A_{2} e^{k_{2} t}$.
- What if they are placed on the same petri-dish? The actual answer may be different. I am going to pull out equations from

A system

- Two drops of two kinds of bacteria are placed on two petri dishes. What happens? Ans: You win the Darwin award for stupidity.
- Let N_{1}, N_{2} be the numbers. $N_{1}^{\prime}=k_{1} N_{1}, N_{2}^{\prime}=k_{2} N_{2}$.
- As before, $N_{1}=A_{1} e^{k_{1} t}, N_{2}=A_{2} e^{k_{2} t}$.
- What if they are placed on the same petri-dish? The actual answer may be different. I am going to pull out equations from my mind.

A system

- Two drops of two kinds of bacteria are placed on two petri dishes. What happens? Ans: You win the Darwin award for stupidity.
- Let N_{1}, N_{2} be the numbers. $N_{1}^{\prime}=k_{1} N_{1}, N_{2}^{\prime}=k_{2} N_{2}$.
- As before, $N_{1}=A_{1} e^{k_{1} t}, N_{2}=A_{2} e^{k_{2} t}$.
- What if they are placed on the same petri-dish? The actual answer may be different. I am going to pull out equations from my mind.
- Solve $x^{\prime}=a x+b y, y^{\prime}=c x+d y$ on \mathbb{R}.

A system

- Two drops of two kinds of bacteria are placed on two petri dishes. What happens? Ans: You win the Darwin award for stupidity.
- Let N_{1}, N_{2} be the numbers. $N_{1}^{\prime}=k_{1} N_{1}, N_{2}^{\prime}=k_{2} N_{2}$.
- As before, $N_{1}=A_{1} e^{k_{1} t}, N_{2}=A_{2} e^{k_{2} t}$.
- What if they are placed on the same petri-dish? The actual answer may be different. I am going to pull out equations from my mind.
- Solve $x^{\prime}=a x+b y, y^{\prime}=c x+d y$ on \mathbb{R}. The idea is to

A system

- Two drops of two kinds of bacteria are placed on two petri dishes. What happens? Ans: You win the Darwin award for stupidity.
- Let N_{1}, N_{2} be the numbers. $N_{1}^{\prime}=k_{1} N_{1}, N_{2}^{\prime}=k_{2} N_{2}$.
- As before, $N_{1}=A_{1} e^{k_{1} t}, N_{2}=A_{2} e^{k_{2} t}$.
- What if they are placed on the same petri-dish? The actual answer may be different. I am going to pull out equations from my mind.
- Solve $x^{\prime}=a x+b y, y^{\prime}=c x+d y$ on \mathbb{R}. The idea is to linearly change to u, v

A system

- Two drops of two kinds of bacteria are placed on two petri dishes. What happens? Ans: You win the Darwin award for stupidity.
- Let N_{1}, N_{2} be the numbers. $N_{1}^{\prime}=k_{1} N_{1}, N_{2}^{\prime}=k_{2} N_{2}$.
- As before, $N_{1}=A_{1} e^{k_{1} t}, N_{2}=A_{2} e^{k_{2} t}$.
- What if they are placed on the same petri-dish? The actual answer may be different. I am going to pull out equations from my mind.
- Solve $x^{\prime}=a x+b y, y^{\prime}=c x+d y$ on \mathbb{R}. The idea is to linearly change to u, v such that $u^{\prime}=k_{1} u, v^{\prime}=k_{2} v$.

A system

- Two drops of two kinds of bacteria are placed on two petri dishes. What happens? Ans: You win the Darwin award for stupidity.
- Let N_{1}, N_{2} be the numbers. $N_{1}^{\prime}=k_{1} N_{1}, N_{2}^{\prime}=k_{2} N_{2}$.
- As before, $N_{1}=A_{1} e^{k_{1} t}, N_{2}=A_{2} e^{k_{2} t}$.
- What if they are placed on the same petri-dish? The actual answer may be different. I am going to pull out equations from my mind.
- Solve $x^{\prime}=a x+b y, y^{\prime}=c x+d y$ on \mathbb{R}. The idea is to linearly change to u, v such that $u^{\prime}=k_{1} u, v^{\prime}=k_{2} v$. This idea is

A system

- Two drops of two kinds of bacteria are placed on two petri dishes. What happens? Ans: You win the Darwin award for stupidity.
- Let N_{1}, N_{2} be the numbers. $N_{1}^{\prime}=k_{1} N_{1}, N_{2}^{\prime}=k_{2} N_{2}$.
- As before, $N_{1}=A_{1} e^{k_{1} t}, N_{2}=A_{2} e^{k_{2} t}$.
- What if they are placed on the same petri-dish? The actual answer may be different. I am going to pull out equations from my mind.
- Solve $x^{\prime}=a x+b y, y^{\prime}=c x+d y$ on \mathbb{R}. The idea is to linearly change to u, v such that $u^{\prime}=k_{1} u, v^{\prime}=k_{2} v$. This idea is best implemented using matrices.

A system of linear first-order constant-coefficient homogeneous ODE

A system of linear first-order constant-coefficient homogeneous ODE

$$
\text { - Let } v=\left[\begin{array}{l}
x \\
y
\end{array}\right] \text { and }
$$

A system of linear first-order constant-coefficient homogeneous ODE

$$
\text { - Let } v=\left[\begin{array}{l}
x \\
y
\end{array}\right] \text { and } A=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right] \text {. }
$$

A system of linear first-order constant-coefficient homogeneous ODE

$$
\text { - Let } v=\left[\begin{array}{l}
x \\
y
\end{array}\right] \text { and } A=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right] \text {. Then we want to solve }
$$

A system of linear first-order constant-coefficient homogeneous ODE

$$
\begin{aligned}
& \text { Let } v=\left[\begin{array}{l}
x \\
y
\end{array}\right] \text { and } A=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right] . \text { Then we want to solve } \\
& \frac{d v}{d t}=A v .
\end{aligned}
$$

A system of linear first-order constant-coefficient homogeneous ODE

$$
\begin{aligned}
& \text { Let } v=\left[\begin{array}{l}
x \\
y
\end{array}\right] \text { and } A=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right] . \text { Then we want to solve } \\
& \frac{d v}{d t}=A v \text {. Naively, one can attempt }
\end{aligned}
$$

A system of linear first-order constant-coefficient homogeneous ODE

$$
\begin{aligned}
& \text { Let } v=\left[\begin{array}{l}
x \\
y
\end{array}\right] \text { and } A=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right] \text {. Then we want to solve } \\
& \frac{d v}{d t}=A v \text {. Naively, one can attempt } v=e^{A t} v_{0} .
\end{aligned}
$$

A system of linear first-order constant-coefficient homogeneous ODE

- Let $v=\left[\begin{array}{l}x \\ y\end{array}\right]$ and $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$. Then we want to solve $\frac{d v}{d t}=A v$. Naively, one can attempt $v=e^{A t} v_{0}$. Surprisingly, such an attempt works but

A system of linear first-order constant-coefficient homogeneous ODE

- Let $v=\left[\begin{array}{l}x \\ y\end{array}\right]$ and $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$. Then we want to solve $\frac{d v}{d t}=A v$. Naively, one can attempt $v=e^{A t} v_{0}$. Surprisingly, such an attempt works but we shall choose a different route.

A system of linear first-order constant-coefficient homogeneous ODE

- Let $v=\left[\begin{array}{l}x \\ y\end{array}\right]$ and $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$. Then we want to solve $\frac{d v}{d t}=A v$. Naively, one can attempt $v=e^{A t} v_{0}$. Surprisingly, such an attempt works but we shall choose a different route.
- Assume that A is diagonalisable, i.e.,

A system of linear first-order constant-coefficient homogeneous ODE

- Let $v=\left[\begin{array}{l}x \\ y\end{array}\right]$ and $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$. Then we want to solve $\frac{d v}{d t}=A v$. Naively, one can attempt $v=e^{A t} v_{0}$. Surprisingly, such an attempt works but we shall choose a different route.
- Assume that A is diagonalisable, i.e., $P^{-1} A P=D$ or $A=P D P^{-1}$.

A system of linear first-order constant-coefficient homogeneous ODE

- Let $v=\left[\begin{array}{l}x \\ y\end{array}\right]$ and $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$. Then we want to solve $\frac{d v}{d t}=A v$. Naively, one can attempt $v=e^{A t} v_{0}$. Surprisingly, such an attempt works but we shall choose a different route.
- Assume that A is diagonalisable, i.e., $P^{-1} A P=D$ or $A=P D P^{-1}$. Then $\frac{d v}{d t}=P D P^{-1} v$.

A system of linear first-order constant-coefficient homogeneous ODE

- Let $v=\left[\begin{array}{l}x \\ y\end{array}\right]$ and $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$. Then we want to solve $\frac{d v}{d t}=A v$. Naively, one can attempt $v=e^{A t} v_{0}$. Surprisingly, such an attempt works but we shall choose a different route.
- Assume that A is diagonalisable, i.e., $P^{-1} A P=D$ or $A=P D P^{-1}$. Then $\frac{d v}{d t}=P D P^{-1} v$. Let $w=P^{-1} v$.

A system of linear first-order constant-coefficient homogeneous ODE

- Let $v=\left[\begin{array}{l}x \\ y\end{array}\right]$ and $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$. Then we want to solve $\frac{d v}{d t}=A v$. Naively, one can attempt $v=e^{A t} v_{0}$. Surprisingly, such an attempt works but we shall choose a different route.
- Assume that A is diagonalisable, i.e., $P^{-1} A P=D$ or $A=P D P^{-1}$. Then $\frac{d v}{d t}=P D P^{-1} v$. Let $w=P^{-1} v$. Then $\frac{d w}{d t}=D w$.

A system of linear first-order constant-coefficient homogeneous ODE

- Let $v=\left[\begin{array}{l}x \\ y\end{array}\right]$ and $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$. Then we want to solve $\frac{d v}{d t}=A v$. Naively, one can attempt $v=e^{A t} v_{0}$. Surprisingly, such an attempt works but we shall choose a different route.
- Assume that A is diagonalisable, i.e., $P^{-1} A P=D$ or $A=P D P^{-1}$. Then $\frac{d v}{d t}=P D P^{-1} v$. Let $w=P^{-1} v$. Then $\frac{d w}{d t}=D w$. Thus $w_{i}^{\prime}(t)=\lambda_{i} w_{i}$ and hence

A system of linear first-order constant-coefficient homogeneous ODE

- Let $v=\left[\begin{array}{l}x \\ y\end{array}\right]$ and $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$. Then we want to solve $\frac{d v}{d t}=A v$. Naively, one can attempt $v=e^{A t} v_{0}$. Surprisingly, such an attempt works but we shall choose a different route.
- Assume that A is diagonalisable, i.e., $P^{-1} A P=D$ or $A=P D P^{-1}$. Then $\frac{d v}{d t}=P D P^{-1} v$. Let $w=P^{-1} v$. Then $\frac{d w}{d t}=D w$. Thus $w_{i}^{\prime}(t)=\lambda_{i} w_{i}$ and hence $w_{i}=w_{i}(0) e^{\lambda_{i} t}$ and $v=P w$.

A system of linear first-order constant-coefficient homogeneous ODE

- Let $v=\left[\begin{array}{l}x \\ y\end{array}\right]$ and $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$. Then we want to solve $\frac{d v}{d t}=A v$. Naively, one can attempt $v=e^{A t} v_{0}$. Surprisingly, such an attempt works but we shall choose a different route.
- Assume that A is diagonalisable, i.e., $P^{-1} A P=D$ or $A=P D P^{-1}$. Then $\frac{d v}{d t}=P D P^{-1} v$. Let $w=P^{-1} v$. Then $\frac{d w}{d t}=D w$. Thus $w_{i}^{\prime}(t)=\lambda_{i} w_{i}$ and hence $w_{i}=w_{i}(0) e^{\lambda_{i} t}$ and $v=P w$.
- In other words,

A system of linear first-order constant-coefficient homogeneous ODE

- Let $v=\left[\begin{array}{l}x \\ y\end{array}\right]$ and $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$. Then we want to solve $\frac{d v}{d t}=A v$. Naively, one can attempt $v=e^{A t} v_{0}$. Surprisingly, such an attempt works but we shall choose a different route.
- Assume that A is diagonalisable, i.e., $P^{-1} A P=D$ or $A=P D P^{-1}$. Then $\frac{d v}{d t}=P D P^{-1} v$. Let $w=P^{-1} v$. Then $\frac{d w}{d t}=D w$. Thus $w_{i}^{\prime}(t)=\lambda_{i} w_{i}$ and hence $w_{i}=w_{i}(0) e^{\lambda_{i} t}$ and $v=P w$.
- In other words, if A is diagonalisable,

A system of linear first-order constant-coefficient homogeneous ODE

- Let $v=\left[\begin{array}{l}x \\ y\end{array}\right]$ and $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$. Then we want to solve $\frac{d v}{d t}=A v$. Naively, one can attempt $v=e^{A t} v_{0}$. Surprisingly, such an attempt works but we shall choose a different route.
- Assume that A is diagonalisable, i.e., $P^{-1} A P=D$ or $A=P D P^{-1}$. Then $\frac{d v}{d t}=P D P^{-1} v$. Let $w=P^{-1} v$. Then $\frac{d w}{d t}=D w$. Thus $w_{i}^{\prime}(t)=\lambda_{i} w_{i}$ and hence $w_{i}=w_{i}(0) e^{\lambda_{i} t}$ and $v=P w$.
- In other words, if A is diagonalisable, the set of solutions

A system of linear first-order constant-coefficient homogeneous ODE

- Let $v=\left[\begin{array}{l}x \\ y\end{array}\right]$ and $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$. Then we want to solve $\frac{d v}{d t}=A v$. Naively, one can attempt $v=e^{A t} v_{0}$. Surprisingly, such an attempt works but we shall choose a different route.
- Assume that A is diagonalisable, i.e., $P^{-1} A P=D$ or $A=P D P^{-1}$. Then $\frac{d v}{d t}=P D P^{-1} v$. Let $w=P^{-1} v$. Then $\frac{d w}{d t}=D w$. Thus $w_{i}^{\prime}(t)=\lambda_{i} w_{i}$ and hence $w_{i}=w_{i}(0) e^{\lambda_{i} t}$ and $v=P w$.
- In other words, if A is diagonalisable, the set of solutions forms a vector space

A system of linear first-order constant-coefficient homogeneous ODE

- Let $v=\left[\begin{array}{l}x \\ y\end{array}\right]$ and $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$. Then we want to solve $\frac{d v}{d t}=A v$. Naively, one can attempt $v=e^{A t} v_{0}$. Surprisingly, such an attempt works but we shall choose a different route.
- Assume that A is diagonalisable, i.e., $P^{-1} A P=D$ or $A=P D P^{-1}$. Then $\frac{d v}{d t}=P D P^{-1} v$. Let $w=P^{-1} v$. Then $\frac{d w}{d t}=D w$. Thus $w_{i}^{\prime}(t)=\lambda_{i} w_{i}$ and hence $w_{i}=w_{i}(0) e^{\lambda_{i} t}$ and $v=P w$.
- In other words, if A is diagonalisable, the set of solutions forms a vector space of dimension n

A system of linear first-order constant-coefficient homogeneous ODE

- Let $v=\left[\begin{array}{l}x \\ y\end{array}\right]$ and $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$. Then we want to solve $\frac{d v}{d t}=A v$. Naively, one can attempt $v=e^{A t} v_{0}$. Surprisingly, such an attempt works but we shall choose a different route.
- Assume that A is diagonalisable, i.e., $P^{-1} A P=D$ or $A=P D P^{-1}$. Then $\frac{d v}{d t}=P D P^{-1} v$. Let $w=P^{-1} v$. Then $\frac{d w}{d t}=D w$. Thus $w_{i}^{\prime}(t)=\lambda_{i} w_{i}$ and hence $w_{i}=w_{i}(0) e^{\lambda_{i} t}$ and $v=P w$.
- In other words, if A is diagonalisable, the set of solutions forms a vector space of dimension n spanned by

A system of linear first-order constant-coefficient homogeneous ODE

- Let $v=\left[\begin{array}{l}x \\ y\end{array}\right]$ and $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$. Then we want to solve $\frac{d v}{d t}=A v$. Naively, one can attempt $v=e^{A t} v_{0}$. Surprisingly, such an attempt works but we shall choose a different route.
- Assume that A is diagonalisable, i.e., $P^{-1} A P=D$ or $A=P D P^{-1}$. Then $\frac{d v}{d t}=P D P^{-1} v$. Let $w=P^{-1} v$. Then $\frac{d w}{d t}=D w$. Thus $w_{i}^{\prime}(t)=\lambda_{i} w_{i}$ and hence $w_{i}=w_{i}(0) e^{\lambda_{i} t}$ and $v=P w$.
- In other words, if A is diagonalisable, the set of solutions forms a vector space of dimension n spanned by $e^{\lambda_{i} t} P e_{i}$.

A system of linear first-order constant-coefficient homogeneous ODE

- Let $v=\left[\begin{array}{l}x \\ y\end{array}\right]$ and $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$. Then we want to solve $\frac{d v}{d t}=A v$. Naively, one can attempt $v=e^{A t} v_{0}$. Surprisingly, such an attempt works but we shall choose a different route.
- Assume that A is diagonalisable, i.e., $P^{-1} A P=D$ or $A=P D P^{-1}$. Then $\frac{d v}{d t}=P D P^{-1} v$. Let $w=P^{-1} v$. Then $\frac{d w}{d t}=D w$. Thus $w_{i}^{\prime}(t)=\lambda_{i} w_{i}$ and hence $w_{i}=w_{i}(0) e^{\lambda_{i} t}$ and $v=P w$.
- In other words, if A is diagonalisable, the set of solutions forms a vector space of dimension n spanned by $e^{\lambda_{i} t} P e_{i}$.
- If $A=A^{T}$

A system of linear first-order constant-coefficient homogeneous ODE

- Let $v=\left[\begin{array}{l}x \\ y\end{array}\right]$ and $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$. Then we want to solve $\frac{d v}{d t}=A v$. Naively, one can attempt $v=e^{A t} v_{0}$. Surprisingly, such an attempt works but we shall choose a different route.
- Assume that A is diagonalisable, i.e., $P^{-1} A P=D$ or $A=P D P^{-1}$. Then $\frac{d v}{d t}=P D P^{-1} v$. Let $w=P^{-1} v$. Then $\frac{d w}{d t}=D w$. Thus $w_{i}^{\prime}(t)=\lambda_{i} w_{i}$ and hence $w_{i}=w_{i}(0) e^{\lambda_{i} t}$ and $v=P w$.
- In other words, if A is diagonalisable, the set of solutions forms a vector space of dimension n spanned by $e^{\lambda_{i} t} P e_{i}$.
- If $A=A^{T}$ then by the Spectral Theorem

A system of linear first-order constant-coefficient homogeneous ODE

- Let $v=\left[\begin{array}{l}x \\ y\end{array}\right]$ and $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$. Then we want to solve $\frac{d v}{d t}=A v$. Naively, one can attempt $v=e^{A t} v_{0}$. Surprisingly, such an attempt works but we shall choose a different route.
- Assume that A is diagonalisable, i.e., $P^{-1} A P=D$ or $A=P D P^{-1}$. Then $\frac{d v}{d t}=P D P^{-1} v$. Let $w=P^{-1} v$. Then $\frac{d w}{d t}=D w$. Thus $w_{i}^{\prime}(t)=\lambda_{i} w_{i}$ and hence $w_{i}=w_{i}(0) e^{\lambda_{i} t}$ and $v=P w$.
- In other words, if A is diagonalisable, the set of solutions forms a vector space of dimension n spanned by $e^{\lambda_{i} t} P e_{i}$.
- If $A=A^{T}$ then by the Spectral Theorem A is diagonalisable

A system of linear first-order constant-coefficient homogeneous ODE

- Let $v=\left[\begin{array}{l}x \\ y\end{array}\right]$ and $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$. Then we want to solve $\frac{d v}{d t}=A v$. Naively, one can attempt $v=e^{A t} v_{0}$. Surprisingly, such an attempt works but we shall choose a different route.
- Assume that A is diagonalisable, i.e., $P^{-1} A P=D$ or $A=P D P^{-1}$. Then $\frac{d v}{d t}=P D P^{-1} v$. Let $w=P^{-1} v$. Then $\frac{d w}{d t}=D w$. Thus $w_{i}^{\prime}(t)=\lambda_{i} w_{i}$ and hence $w_{i}=w_{i}(0) e^{\lambda_{i} t}$ and $v=P w$.
- In other words, if A is diagonalisable, the set of solutions forms a vector space of dimension n spanned by $e^{\lambda_{i} t} P e_{i}$.
- If $A=A^{T}$ then by the Spectral Theorem A is diagonalisable by an orthogonal matrix.

A system of linear first-order constant-coefficient homogeneous ODE

- Let $v=\left[\begin{array}{l}x \\ y\end{array}\right]$ and $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$. Then we want to solve $\frac{d v}{d t}=A v$. Naively, one can attempt $v=e^{A t} v_{0}$. Surprisingly, such an attempt works but we shall choose a different route.
- Assume that A is diagonalisable, i.e., $P^{-1} A P=D$ or $A=P D P^{-1}$. Then $\frac{d v}{d t}=P D P^{-1} v$. Let $w=P^{-1} v$. Then $\frac{d w}{d t}=D w$. Thus $w_{i}^{\prime}(t)=\lambda_{i} w_{i}$ and hence $w_{i}=w_{i}(0) e^{\lambda_{i} t}$ and $v=P w$.
- In other words, if A is diagonalisable, the set of solutions forms a vector space of dimension n spanned by $e^{\lambda_{i} t} P e_{i}$.
- If $A=A^{T}$ then by the Spectral Theorem A is diagonalisable by an orthogonal matrix. In that case,

A system of linear first-order constant-coefficient homogeneous ODE

- Let $v=\left[\begin{array}{l}x \\ y\end{array}\right]$ and $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$. Then we want to solve $\frac{d v}{d t}=A v$. Naively, one can attempt $v=e^{A t} v_{0}$. Surprisingly, such an attempt works but we shall choose a different route.
- Assume that A is diagonalisable, i.e., $P^{-1} A P=D$ or $A=P D P^{-1}$. Then $\frac{d v}{d t}=P D P^{-1} v$. Let $w=P^{-1} v$. Then $\frac{d w}{d t}=D w$. Thus $w_{i}^{\prime}(t)=\lambda_{i} w_{i}$ and hence $w_{i}=w_{i}(0) e^{\lambda_{i} t}$ and $v=P w$.
- In other words, if A is diagonalisable, the set of solutions forms a vector space of dimension n spanned by $e^{\lambda_{i} t} P e_{i}$.
- If $A=A^{T}$ then by the Spectral Theorem A is diagonalisable by an orthogonal matrix. In that case, the above strategy applies.

Example

Example

- Solve for all differentiable functions

Example

- Solve for all differentiable functions $x(t), y(t)$ on \mathbb{R} :

Example

- Solve for all differentiable functions $x(t), y(t)$ on \mathbb{R} : $x^{\prime}=3 x-2 y, y^{\prime}=x$.

Example

- Solve for all differentiable functions $x(t), y(t)$ on \mathbb{R} : $x^{\prime}=3 x-2 y, y^{\prime}=x$.
- The matrix A is

Example

- Solve for all differentiable functions $x(t), y(t)$ on \mathbb{R} : $x^{\prime}=3 x-2 y, y^{\prime}=x$.
- The matrix A is $A=\left[\begin{array}{cc}3 & -2 \\ 1 & 0\end{array}\right]$.

Example

- Solve for all differentiable functions $x(t), y(t)$ on \mathbb{R} : $x^{\prime}=3 x-2 y, y^{\prime}=x$.
- The matrix A is $A=\left[\begin{array}{cc}3 & -2 \\ 1 & 0\end{array}\right]$. It is not symmetric.

Example

- Solve for all differentiable functions $x(t), y(t)$ on \mathbb{R} : $x^{\prime}=3 x-2 y, y^{\prime}=x$.
- The matrix A is $A=\left[\begin{array}{cc}3 & -2 \\ 1 & 0\end{array}\right]$. It is not symmetric. We shall still attempt to diagonalise it.

Example

- Solve for all differentiable functions $x(t), y(t)$ on \mathbb{R} : $x^{\prime}=3 x-2 y, y^{\prime}=x$.
- The matrix A is $A=\left[\begin{array}{cc}3 & -2 \\ 1 & 0\end{array}\right]$. It is not symmetric. We shall still attempt to diagonalise it.
- The eigenvalues are

Example

- Solve for all differentiable functions $x(t), y(t)$ on \mathbb{R} : $x^{\prime}=3 x-2 y, y^{\prime}=x$.
- The matrix A is $A=\left[\begin{array}{cc}3 & -2 \\ 1 & 0\end{array}\right]$. It is not symmetric. We shall still attempt to diagonalise it.
- The eigenvalues are 1,2 .

Example

- Solve for all differentiable functions $x(t), y(t)$ on \mathbb{R} :
$x^{\prime}=3 x-2 y, y^{\prime}=x$.
- The matrix A is $A=\left[\begin{array}{cc}3 & -2 \\ 1 & 0\end{array}\right]$. It is not symmetric. We shall still attempt to diagonalise it.
- The eigenvalues are 1,2 . Corresponding eigenvectors are

Example

- Solve for all differentiable functions $x(t), y(t)$ on \mathbb{R} : $x^{\prime}=3 x-2 y, y^{\prime}=x$.
- The matrix A is $A=\left[\begin{array}{cc}3 & -2 \\ 1 & 0\end{array}\right]$. It is not symmetric. We shall still attempt to diagonalise it.
- The eigenvalues are 1,2 . Corresponding eigenvectors are $(1,1)$ and $(2,1)$ respectively.

Example

- Solve for all differentiable functions $x(t), y(t)$ on \mathbb{R} :
$x^{\prime}=3 x-2 y, y^{\prime}=x$.
- The matrix A is $A=\left[\begin{array}{cc}3 & -2 \\ 1 & 0\end{array}\right]$. It is not symmetric. We shall still attempt to diagonalise it.
- The eigenvalues are 1,2 . Corresponding eigenvectors are $(1,1)$ and $(2,1)$ respectively. $P^{-1} A P=D$ where $P=\left[\begin{array}{ll}1 & 2 \\ 1 & 1\end{array}\right]$ and $D=\left[\begin{array}{ll}1 & 0 \\ 0 & 2\end{array}\right]$.

Example

- Solve for all differentiable functions $x(t), y(t)$ on \mathbb{R} :
$x^{\prime}=3 x-2 y, y^{\prime}=x$.
- The matrix A is $A=\left[\begin{array}{cc}3 & -2 \\ 1 & 0\end{array}\right]$. It is not symmetric. We shall still attempt to diagonalise it.
- The eigenvalues are 1,2 . Corresponding eigenvectors are $(1,1)$ and $(2,1)$ respectively. $P^{-1} A P=D$ where $P=\left[\begin{array}{ll}1 & 2 \\ 1 & 1\end{array}\right]$ and $D=\left[\begin{array}{ll}1 & 0 \\ 0 & 2\end{array}\right]$. Let $w=P^{-1} v$. Then $\frac{d w}{d t}=D w$.

Example

- Solve for all differentiable functions $x(t), y(t)$ on \mathbb{R} :
$x^{\prime}=3 x-2 y, y^{\prime}=x$.
- The matrix A is $A=\left[\begin{array}{cc}3 & -2 \\ 1 & 0\end{array}\right]$. It is not symmetric. We shall still attempt to diagonalise it.
- The eigenvalues are 1,2 . Corresponding eigenvectors are $(1,1)$ and $(2,1)$ respectively. $P^{-1} A P=D$ where $P=\left[\begin{array}{ll}1 & 2 \\ 1 & 1\end{array}\right]$ and $D=\left[\begin{array}{ll}1 & 0 \\ 0 & 2\end{array}\right]$. Let $w=P^{-1} v$. Then $\frac{d w}{d t}=D w$. Hence $w(t)=a e^{t} e_{1}+b e^{2 t} e_{2}$.

Example

- Solve for all differentiable functions $x(t), y(t)$ on \mathbb{R} :
$x^{\prime}=3 x-2 y, y^{\prime}=x$.
- The matrix A is $A=\left[\begin{array}{cc}3 & -2 \\ 1 & 0\end{array}\right]$. It is not symmetric. We shall still attempt to diagonalise it.
- The eigenvalues are 1,2 . Corresponding eigenvectors are $(1,1)$ and $(2,1)$ respectively. $P^{-1} A P=D$ where $P=\left[\begin{array}{ll}1 & 2 \\ 1 & 1\end{array}\right]$ and $D=\left[\begin{array}{ll}1 & 0 \\ 0 & 2\end{array}\right]$. Let $w=P^{-1} v$. Then $\frac{d w}{d t}=D w$. Hence $w(t)=a e^{t} e_{1}+b e^{2 t} e_{2}$.
- Now $\left[\begin{array}{l}x \\ y\end{array}\right]=P w=a e^{t}\left[\begin{array}{l}1 \\ 1\end{array}\right]+b e^{2 t}\left[\begin{array}{l}2 \\ 1\end{array}\right]$.

What if the eigenvalues are not real?

What if the eigenvalues are not real?

- In this case,

What if the eigenvalues are not real?

- In this case, we need to solve

What if the eigenvalues are not real?

- In this case, we need to solve $\frac{d w_{i}}{d t}=\lambda_{i} w_{i}$ where

What if the eigenvalues are not real?

- In this case, we need to solve $\frac{d w_{i}}{d t}=\lambda_{i} w_{i}$ where λ_{i} is complex.

What if the eigenvalues are not real?

- In this case, we need to solve $\frac{d w_{i}}{d t}=\lambda_{i} w_{i}$ where λ_{i} is complex.
- In other words,

What if the eigenvalues are not real?

- In this case, we need to solve $\frac{d w_{i}}{d t}=\lambda_{i} w_{i}$ where λ_{i} is complex.
- In other words, $\frac{d w}{d t}=(a+b \sqrt{-1}) w$

What if the eigenvalues are not real?

- In this case, we need to solve $\frac{d w_{i}}{d t}=\lambda_{i} w_{i}$ where λ_{i} is complex.
- In other words, $\frac{d w}{d t}=(a+b \sqrt{-1}) w$ where $w=u+\sqrt{-1} v$.
- In this case, we need to solve $\frac{d w_{i}}{d t}=\lambda_{i} w_{i}$ where λ_{i} is complex.
- In other words, $\frac{d w}{d t}=(a+b \sqrt{-1}) w$ where $w=u+\sqrt{-1} v$. One way to do it is

What if the eigenvalues are not real?

- In this case, we need to solve $\frac{d w_{i}}{d t}=\lambda_{i} w_{i}$ where λ_{i} is complex.
- In other words, $\frac{d w}{d t}=(a+b \sqrt{-1}) w$ where $w=u+\sqrt{-1} v$. One way to do it is $w(t)=w_{0} e^{a t}(\cos (b t)+\sqrt{-1} \sin (b t))$ and

What if the eigenvalues are not real?

- In this case, we need to solve $\frac{d w_{i}}{d t}=\lambda_{i} w_{i}$ where λ_{i} is complex.
- In other words, $\frac{d w}{d t}=(a+b \sqrt{-1}) w$ where $w=u+\sqrt{-1} v$. One way to do it is $w(t)=w_{0} e^{a t}(\cos (b t)+\sqrt{-1} \sin (b t))$ and $w_{0} \in \mathbb{C}$.

What if the eigenvalues are not real?

- In this case, we need to solve $\frac{d w_{i}}{d t}=\lambda_{i} w_{i}$ where λ_{i} is complex.
- In other words, $\frac{d w}{d t}=(a+b \sqrt{-1}) w$ where $w=u+\sqrt{-1} v$. One way to do it is $w(t)=w_{0} e^{a t}(\cos (b t)+\sqrt{-1} \sin (b t))$ and $w_{0} \in \mathbb{C}$. While one can verify that

What if the eigenvalues are not real?

- In this case, we need to solve $\frac{d w_{i}}{d t}=\lambda_{i} w_{i}$ where λ_{i} is complex.
- In other words, $\frac{d w}{d t}=(a+b \sqrt{-1}) w$ where $w=u+\sqrt{-1} v$. One way to do it is $w(t)=w_{0} e^{a t}(\cos (b t)+\sqrt{-1} \sin (b t))$ and $w_{0} \in \mathbb{C}$. While one can verify that this solves the equation

What if the eigenvalues are not real?

- In this case, we need to solve $\frac{d w_{i}}{d t}=\lambda_{i} w_{i}$ where λ_{i} is complex.
- In other words, $\frac{d w}{d t}=(a+b \sqrt{-1}) w$ where $w=u+\sqrt{-1} v$. One way to do it is $w(t)=w_{0} e^{a t}(\cos (b t)+\sqrt{-1} \sin (b t))$ and $w_{0} \in \mathbb{C}$. While one can verify that this solves the equation how does one prove that

What if the eigenvalues are not real?

- In this case, we need to solve $\frac{d w_{i}}{d t}=\lambda_{i} w_{i}$ where λ_{i} is complex.
- In other words, $\frac{d w}{d t}=(a+b \sqrt{-1}) w$ where $w=u+\sqrt{-1} v$. One way to do it is $w(t)=w_{0} e^{a t}(\cos (b t)+\sqrt{-1} \sin (b t))$ and $w_{0} \in \mathbb{C}$. While one can verify that this solves the equation how does one prove that it is the solution?

What if the eigenvalues are not real?

- In this case, we need to solve $\frac{d w_{i}}{d t}=\lambda_{i} w_{i}$ where λ_{i} is complex.
- In other words, $\frac{d w}{d t}=(a+b \sqrt{-1}) w$ where $w=u+\sqrt{-1} v$. One way to do it is $w(t)=w_{0} e^{a t}(\cos (b t)+\sqrt{-1} \sin (b t))$ and $w_{0} \in \mathbb{C}$. While one can verify that this solves the equation how does one prove that it is the solution?
- Ans:

What if the eigenvalues are not real?

- In this case, we need to solve $\frac{d w_{i}}{d t}=\lambda_{i} w_{i}$ where λ_{i} is complex.
- In other words, $\frac{d w}{d t}=(a+b \sqrt{-1}) w$ where $w=u+\sqrt{-1} v$. One way to do it is $w(t)=w_{0} e^{a t}(\cos (b t)+\sqrt{-1} \sin (b t))$ and $w_{0} \in \mathbb{C}$. While one can verify that this solves the equation how does one prove that it is the solution?
- Ans: Same as before.

What if the eigenvalues are not real?

- In this case, we need to solve $\frac{d w_{i}}{d t}=\lambda_{i} w_{i}$ where λ_{i} is complex.
- In other words, $\frac{d w}{d t}=(a+b \sqrt{-1}) w$ where $w=u+\sqrt{-1} v$. One way to do it is $w(t)=w_{0} e^{a t}(\cos (b t)+\sqrt{-1} \sin (b t))$ and $w_{0} \in \mathbb{C}$. While one can verify that this solves the equation how does one prove that it is the solution?
- Ans: Same as before.

$$
z(t)=w(t) e^{-a t}(\cos (b t)-\sqrt{-1} \sin (b t))
$$

What if the eigenvalues are not real?

- In this case, we need to solve $\frac{d w_{i}}{d t}=\lambda_{i} w_{i}$ where λ_{i} is complex.
- In other words, $\frac{d w}{d t}=(a+b \sqrt{-1}) w$ where $w=u+\sqrt{-1} v$. One way to do it is $w(t)=w_{0} e^{a t}(\cos (b t)+\sqrt{-1} \sin (b t))$ and $w_{0} \in \mathbb{C}$. While one can verify that this solves the equation how does one prove that it is the solution?
- Ans: Same as before.

$$
z(t)=w(t) e^{-a t}(\cos (b t)-\sqrt{-1} \sin (b t)) . \text { In your HW, }
$$

- In this case, we need to solve $\frac{d w_{i}}{d t}=\lambda_{i} w_{i}$ where λ_{i} is complex.
- In other words, $\frac{d w}{d t}=(a+b \sqrt{-1}) w$ where $w=u+\sqrt{-1} v$. One way to do it is $w(t)=w_{0} e^{a t}(\cos (b t)+\sqrt{-1} \sin (b t))$ and $w_{0} \in \mathbb{C}$. While one can verify that this solves the equation how does one prove that it is the solution?
- Ans: Same as before.
$z(t)=w(t) e^{-a t}(\cos (b t)-\sqrt{-1} \sin (b t))$. In your HW, you will show that
- In this case, we need to solve $\frac{d w_{i}}{d t}=\lambda_{i} w_{i}$ where λ_{i} is complex.
- In other words, $\frac{d w}{d t}=(a+b \sqrt{-1}) w$ where $w=u+\sqrt{-1} v$. One way to do it is $w(t)=w_{0} e^{a t}(\cos (b t)+\sqrt{-1} \sin (b t))$ and $w_{0} \in \mathbb{C}$. While one can verify that this solves the equation how does one prove that it is the solution?
- Ans: Same as before.
$z(t)=w(t) e^{-a t}(\cos (b t)-\sqrt{-1} \sin (b t))$. In your HW, you will show that the product rule still holds
- In this case, we need to solve $\frac{d w_{i}}{d t}=\lambda_{i} w_{i}$ where λ_{i} is complex.
- In other words, $\frac{d w}{d t}=(a+b \sqrt{-1}) w$ where $w=u+\sqrt{-1} v$. One way to do it is $w(t)=w_{0} e^{a t}(\cos (b t)+\sqrt{-1} \sin (b t))$ and $w_{0} \in \mathbb{C}$. While one can verify that this solves the equation how does one prove that it is the solution?
- Ans: Same as before.
$z(t)=w(t) e^{-a t}(\cos (b t)-\sqrt{-1} \sin (b t))$. In your HW, you will show that the product rule still holds in this complex setting.
- In this case, we need to solve $\frac{d w_{i}}{d t}=\lambda_{i} w_{i}$ where λ_{i} is complex.
- In other words, $\frac{d w}{d t}=(a+b \sqrt{-1}) w$ where $w=u+\sqrt{-1} v$. One way to do it is $w(t)=w_{0} e^{a t}(\cos (b t)+\sqrt{-1} \sin (b t))$ and $w_{0} \in \mathbb{C}$. While one can verify that this solves the equation how does one prove that it is the solution?
- Ans: Same as before.
$z(t)=w(t) e^{-a t}(\cos (b t)-\sqrt{-1} \sin (b t))$. In your HW, you will show that the product rule still holds in this complex setting. Thus $z^{\prime}(t)=0$.
- In this case, we need to solve $\frac{d w_{i}}{d t}=\lambda_{i} w_{i}$ where λ_{i} is complex.
- In other words, $\frac{d w}{d t}=(a+b \sqrt{-1}) w$ where $w=u+\sqrt{-1} v$. One way to do it is $w(t)=w_{0} e^{a t}(\cos (b t)+\sqrt{-1} \sin (b t))$ and $w_{0} \in \mathbb{C}$. While one can verify that this solves the equation how does one prove that it is the solution?
- Ans: Same as before.
$z(t)=w(t) e^{-a t}(\cos (b t)-\sqrt{-1} \sin (b t))$. In your HW, you will show that the product rule still holds in this complex setting. Thus $z^{\prime}(t)=0$. Hence the real and imaginary parts of $z(t)$

What if the eigenvalues are not real?

- In this case, we need to solve $\frac{d w_{i}}{d t}=\lambda_{i} w_{i}$ where λ_{i} is complex.
- In other words, $\frac{d w}{d t}=(a+b \sqrt{-1}) w$ where $w=u+\sqrt{-1} v$. One way to do it is $w(t)=w_{0} e^{a t}(\cos (b t)+\sqrt{-1} \sin (b t))$ and $w_{0} \in \mathbb{C}$. While one can verify that this solves the equation how does one prove that it is the solution?
- Ans: Same as before.
$z(t)=w(t) e^{-a t}(\cos (b t)-\sqrt{-1} \sin (b t))$. In your HW, you will show that the product rule still holds in this complex setting. Thus $z^{\prime}(t)=0$. Hence the real and imaginary parts of $z(t)$ are constants.
- In this case, we need to solve $\frac{d w_{i}}{d t}=\lambda_{i} w_{i}$ where λ_{i} is complex.
- In other words, $\frac{d w}{d t}=(a+b \sqrt{-1}) w$ where $w=u+\sqrt{-1} v$. One way to do it is $w(t)=w_{0} e^{a t}(\cos (b t)+\sqrt{-1} \sin (b t))$ and $w_{0} \in \mathbb{C}$. While one can verify that this solves the equation how does one prove that it is the solution?
- Ans: Same as before.
$z(t)=w(t) e^{-a t}(\cos (b t)-\sqrt{-1} \sin (b t))$. In your HW, you will show that the product rule still holds in this complex setting. Thus $z^{\prime}(t)=0$. Hence the real and imaginary parts of $z(t)$ are constants.
- That is,

What if the eigenvalues are not real?

- In this case, we need to solve $\frac{d w_{i}}{d t}=\lambda_{i} w_{i}$ where λ_{i} is complex.
- In other words, $\frac{d w}{d t}=(a+b \sqrt{-1}) w$ where $w=u+\sqrt{-1} v$. One way to do it is $w(t)=w_{0} e^{a t}(\cos (b t)+\sqrt{-1} \sin (b t))$ and $w_{0} \in \mathbb{C}$. While one can verify that this solves the equation how does one prove that it is the solution?
- Ans: Same as before.
$z(t)=w(t) e^{-a t}(\cos (b t)-\sqrt{-1} \sin (b t))$. In your HW, you will show that the product rule still holds in this complex setting. Thus $z^{\prime}(t)=0$. Hence the real and imaginary parts of $z(t)$ are constants.
- That is, $v(t)=P w$ where

What if the eigenvalues are not real?

- In this case, we need to solve $\frac{d w_{i}}{d t}=\lambda_{i} w_{i}$ where λ_{i} is complex.
- In other words, $\frac{d w}{d t}=(a+b \sqrt{-1}) w$ where $w=u+\sqrt{-1} v$. One way to do it is $w(t)=w_{0} e^{a t}(\cos (b t)+\sqrt{-1} \sin (b t))$ and $w_{0} \in \mathbb{C}$. While one can verify that this solves the equation how does one prove that it is the solution?
- Ans: Same as before.
$z(t)=w(t) e^{-a t}(\cos (b t)-\sqrt{-1} \sin (b t))$. In your HW, you will show that the product rule still holds in this complex setting. Thus $z^{\prime}(t)=0$. Hence the real and imaginary parts of $z(t)$ are constants.
- That is, $v(t)=P w$ where w and P are allowed to be complex.

Second-order linear homogeneous ODE with constant-coefficients

Second-order linear homogeneous ODE with constant-coefficients

- In the above example

Second-order linear homogeneous ODE with constant-coefficients

- In the above example one can convert

Second-order linear homogeneous ODE with constant-coefficients

- In the above example one can convert the system of first-order ODE

Second-order linear homogeneous ODE with constant-coefficients

- In the above example one can convert the system of first-order ODE to a single second-order ODE:

Second-order linear homogeneous ODE with constant-coefficients

- In the above example one can convert the system of first-order ODE to a single second-order ODE: $y^{\prime \prime}-3 y^{\prime}+2 y=0$. (

Second-order linear homogeneous ODE with constant-coefficients

- In the above example one can convert the system of first-order ODE to a single second-order ODE: $y^{\prime \prime}-3 y^{\prime}+2 y=0$. (Any system of ODE

Second-order linear homogeneous ODE with constant-coefficients

- In the above example one can convert the system of first-order ODE to a single second-order ODE: $y^{\prime \prime}-3 y^{\prime}+2 y=0$. (Any system of ODE of any order

Second-order linear homogeneous ODE with constant-coefficients

- In the above example one can convert the system of first-order ODE to a single second-order ODE: $y^{\prime \prime}-3 y^{\prime}+2 y=0$. (Any system of ODE of any order can be converted to

Second-order linear homogeneous ODE with constant-coefficients

- In the above example one can convert the system of first-order ODE to a single second-order ODE: $y^{\prime \prime}-3 y^{\prime}+2 y=0$. (Any system of ODE of any order can be converted to a system of first-order ODE.)

Second-order linear homogeneous ODE with constant-coefficients

- In the above example one can convert the system of first-order ODE to a single second-order ODE: $y^{\prime \prime}-3 y^{\prime}+2 y=0$. (Any system of ODE of any order can be converted to a system of first-order ODE.) The solution is

Second-order linear homogeneous ODE with constant-coefficients

- In the above example one can convert the system of first-order ODE to a single second-order ODE: $y^{\prime \prime}-3 y^{\prime}+2 y=0$. (Any system of ODE of any order can be converted to a system of first-order ODE.) The solution is $y(t)=a e^{t}+b e^{2 t}$.

Second-order linear homogeneous ODE with constant-coefficients

- In the above example one can convert the system of first-order ODE to a single second-order ODE: $y^{\prime \prime}-3 y^{\prime}+2 y=0$. (Any system of ODE of any order can be converted to a system of first-order ODE.) The solution is $y(t)=a e^{t}+b e^{2 t}$.
- Another way to

Second-order linear homogeneous ODE with constant-coefficients

- In the above example one can convert the system of first-order ODE to a single second-order ODE: $y^{\prime \prime}-3 y^{\prime}+2 y=0$. (Any system of ODE of any order can be converted to a system of first-order ODE.) The solution is $y(t)=a e^{t}+b e^{2 t}$.
- Another way to directly handle

Second-order linear homogeneous ODE with constant-coefficients

- In the above example one can convert the system of first-order ODE to a single second-order ODE: $y^{\prime \prime}-3 y^{\prime}+2 y=0$. (Any system of ODE of any order can be converted to a system of first-order ODE.) The solution is $y(t)=a e^{t}+b e^{2 t}$.
- Another way to directly handle a second-order

Second-order linear homogeneous ODE with constant-coefficients

- In the above example one can convert the system of first-order ODE to a single second-order ODE: $y^{\prime \prime}-3 y^{\prime}+2 y=0$. (Any system of ODE of any order can be converted to a system of first-order ODE.) The solution is $y(t)=a e^{t}+b e^{2 t}$.
- Another way to directly handle a second-order single ODE

Second-order linear homogeneous ODE with constant-coefficients

- In the above example one can convert the system of first-order ODE to a single second-order ODE: $y^{\prime \prime}-3 y^{\prime}+2 y=0$. (Any system of ODE of any order can be converted to a system of first-order ODE.) The solution is $y(t)=a e^{t}+b e^{2 t}$.
- Another way to directly handle a second-order single ODE that is linear and homogeneous

Second-order linear homogeneous ODE with constant-coefficients

- In the above example one can convert the system of first-order ODE to a single second-order ODE: $y^{\prime \prime}-3 y^{\prime}+2 y=0$. (Any system of ODE of any order can be converted to a system of first-order ODE.) The solution is $y(t)=a e^{t}+b e^{2 t}$.
- Another way to directly handle a second-order single ODE that is linear and homogeneous and has constant coefficients, i.e.,

Second-order linear homogeneous ODE with constant-coefficients

- In the above example one can convert the system of first-order ODE to a single second-order ODE: $y^{\prime \prime}-3 y^{\prime}+2 y=0$. (Any system of ODE of any order can be converted to a system of first-order ODE.) The solution is $y(t)=a e^{t}+b e^{2 t}$.
- Another way to directly handle a second-order single ODE that is linear and homogeneous and has constant coefficients, i.e., $y^{\prime \prime}+P y^{\prime}+Q y=0$ (where

Second-order linear homogeneous ODE with constant-coefficients

- In the above example one can convert the system of first-order ODE to a single second-order ODE: $y^{\prime \prime}-3 y^{\prime}+2 y=0$. (Any system of ODE of any order can be converted to a system of first-order ODE.) The solution is $y(t)=a e^{t}+b e^{2 t}$.
- Another way to directly handle a second-order single ODE that is linear and homogeneous and has constant coefficients, i.e., $y^{\prime \prime}+P y^{\prime}+Q y=0$ (where $P, Q \in \mathbb{R}$) is to

Second-order linear homogeneous ODE with constant-coefficients

- In the above example one can convert the system of first-order ODE to a single second-order ODE: $y^{\prime \prime}-3 y^{\prime}+2 y=0$. (Any system of ODE of any order can be converted to a system of first-order ODE.) The solution is $y(t)=a e^{t}+b e^{2 t}$.
- Another way to directly handle a second-order single ODE that is linear and homogeneous and has constant coefficients, i.e., $y^{\prime \prime}+P y^{\prime}+Q y=0$ (where $P, Q \in \mathbb{R}$) is to take the derivative linear map D

Second-order linear homogeneous ODE with constant-coefficients

- In the above example one can convert the system of first-order ODE to a single second-order ODE: $y^{\prime \prime}-3 y^{\prime}+2 y=0$. (Any system of ODE of any order can be converted to a system of first-order ODE.) The solution is $y(t)=a e^{t}+b e^{2 t}$.
- Another way to directly handle a second-order single ODE that is linear and homogeneous and has constant coefficients, i.e., $y^{\prime \prime}+P y^{\prime}+Q y=0$ (where $P, Q \in \mathbb{R}$) is to take the derivative linear map D and write it as $D^{2}+P D+Q=0$.

Second-order linear homogeneous ODE with constant-coefficients

- In the above example one can convert the system of first-order ODE to a single second-order ODE: $y^{\prime \prime}-3 y^{\prime}+2 y=0$. (Any system of ODE of any order can be converted to a system of first-order ODE.) The solution is $y(t)=a e^{t}+b e^{2 t}$.
- Another way to directly handle a second-order single ODE that is linear and homogeneous and has constant coefficients, i.e., $y^{\prime \prime}+P y^{\prime}+Q y=0$ (where $P, Q \in \mathbb{R}$) is to take the derivative linear map D and write it as $D^{2}+P D+Q=0$.
- If the roots are

Second-order linear homogeneous ODE with constant-coefficients

- In the above example one can convert the system of first-order ODE to a single second-order ODE: $y^{\prime \prime}-3 y^{\prime}+2 y=0$. (Any system of ODE of any order can be converted to a system of first-order ODE.) The solution is $y(t)=a e^{t}+b e^{2 t}$.
- Another way to directly handle a second-order single ODE that is linear and homogeneous and has constant coefficients, i.e., $y^{\prime \prime}+P y^{\prime}+Q y=0$ (where $P, Q \in \mathbb{R}$) is to take the derivative linear map D and write it as $D^{2}+P D+Q=0$.
- If the roots are $\lambda_{1} \neq \lambda_{2}$,

Second-order linear homogeneous ODE with constant-coefficients

- In the above example one can convert the system of first-order ODE to a single second-order ODE: $y^{\prime \prime}-3 y^{\prime}+2 y=0$. (Any system of ODE of any order can be converted to a system of first-order ODE.) The solution is $y(t)=a e^{t}+b e^{2 t}$.
- Another way to directly handle a second-order single ODE that is linear and homogeneous and has constant coefficients, i.e., $y^{\prime \prime}+P y^{\prime}+Q y=0$ (where $P, Q \in \mathbb{R}$) is to take the derivative linear map D and write it as $D^{2}+P D+Q=0$.
- If the roots are $\lambda_{1} \neq \lambda_{2}$, and $\lambda_{1}, \lambda_{2} \in \mathbb{R}($

Second-order linear homogeneous ODE with constant-coefficients

- In the above example one can convert the system of first-order ODE to a single second-order ODE: $y^{\prime \prime}-3 y^{\prime}+2 y=0$. (Any system of ODE of any order can be converted to a system of first-order ODE.) The solution is $y(t)=a e^{t}+b e^{2 t}$.
- Another way to directly handle a second-order single ODE that is linear and homogeneous and has constant coefficients, i.e., $y^{\prime \prime}+P y^{\prime}+Q y=0$ (where $P, Q \in \mathbb{R}$) is to take the derivative linear map D and write it as $D^{2}+P D+Q=0$.
- If the roots are $\lambda_{1} \neq \lambda_{2}$, and $\lambda_{1}, \lambda_{2} \in \mathbb{R}$ (we shall deal with the

Second-order linear homogeneous ODE with constant-coefficients

- In the above example one can convert the system of first-order ODE to a single second-order ODE: $y^{\prime \prime}-3 y^{\prime}+2 y=0$. (Any system of ODE of any order can be converted to a system of first-order ODE.) The solution is $y(t)=a e^{t}+b e^{2 t}$.
- Another way to directly handle a second-order single ODE that is linear and homogeneous and has constant coefficients, i.e., $y^{\prime \prime}+P y^{\prime}+Q y=0$ (where $P, Q \in \mathbb{R}$) is to take the derivative linear map D and write it as $D^{2}+P D+Q=0$.
- If the roots are $\lambda_{1} \neq \lambda_{2}$, and $\lambda_{1}, \lambda_{2} \in \mathbb{R}$ (we shall deal with the other cases later)

Second-order linear homogeneous ODE with constant-coefficients

- In the above example one can convert the system of first-order ODE to a single second-order ODE: $y^{\prime \prime}-3 y^{\prime}+2 y=0$. (Any system of ODE of any order can be converted to a system of first-order ODE.) The solution is $y(t)=a e^{t}+b e^{2 t}$.
- Another way to directly handle a second-order single ODE that is linear and homogeneous and has constant coefficients, i.e., $y^{\prime \prime}+P y^{\prime}+Q y=0$ (where $P, Q \in \mathbb{R}$) is to take the derivative linear map D and write it as $D^{2}+P D+Q=0$.
- If the roots are $\lambda_{1} \neq \lambda_{2}$, and $\lambda_{1}, \lambda_{2} \in \mathbb{R}$ (we shall deal with the other cases later) then we can try $y=a e^{\lambda_{1} t}+b e^{\lambda_{2} t}$.

Second-order linear homogeneous ODE with constant-coefficients

- In the above example one can convert the system of first-order ODE to a single second-order ODE: $y^{\prime \prime}-3 y^{\prime}+2 y=0$. (Any system of ODE of any order can be converted to a system of first-order ODE.) The solution is $y(t)=a e^{t}+b e^{2 t}$.
- Another way to directly handle a second-order single ODE that is linear and homogeneous and has constant coefficients, i.e., $y^{\prime \prime}+P y^{\prime}+Q y=0$ (where $P, Q \in \mathbb{R}$) is to take the derivative linear map D and write it as $D^{2}+P D+Q=0$.
- If the roots are $\lambda_{1} \neq \lambda_{2}$, and $\lambda_{1}, \lambda_{2} \in \mathbb{R}$ (we shall deal with the other cases later) then we can try $y=a e^{\lambda_{1} t}+b e^{\lambda_{2} t}$. Indeed it works.

Second-order linear homogeneous ODE with constant-coefficients

- In the above example one can convert the system of first-order ODE to a single second-order ODE: $y^{\prime \prime}-3 y^{\prime}+2 y=0$. (Any system of ODE of any order can be converted to a system of first-order ODE.) The solution is $y(t)=a e^{t}+b e^{2 t}$.
- Another way to directly handle a second-order single ODE that is linear and homogeneous and has constant coefficients, i.e., $y^{\prime \prime}+P y^{\prime}+Q y=0$ (where $P, Q \in \mathbb{R}$) is to take the derivative linear map D and write it as $D^{2}+P D+Q=0$.
- If the roots are $\lambda_{1} \neq \lambda_{2}$, and $\lambda_{1}, \lambda_{2} \in \mathbb{R}$ (we shall deal with the other cases later) then we can try $y=a e^{\lambda_{1} t}+b e^{\lambda_{2} t}$. Indeed it works. One can prove that

Second-order linear homogeneous ODE with constant-coefficients

- In the above example one can convert the system of first-order ODE to a single second-order ODE: $y^{\prime \prime}-3 y^{\prime}+2 y=0$. (Any system of ODE of any order can be converted to a system of first-order ODE.) The solution is $y(t)=a e^{t}+b e^{2 t}$.
- Another way to directly handle a second-order single ODE that is linear and homogeneous and has constant coefficients, i.e., $y^{\prime \prime}+P y^{\prime}+Q y=0$ (where $P, Q \in \mathbb{R}$) is to take the derivative linear map D and write it as $D^{2}+P D+Q=0$.
- If the roots are $\lambda_{1} \neq \lambda_{2}$, and $\lambda_{1}, \lambda_{2} \in \mathbb{R}$ (we shall deal with the other cases later) then we can try $y=a e^{\lambda_{1} t}+b e^{\lambda_{2} t}$. Indeed it works. One can prove that it is the only kind of solution:

Second-order linear homogeneous ODE with constant-coefficients

- In the above example one can convert the system of first-order ODE to a single second-order ODE: $y^{\prime \prime}-3 y^{\prime}+2 y=0$. (Any system of ODE of any order can be converted to a system of first-order ODE.) The solution is $y(t)=a e^{t}+b e^{2 t}$.
- Another way to directly handle a second-order single ODE that is linear and homogeneous and has constant coefficients, i.e., $y^{\prime \prime}+P y^{\prime}+Q y=0$ (where $P, Q \in \mathbb{R}$) is to take the derivative linear map D and write it as $D^{2}+P D+Q=0$.
- If the roots are $\lambda_{1} \neq \lambda_{2}$, and $\lambda_{1}, \lambda_{2} \in \mathbb{R}$ (we shall deal with the other cases later) then we can try $y=a e^{\lambda_{1} t}+b e^{\lambda_{2} t}$. Indeed it works. One can prove that it is the only kind of solution: Indeed, recasting as a

Second-order linear homogeneous ODE with constant-coefficients

- In the above example one can convert the system of first-order ODE to a single second-order ODE: $y^{\prime \prime}-3 y^{\prime}+2 y=0$. (Any system of ODE of any order can be converted to a system of first-order ODE.) The solution is $y(t)=a e^{t}+b e^{2 t}$.
- Another way to directly handle a second-order single ODE that is linear and homogeneous and has constant coefficients, i.e., $y^{\prime \prime}+P y^{\prime}+Q y=0$ (where $P, Q \in \mathbb{R}$) is to take the derivative linear map D and write it as $D^{2}+P D+Q=0$.
- If the roots are $\lambda_{1} \neq \lambda_{2}$, and $\lambda_{1}, \lambda_{2} \in \mathbb{R}$ (we shall deal with the other cases later) then we can try $y=a e^{\lambda_{1} t}+b e^{\lambda_{2} t}$. Indeed it works. One can prove that it is the only kind of solution: Indeed, recasting as a first-order system as above

Second-order linear homogeneous ODE with constant-coefficients

- In the above example one can convert the system of first-order ODE to a single second-order ODE: $y^{\prime \prime}-3 y^{\prime}+2 y=0$. (Any system of ODE of any order can be converted to a system of first-order ODE.) The solution is $y(t)=a e^{t}+b e^{2 t}$.
- Another way to directly handle a second-order single ODE that is linear and homogeneous and has constant coefficients, i.e., $y^{\prime \prime}+P y^{\prime}+Q y=0$ (where $P, Q \in \mathbb{R}$) is to take the derivative linear map D and write it as $D^{2}+P D+Q=0$.
- If the roots are $\lambda_{1} \neq \lambda_{2}$, and $\lambda_{1}, \lambda_{2} \in \mathbb{R}$ (we shall deal with the other cases later) then we can try $y=a e^{\lambda_{1} t}+b e^{\lambda_{2} t}$. Indeed it works. One can prove that it is the only kind of solution: Indeed, recasting as a first-order system as above the eigenvalues are distinct

Second-order linear homogeneous ODE with constant-coefficients

- In the above example one can convert the system of first-order ODE to a single second-order ODE: $y^{\prime \prime}-3 y^{\prime}+2 y=0$. (Any system of ODE of any order can be converted to a system of first-order ODE.) The solution is $y(t)=a e^{t}+b e^{2 t}$.
- Another way to directly handle a second-order single ODE that is linear and homogeneous and has constant coefficients, i.e., $y^{\prime \prime}+P y^{\prime}+Q y=0$ (where $P, Q \in \mathbb{R}$) is to take the derivative linear map D and write it as $D^{2}+P D+Q=0$.
- If the roots are $\lambda_{1} \neq \lambda_{2}$, and $\lambda_{1}, \lambda_{2} \in \mathbb{R}$ (we shall deal with the other cases later) then we can try $y=a e^{\lambda_{1} t}+b e^{\lambda_{2} t}$. Indeed it works. One can prove that it is the only kind of solution: Indeed, recasting as a first-order system as above the eigenvalues are distinct and hence A is diagonalisable.

Second-order linear homogeneous ODE with constant-coefficients

- In the above example one can convert the system of first-order ODE to a single second-order ODE: $y^{\prime \prime}-3 y^{\prime}+2 y=0$. (Any system of ODE of any order can be converted to a system of first-order ODE.) The solution is $y(t)=a e^{t}+b e^{2 t}$.
- Another way to directly handle a second-order single ODE that is linear and homogeneous and has constant coefficients, i.e., $y^{\prime \prime}+P y^{\prime}+Q y=0$ (where $P, Q \in \mathbb{R}$) is to take the derivative linear map D and write it as $D^{2}+P D+Q=0$.
- If the roots are $\lambda_{1} \neq \lambda_{2}$, and $\lambda_{1}, \lambda_{2} \in \mathbb{R}$ (we shall deal with the other cases later) then we can try $y=a e^{\lambda_{1} t}+b e^{\lambda_{2} t}$. Indeed it works. One can prove that it is the only kind of solution: Indeed, recasting as a first-order system as above the eigenvalues are distinct and hence A is diagonalisable. We already proved that

Second-order linear homogeneous ODE with constant-coefficients

- In the above example one can convert the system of first-order ODE to a single second-order ODE: $y^{\prime \prime}-3 y^{\prime}+2 y=0$. (Any system of ODE of any order can be converted to a system of first-order ODE.) The solution is $y(t)=a e^{t}+b e^{2 t}$.
- Another way to directly handle a second-order single ODE that is linear and homogeneous and has constant coefficients, i.e., $y^{\prime \prime}+P y^{\prime}+Q y=0$ (where $P, Q \in \mathbb{R}$) is to take the derivative linear map D and write it as $D^{2}+P D+Q=0$.
- If the roots are $\lambda_{1} \neq \lambda_{2}$, and $\lambda_{1}, \lambda_{2} \in \mathbb{R}$ (we shall deal with the other cases later) then we can try $y=a e^{\lambda_{1} t}+b e^{\lambda_{2} t}$. Indeed it works. One can prove that it is the only kind of solution: Indeed, recasting as a first-order system as above the eigenvalues are distinct and hence A is diagonalisable. We already proved that in that case

Second-order linear homogeneous ODE with constant-coefficients

- In the above example one can convert the system of first-order ODE to a single second-order ODE: $y^{\prime \prime}-3 y^{\prime}+2 y=0$. (Any system of ODE of any order can be converted to a system of first-order ODE.) The solution is $y(t)=a e^{t}+b e^{2 t}$.
- Another way to directly handle a second-order single ODE that is linear and homogeneous and has constant coefficients, i.e., $y^{\prime \prime}+P y^{\prime}+Q y=0$ (where $P, Q \in \mathbb{R}$) is to take the derivative linear map D and write it as $D^{2}+P D+Q=0$.
- If the roots are $\lambda_{1} \neq \lambda_{2}$, and $\lambda_{1}, \lambda_{2} \in \mathbb{R}$ (we shall deal with the other cases later) then we can try $y=a e^{\lambda_{1} t}+b e^{\lambda_{2} t}$. Indeed it works. One can prove that it is the only kind of solution: Indeed, recasting as a first-order system as above the eigenvalues are distinct and hence A is diagonalisable. We already proved that in that case the solution is

Second-order linear homogeneous ODE with constant-coefficients

- In the above example one can convert the system of first-order ODE to a single second-order ODE: $y^{\prime \prime}-3 y^{\prime}+2 y=0$. (Any system of ODE of any order can be converted to a system of first-order ODE.) The solution is $y(t)=a e^{t}+b e^{2 t}$.
- Another way to directly handle a second-order single ODE that is linear and homogeneous and has constant coefficients, i.e., $y^{\prime \prime}+P y^{\prime}+Q y=0$ (where $P, Q \in \mathbb{R}$) is to take the derivative linear map D and write it as $D^{2}+P D+Q=0$.
- If the roots are $\lambda_{1} \neq \lambda_{2}$, and $\lambda_{1}, \lambda_{2} \in \mathbb{R}$ (we shall deal with the other cases later) then we can try $y=a e^{\lambda_{1} t}+b e^{\lambda_{2} t}$. Indeed it works. One can prove that it is the only kind of solution: Indeed, recasting as a first-order system as above the eigenvalues are distinct and hence A is diagonalisable. We already proved that in that case the solution is two-dimensional as a vector space

Second-order linear homogeneous ODE with constant-coefficients

- In the above example one can convert the system of first-order ODE to a single second-order ODE: $y^{\prime \prime}-3 y^{\prime}+2 y=0$. (Any system of ODE of any order can be converted to a system of first-order ODE.) The solution is $y(t)=a e^{t}+b e^{2 t}$.
- Another way to directly handle a second-order single ODE that is linear and homogeneous and has constant coefficients, i.e., $y^{\prime \prime}+P y^{\prime}+Q y=0$ (where $P, Q \in \mathbb{R}$) is to take the derivative linear map D and write it as $D^{2}+P D+Q=0$.
- If the roots are $\lambda_{1} \neq \lambda_{2}$, and $\lambda_{1}, \lambda_{2} \in \mathbb{R}$ (we shall deal with the other cases later) then we can try $y=a e^{\lambda_{1} t}+b e^{\lambda_{2} t}$. Indeed it works. One can prove that it is the only kind of solution: Indeed, recasting as a first-order system as above the eigenvalues are distinct and hence A is diagonalisable. We already proved that in that case the solution is two-dimensional as a vector space and that this is the only solution.

