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Recap

Proved that y ′ = ky on R has a unique solution y = y0e
kt .

Studied a method to solve systems y ′ = Ay in some cases
using linear algebra.

Recast y ′′ + Py ′ + Qy = 0 where P,Q ∈ R are constants as a
system of first-order ODE. Solved it in the case where the
roots of D2 + PD + Q = 0 real and distinct.
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Second-order linear homogeneous ODE with
constant-coefficients (Distinct complex roots)

If the roots of D2 + PD + Q = 0 are complex distinct λ1 6= λ2
and λi = αi +

√
−1βi , then as before, the corresponding

matrix is diagonalisable and hence the solutions form a
two-dimensional complex vector space. In other words,
y(t) = aeα1te

√
−1β1t + beα2te

√
−1β2t where a, b ∈ C is the

solution. Note that since P,Q are real, λ1 = λ̄2, i.e., α1 = α2

and β2 = −β1. Thus y(t) = eαt(ae
√
−1βt + be−

√
−1βt).

If we insist on real solutions then ȳ = y . Thus (why?)
y(t) = eαt(A cos(βt) + B sin(βt)) where A,B ∈ R.
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Second-order linear homogeneous ODE with
constant-coefficients (repeated roots)

If D2 + PD + Q = (D − λ)2 then λ is necessarily real and
P2 = 4Q, λ = −P

2 .

In this case Taking x = y ′, x ′ = −Px −Qy , then unfortunately

the matrix A =

[
−P −P2

4
1 0

]
is not diagonalisable.

In this case it turns out (HW) one can bring A to an
upper-triangular form. One can still prove (HW) that one has
a two-dimensional real vector space worth of solutions.

Consider y = eλt(A + Bt). Clearly this is two-dimensional and
a solution. Thus it is the solution.
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Consider y = eλt(A + Bt). Clearly this is two-dimensional and
a solution. Thus it is the solution.
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First-order linear homogeneous ODE

Consider y ′ + P(x)y = 0.

Theorem: Let P : (a, b)→ R be continuous. Let x0 ∈ (a, b).
There exists a unique differentiable function y : (a, b)→ R
satisfying the ODE above and y(x0) = A where A ∈ R is

given. Moreover, y(x) = Ae
−

∫ x

x0

P(t)dt
.

Proof: Let g(x) =

∫ x

x0

P(t)dt. By the FTC g is differentiable

on (a, b) and g ′(x) = P(x). Note that
(yeg(x))′e−g(x) = y ′ + yg ′(x) = y ′ + P(x)y = 0. Hence yeg(x)

is a constant. Thus y = Ae
−

∫ x

x0

P(t)dt
.
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An example of a separable nonlinear first-order ODE

An ODE of the form y ′(x) = g(y)f (x) is called separable and
is most commonly solved by

∫ dy
g(y) =

∫
f (x)dx provided

g(y) 6= 0. More rigorously, one uses FTC.
For instance, consider the logistic equation N ′ = kN(M − N)
for modelling constrained population growth.
If 0 < N0 < M, dN

N(M−N) = kt + C and hence

ln( N
M−N ) = M(kt + C ) for short times.

Thus N = MAeMkt

1+AeMkt potentially only for short times. However,
the formula shows that the solution is defined for all t ∈ R if
A > 0 and as t →∞ N → M. One can prove a general
uniqueness result for solutions of y ′ = g(y)f (x) where f is
continuous, and g is differentiable and its derivative is
continuous. Thus this solution is the solution.
One can create realistic population models of predator-prey
and other systems using the logistic equation. Surprisingly,
the logistic function makes an appearance in machine learning
as well.
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Equilibria (Not for exams)

In general, if y ′ = g(y) is an ODE where g : R→ R is say
infinitely differentiable, the roots of g , i.e., y0 such that
g(y0) = 0 are called equilibrium points.

Indeed, if y(0) = y0 for such a y0, then y(t) = y0 for all of
time to come.

What happens if we start from y0 + δ for a small δ? (These
sorts of questions are important in Chaos theory. See Jurassic
Park for details.)

Naively, g(y0 + ∆y) ≈ 0 + ∆yg ′(y0). If g ′(y0) 6= 0, then
g(y) ≈ ∆yg ′(y0) and hence y ≈ y0 + δeg

′(y0)t at least for
short t. Thus if g ′(y0) < 0, y “returns” back to equilibrium
and flies away to infinity otherwise. The former is called stable
equilbrium and the latter unstable equilibrium.

This picture can be generalised to ~y ′ = ~g(~y) too but it is
more complicated and involves computing eigenvalues of a
certain “derivative matrix”. The rigorous statement of such a
theorem is due to Hartman and Grobman.
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certain “derivative matrix”. The rigorous statement of such

a
theorem is due to Hartman and Grobman.
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Equilibria (Not for exams)

In general, if y ′ = g(y) is an ODE where g : R→ R is say
infinitely differentiable, the roots of g , i.e., y0 such that
g(y0) = 0 are called equilibrium points.

Indeed, if y(0) = y0 for such a y0, then y(t) = y0 for all of
time to come.

What happens if we start from y0 + δ for a small δ? (These
sorts of questions are important in Chaos theory. See Jurassic
Park for details.)

Naively, g(y0 + ∆y) ≈ 0 + ∆yg ′(y0). If g ′(y0) 6= 0, then
g(y) ≈ ∆yg ′(y0) and hence y ≈ y0 + δeg

′(y0)t at least for
short t. Thus if g ′(y0) < 0, y “returns” back to equilibrium
and flies away to infinity otherwise. The former is called stable
equilbrium and the latter unstable equilibrium.

This picture can be generalised to ~y ′ = ~g(~y) too but it is
more complicated and involves computing eigenvalues of a
certain “derivative matrix”. The rigorous statement of such a
theorem is due to Hartman and Grobman.
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