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Recap

Defined Hermitian and Skew-Hermitian linear maps and
matrices.

Proved that they had real eigenvalues and that they could be
diagonalised using unitary matrices.
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An ODE to a Grecian urn

A wide variety of natural laws involve functions that satisfy
differential equations.

In particular, Newton’s laws are m d2~r
dt2

= ~F . Equations of the

form F (t, ~y , ~y ′, . . . , ~y (n)) = 0 are called Ordinary Differential
Equations of order n. If F is linear in y , y ′, . . . etc then the
ODE is said to be linear. If ~y = 0 is a solution of a linear
ODE then it is called a homogeneous linear equation.

Often, ODE come with boundary conditions like
y(0) = 0, y ′(0) = 4, y ′′(1) = 2, etc.

Given an ODE one can ask “Is there a solution satisfying the
boundary conditions ?”, “Is it unique?” “Can we write a
formula for it?” and “Can we compute it using an efficient
algorithm?” The answer to all these questions is NO in
general. But it is YES in important cases.

The study of differential equations is akin to theology. The
central questions are about existence and uniqueness.
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A stupid ODE

Solve y ′ = 0 for a differentiable function y .

Before you rush to an answer, we need to know what the
domain is. For instance, if y : (0, 1) ∪ (2, 3)→ R, the answer
is not just “constant”. It is y = c1 on (0, 1) and y = c2 on
(2, 3)!

So solve y ′ = 0 on (a, b).

Proof: If y(x1) 6= y(x2), then since y is differentiable on
(x1, x2), and it is continuous on [x1, x2], by LMVT
0 6= y(x2)− y(x1) = y ′(θ)(x2 − x1) = 0. A contradiction!
Thus y is a constant.

The same result works for R.
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A slightly less stupid one

A drop of Strep. Pneum. is placed on a petri dish. What
happens after some time? Ans: You catch Pneumonia.

Let N(t) be the number. Then N ′(t) = kN is a simple
approximation for a reasonable amount of time.

Solve y ′ = ky , y(0) = A on R.

y(t) = Aekt is the answer: Let z(t) = y(t)e−kt . Then
z ′(t) = 0 and z(0) = A. Thus z(t) = A.
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A system

Two drops of two kinds of bacteria are placed on two petri
dishes. What happens? Ans: You win the Darwin award for
stupidity.

Let N1,N2 be the numbers. N ′1 = k1N1,N
′
2 = k2N2.

As before, N1 = A1e
k1t , N2 = A2e

k2t .

What if they are placed on the same petri-dish? The actual
answer may be different. I am going to pull out equations
from my mind.

Solve x ′ = ax + by , y ′ = cx + dy on R. The idea is to linearly
change to u, v such that u′ = k1u, v

′ = k2v . This idea is best
implemented using matrices.
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A system of linear first-order constant-coefficient
homogeneous ODE

Let v =

[
x
y

]
and A =

[
a b
c d

]
. Then we want to solve

dv
dt = Av . Naively, one can attempt v = eAtv0. Surprisingly,
such an attempt works but we shall choose a different route.

Assume that A is diagonalisable, i.e., P−1AP = D or
A = PDP−1. Then dv

dt = PDP−1v . Let w = P−1v . Then
dw
dt = Dw . Thus w ′i (t) = λiwi and hence wi = wi (0)eλi t and
v = Pw .

In other words, if A is diagonalisable, the set of solutions
forms a vector space of dimension n spanned by eλi tPei .

If A = AT then by the Spectral Theorem A is diagonalisable
by an orthogonal matrix. In that case, the above strategy
applies.
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Example

Solve for all differentiable functions x(t), y(t) on R:
x ′ = 3x − 2y , y ′ = x .

The matrix A is A =

[
3 −2
1 0

]
. It is not symmetric. We

shall still attempt to diagonalise it.

The eigenvalues are 1, 2. Corresponding eigenvectors are
(1, 1) and (2, 1) respectively. P−1AP = D where

P =

[
1 2
1 1

]
and D =

[
1 0
0 2

]
. Let w = P−1v . Then

dw
dt = Dw . Hence w(t) = aete1 + be2te2.

Now

[
x
y

]
= Pw = aet

[
1
1

]
+ be2t

[
2
1

]
.
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What if the eigenvalues are not real?

In this case, we need to solve dwi
dt = λiwi where λi is complex.

In other words, dw
dt = (a + b

√
−1)w where w = u +

√
−1v .

One way to do it is w(t) = w0e
at(cos(bt) +

√
−1 sin(bt)) and

w0 ∈ C. While one can verify that this solves the equation
how does one prove that it is the solution?

Ans: Same as before.
z(t) = w(t)e−at(cos(bt)−

√
−1 sin(bt)). In your HW, you

will show that the product rule still holds in this complex
setting. Thus z ′(t) = 0. Hence the real and imaginary parts
of z(t) are constants.

That is, v(t) = Pw where w and P are allowed to be complex.
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Second-order linear homogeneous ODE with
constant-coefficients

In the above example one can convert the system of first-order
ODE to a single second-order ODE: y ′′ − 3y ′ + 2y = 0. (Any
system of ODE of any order can be converted to a system of
first-order ODE.) The solution is y(t) = aet + be2t .

Another way to directly handle a second-order single ODE
that is linear and homogeneous and has constant coefficients,
i.e., y ′′ + Py ′ + Qy = 0 (where P,Q ∈ R) is to take the
derivative linear map D and write it as D2 + PD + Q = 0.

If the roots are λ1 6= λ2, and λ1, λ2 ∈ R (we shall deal with
the other cases later) then we can try y = aeλ1t + beλ2t .
Indeed it works. One can prove that it is the only kind of
solution: Indeed, recasting as a first-order system as above the
eigenvalues are distinct and hence A is diagonalisable. We
already proved that in that case the solution is
two-dimensional as a vector space and that this is the only
solution.
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