Lecture 18 - UM 102 (Spring 2021)

Vamsi Pritham Pingali

IISc

Recap

▲御▶ ▲ 臣▶ ▲ 臣▶

æ

Proved that

æ

• Proved that y' = ky on $\mathbb R$

< E > < E >

æ

• Proved that y' = ky on \mathbb{R} has a unique solution

э

• Proved that y' = ky on \mathbb{R} has a unique solution $y = y_0 e^{kt}$.

()

э

- Proved that y' = ky on \mathbb{R} has a unique solution $y = y_0 e^{kt}$.
- Studied a method

∃ ► < ∃ ►</p>

- Proved that y' = ky on \mathbb{R} has a unique solution $y = y_0 e^{kt}$.
- Studied a method to solve systems

∃ >

- Proved that y' = ky on \mathbb{R} has a unique solution $y = y_0 e^{kt}$.
- Studied a method to solve systems y' = Ay in some cases

- Proved that y' = ky on \mathbb{R} has a unique solution $y = y_0 e^{kt}$.
- Studied a method to solve systems y' = Ay in some cases using linear algebra.

- Proved that y' = ky on \mathbb{R} has a unique solution $y = y_0 e^{kt}$.
- Studied a method to solve systems y' = Ay in some cases using linear algebra.
- Recast y'' + Py' + Qy = 0 where

2/8

- Proved that y' = ky on \mathbb{R} has a unique solution $y = y_0 e^{kt}$.
- Studied a method to solve systems y' = Ay in some cases using linear algebra.
- Recast y'' + Py' + Qy = 0 where $P, Q \in \mathbb{R}$ are constants as

2/8

- Proved that y' = ky on \mathbb{R} has a unique solution $y = y_0 e^{kt}$.
- Studied a method to solve systems y' = Ay in some cases using linear algebra.
- Recast y'' + Py' + Qy = 0 where $P, Q \in \mathbb{R}$ are constants as a system of first-order ODE.

2/8

- Proved that y' = ky on \mathbb{R} has a unique solution $y = y_0 e^{kt}$.
- Studied a method to solve systems y' = Ay in some cases using linear algebra.
- Recast y" + Py' + Qy = 0 where P, Q ∈ ℝ are constants as a system of first-order ODE. Solved it in the case

- Proved that y' = ky on \mathbb{R} has a unique solution $y = y_0 e^{kt}$.
- Studied a method to solve systems y' = Ay in some cases using linear algebra.
- Recast y'' + Py' + Qy = 0 where $P, Q \in \mathbb{R}$ are constants as a system of first-order ODE. Solved it in the case where the roots of $D^2 + PD + Q = 0$

- Proved that y' = ky on \mathbb{R} has a unique solution $y = y_0 e^{kt}$.
- Studied a method to solve systems y' = Ay in some cases using linear algebra.
- Recast y" + Py' + Qy = 0 where P, Q ∈ ℝ are constants as a system of first-order ODE. Solved it in the case where the roots of D² + PD + Q = 0 real and distinct.

If the roots of

• If the roots of $D^2 + PD + Q = 0$ are complex distinct $\lambda_1 \neq \lambda_2$ and

• If the roots of $D^2 + PD + Q = 0$ are complex distinct $\lambda_1 \neq \lambda_2$ and $\lambda_i = \alpha_i + \sqrt{-1}\beta_i$,

• If the roots of $D^2 + PD + Q = 0$ are complex distinct $\lambda_1 \neq \lambda_2$ and $\lambda_i = \alpha_i + \sqrt{-1}\beta_i$, then as before,

• If the roots of $D^2 + PD + Q = 0$ are complex distinct $\lambda_1 \neq \lambda_2$ and $\lambda_i = \alpha_i + \sqrt{-1}\beta_i$, then as before, the corresponding matrix

• If the roots of $D^2 + PD + Q = 0$ are complex distinct $\lambda_1 \neq \lambda_2$ and $\lambda_i = \alpha_i + \sqrt{-1}\beta_i$, then as before, the corresponding matrix is diagonalisable and hence

• If the roots of $D^2 + PD + Q = 0$ are complex distinct $\lambda_1 \neq \lambda_2$ and $\lambda_i = \alpha_i + \sqrt{-1}\beta_i$, then as before, the corresponding matrix is diagonalisable and hence the solutions form a two-dimensional complex vector space.

• If the roots of $D^2 + PD + Q = 0$ are complex distinct $\lambda_1 \neq \lambda_2$ and $\lambda_i = \alpha_i + \sqrt{-1}\beta_i$, then as before, the corresponding matrix is diagonalisable and hence the solutions form a two-dimensional complex vector space. In other words,

• If the roots of $D^2 + PD + Q = 0$ are complex distinct $\lambda_1 \neq \lambda_2$ and $\lambda_i = \alpha_i + \sqrt{-1}\beta_i$, then as before, the corresponding matrix is diagonalisable and hence the solutions form a two-dimensional complex vector space. In other words, $y(t) = ae^{\alpha_1 t}e^{\sqrt{-1}\beta_1 t} + be^{\alpha_2 t}e^{\sqrt{-1}\beta_2 t}$ where $a, b \in \mathbb{C}$ is the solution.

If the roots of D² + PD + Q = 0 are complex distinct λ₁ ≠ λ₂ and λ_i = α_i + √−1β_i, then as before, the corresponding matrix is diagonalisable and hence the solutions form a two-dimensional complex vector space. In other words, y(t) = ae^{α₁t}e^{√−1β₁t} + be^{α₂t}e^{√−1β₂t} where a, b ∈ C is the solution. Note that since P, Q are real,

If the roots of D² + PD + Q = 0 are complex distinct λ₁ ≠ λ₂ and λ_i = α_i + √-1β_i, then as before, the corresponding matrix is diagonalisable and hence the solutions form a two-dimensional complex vector space. In other words, y(t) = ae^{α₁t}e^{√-1β₁t} + be^{α₂t}e^{√-1β₂t} where a, b ∈ C is the solution. Note that since P, Q are real, λ₁ = λ₂, i.e.,

• If the roots of $D^2 + PD + Q = 0$ are complex distinct $\lambda_1 \neq \lambda_2$ and $\lambda_i = \alpha_i + \sqrt{-1}\beta_i$, then as before, the corresponding matrix is diagonalisable and hence the solutions form a two-dimensional complex vector space. In other words, $y(t) = ae^{\alpha_1 t}e^{\sqrt{-1}\beta_1 t} + be^{\alpha_2 t}e^{\sqrt{-1}\beta_2 t}$ where $a, b \in \mathbb{C}$ is the solution. Note that since P, Q are *real*, $\lambda_1 = \overline{\lambda_2}$, i.e., $\alpha_1 = \alpha_2$ and $\beta_2 = -\beta_1$.

• If the roots of $D^2 + PD + Q = 0$ are complex distinct $\lambda_1 \neq \lambda_2$ and $\lambda_i = \alpha_i + \sqrt{-1}\beta_i$, then as before, the corresponding matrix is diagonalisable and hence the solutions form a two-dimensional complex vector space. In other words, $y(t) = ae^{\alpha_1 t}e^{\sqrt{-1}\beta_1 t} + be^{\alpha_2 t}e^{\sqrt{-1}\beta_2 t}$ where $a, b \in \mathbb{C}$ is the solution. Note that since P, Q are real, $\lambda_1 = \overline{\lambda_2}$, i.e., $\alpha_1 = \alpha_2$ and $\beta_2 = -\beta_1$. Thus $y(t) = e^{\alpha t}(ae^{\sqrt{-1}\beta t} + be^{-\sqrt{-1}\beta t})$.

- If the roots of $D^2 + PD + Q = 0$ are complex distinct $\lambda_1 \neq \lambda_2$ and $\lambda_i = \alpha_i + \sqrt{-1}\beta_i$, then as before, the corresponding matrix is diagonalisable and hence the solutions form a two-dimensional complex vector space. In other words, $y(t) = ae^{\alpha_1 t}e^{\sqrt{-1}\beta_1 t} + be^{\alpha_2 t}e^{\sqrt{-1}\beta_2 t}$ where $a, b \in \mathbb{C}$ is the solution. Note that since P, Q are real, $\lambda_1 = \overline{\lambda_2}$, i.e., $\alpha_1 = \alpha_2$ and $\beta_2 = -\beta_1$. Thus $y(t) = e^{\alpha t} (ae^{\sqrt{-1}\beta t} + be^{-\sqrt{-1}\beta t})$.
- If we insist on *real* solutions

- If the roots of $D^2 + PD + Q = 0$ are complex distinct $\lambda_1 \neq \lambda_2$ and $\lambda_i = \alpha_i + \sqrt{-1}\beta_i$, then as before, the corresponding matrix is diagonalisable and hence the solutions form a two-dimensional complex vector space. In other words, $y(t) = ae^{\alpha_1 t}e^{\sqrt{-1}\beta_1 t} + be^{\alpha_2 t}e^{\sqrt{-1}\beta_2 t}$ where $a, b \in \mathbb{C}$ is the solution. Note that since P, Q are real, $\lambda_1 = \overline{\lambda_2}$, i.e., $\alpha_1 = \alpha_2$ and $\beta_2 = -\beta_1$. Thus $y(t) = e^{\alpha t}(ae^{\sqrt{-1}\beta t} + be^{-\sqrt{-1}\beta t})$.
- If we insist on *real* solutions then $\bar{y} = y$.

- If the roots of $D^2 + PD + Q = 0$ are complex distinct $\lambda_1 \neq \lambda_2$ and $\lambda_i = \alpha_i + \sqrt{-1}\beta_i$, then as before, the corresponding matrix is diagonalisable and hence the solutions form a two-dimensional complex vector space. In other words, $y(t) = ae^{\alpha_1 t}e^{\sqrt{-1}\beta_1 t} + be^{\alpha_2 t}e^{\sqrt{-1}\beta_2 t}$ where $a, b \in \mathbb{C}$ is the solution. Note that since P, Q are real, $\lambda_1 = \overline{\lambda_2}$, i.e., $\alpha_1 = \alpha_2$ and $\beta_2 = -\beta_1$. Thus $y(t) = e^{\alpha t} (ae^{\sqrt{-1}\beta t} + be^{-\sqrt{-1}\beta t})$.
- If we insist on *real* solutions then $\bar{y} = y$. Thus (why?) $y(t) = e^{\alpha t} (A \cos(\beta t) + B \sin(\beta t))$ where $A, B \in \mathbb{R}$.

Second-order linear homogeneous ODE with constant-coefficients (repeated roots)

Second-order linear homogeneous ODE with constant-coefficients (repeated roots)

• If
$$D^2 + PD + Q = (D - \lambda)^2$$

Second-order linear homogeneous ODE with constant-coefficients (repeated roots)

• If
$$D^2 + PD + Q = (D - \lambda)^2$$
 then λ is necessarily real

• If
$$D^2 + PD + Q = (D - \lambda)^2$$
 then λ is necessarily real and $P^2 = 4Q$, $\lambda = -\frac{P}{2}$.

4/8

- If $D^2 + PD + Q = (D \lambda)^2$ then λ is necessarily real and $P^2 = 4Q$, $\lambda = -\frac{P}{2}$.
- In this case

- If $D^2 + PD + Q = (D \lambda)^2$ then λ is necessarily real and $P^2 = 4Q$, $\lambda = -\frac{P}{2}$.
- In this case Taking x = y', x' = -Px Qy, then unfortunately

- If $D^2 + PD + Q = (D \lambda)^2$ then λ is necessarily real and $P^2 = 4Q$, $\lambda = -\frac{P}{2}$.
- In this case Taking x = y', x' = -Px Qy, then unfortunately the matrix $A = \begin{bmatrix} -P & -\frac{P^2}{4} \\ 1 & 0 \end{bmatrix}$ is not diagonalisable.

- If $D^2 + PD + Q = (D \lambda)^2$ then λ is necessarily real and $P^2 = 4Q$, $\lambda = -\frac{P}{2}$.
- In this case Taking x = y', x' = -Px Qy, then unfortunately the matrix $A = \begin{bmatrix} -P & -\frac{P^2}{4} \\ 1 & 0 \end{bmatrix}$ is not diagonalisable.

In this case

- If $D^2 + PD + Q = (D \lambda)^2$ then λ is necessarily real and $P^2 = 4Q$, $\lambda = -\frac{P}{2}$.
- In this case Taking x = y', x' = -Px Qy, then unfortunately the matrix $A = \begin{bmatrix} -P & -\frac{P^2}{4} \\ 1 & 0 \end{bmatrix}$ is not diagonalisable.

• In this case it turns out (HW)

4/8

- If $D^2 + PD + Q = (D \lambda)^2$ then λ is necessarily real and $P^2 = 4Q$, $\lambda = -\frac{P}{2}$.
- In this case Taking x = y', x' = -Px Qy, then unfortunately the matrix $A = \begin{bmatrix} -P & -\frac{P^2}{4} \\ 1 & 0 \end{bmatrix}$ is not diagonalisable.
- In this case it turns out (HW) one can bring A to

- If $D^2 + PD + Q = (D \lambda)^2$ then λ is necessarily real and $P^2 = 4Q$, $\lambda = -\frac{P}{2}$.
- In this case Taking x = y', x' = -Px Qy, then unfortunately the matrix $A = \begin{bmatrix} -P & -\frac{P^2}{4} \\ 1 & 0 \end{bmatrix}$ is not diagonalisable.
- In this case it turns out (HW) one can bring A to an *upper-triangular* form.

4/8

- If $D^2 + PD + Q = (D \lambda)^2$ then λ is necessarily real and $P^2 = 4Q$, $\lambda = -\frac{P}{2}$.
- In this case Taking x = y', x' = -Px Qy, then unfortunately the matrix $A = \begin{bmatrix} -P & -\frac{P^2}{4} \\ 1 & 0 \end{bmatrix}$ is not diagonalisable.
- In this case it turns out (HW) one can bring A to an *upper-triangular* form. One can still prove (HW)

- If $D^2 + PD + Q = (D \lambda)^2$ then λ is necessarily real and $P^2 = 4Q$, $\lambda = -\frac{P}{2}$.
- In this case Taking x = y', x' = -Px Qy, then unfortunately the matrix $A = \begin{bmatrix} -P & -\frac{P^2}{4} \\ 1 & 0 \end{bmatrix}$ is not diagonalisable.
- In this case it turns out (HW) one can bring A to an upper-triangular form. One can still prove (HW) that one has a

- If $D^2 + PD + Q = (D \lambda)^2$ then λ is necessarily real and $P^2 = 4Q$, $\lambda = -\frac{P}{2}$.
- In this case Taking x = y', x' = -Px Qy, then unfortunately the matrix $A = \begin{bmatrix} -P & -\frac{P^2}{4} \\ 1 & 0 \end{bmatrix}$ is not diagonalisable.
- In this case it turns out (HW) one can bring A to an upper-triangular form. One can still prove (HW) that one has a two-dimensional real vector space

- If $D^2 + PD + Q = (D \lambda)^2$ then λ is necessarily real and $P^2 = 4Q$, $\lambda = -\frac{P}{2}$.
- In this case Taking x = y', x' = -Px Qy, then unfortunately the matrix $A = \begin{bmatrix} -P & -\frac{P^2}{4} \\ 1 & 0 \end{bmatrix}$ is not diagonalisable.
- In this case it turns out (HW) one can bring A to an *upper-triangular* form. One can still prove (HW) that one has a two-dimensional real vector space worth of solutions.

- If $D^2 + PD + Q = (D \lambda)^2$ then λ is necessarily real and $P^2 = 4Q$, $\lambda = -\frac{P}{2}$.
- In this case Taking x = y', x' = -Px Qy, then unfortunately the matrix $A = \begin{bmatrix} -P & -\frac{P^2}{4} \\ 1 & 0 \end{bmatrix}$ is not diagonalisable.
- In this case it turns out (HW) one can bring A to an upper-triangular form. One can still prove (HW) that one has a two-dimensional real vector space worth of solutions.
- Consider $y = e^{\lambda t} (A + Bt)$.

- If $D^2 + PD + Q = (D \lambda)^2$ then λ is necessarily real and $P^2 = 4Q$, $\lambda = -\frac{P}{2}$.
- In this case Taking x = y', x' = -Px Qy, then unfortunately the matrix $A = \begin{bmatrix} -P & -\frac{P^2}{4} \\ 1 & 0 \end{bmatrix}$ is not diagonalisable.
- In this case it turns out (HW) one can bring A to an *upper-triangular* form. One can still prove (HW) that one has a two-dimensional real vector space worth of solutions.
- Consider $y = e^{\lambda t} (A + Bt)$. Clearly this is two-dimensional

- If $D^2 + PD + Q = (D \lambda)^2$ then λ is necessarily real and $P^2 = 4Q$, $\lambda = -\frac{P}{2}$.
- In this case Taking x = y', x' = -Px Qy, then unfortunately the matrix $A = \begin{bmatrix} -P & -\frac{P^2}{4} \\ 1 & 0 \end{bmatrix}$ is not diagonalisable.
- In this case it turns out (HW) one can bring A to an *upper-triangular* form. One can still prove (HW) that one has a two-dimensional real vector space worth of solutions.
- Consider $y = e^{\lambda t} (A + Bt)$. Clearly this is two-dimensional and a solution.

- If $D^2 + PD + Q = (D \lambda)^2$ then λ is necessarily real and $P^2 = 4Q$, $\lambda = -\frac{P}{2}$.
- In this case Taking x = y', x' = -Px Qy, then unfortunately the matrix $A = \begin{bmatrix} -P & -\frac{P^2}{4} \\ 1 & 0 \end{bmatrix}$ is not diagonalisable.
- In this case it turns out (HW) one can bring A to an *upper-triangular* form. One can still prove (HW) that one has a two-dimensional real vector space worth of solutions.
- Consider $y = e^{\lambda t} (A + Bt)$. Clearly this is two-dimensional and a solution. Thus it is *the* solution.

æ

• Consider
$$y' + P(x)y = 0$$
.

æ

- Consider y' + P(x)y = 0.
- Theorem:

문▶ ★ 문▶

- Consider y' + P(x)y = 0.
- Theorem: Let $P: (a, b) \to \mathbb{R}$ be continuous.

- Consider y' + P(x)y = 0.
- Theorem: Let $P : (a, b) \to \mathbb{R}$ be continuous. Let $x_0 \in (a, b)$.

- Consider y' + P(x)y = 0.
- Theorem: Let $P: (a, b) \to \mathbb{R}$ be continuous. Let $x_0 \in (a, b)$. There exists a

• Consider y' + P(x)y = 0.

• Theorem: Let $P : (a, b) \to \mathbb{R}$ be continuous. Let $x_0 \in (a, b)$. There exists a unique differentiable function $y : (a, b) \to \mathbb{R}$

- Consider y' + P(x)y = 0.
- Theorem: Let P : (a, b) → ℝ be continuous. Let x₀ ∈ (a, b). There exists a unique differentiable function y : (a, b) → ℝ satisfying the ODE above

• Consider y' + P(x)y = 0.

• Theorem: Let $P : (a, b) \to \mathbb{R}$ be continuous. Let $x_0 \in (a, b)$. There exists a unique differentiable function $y : (a, b) \to \mathbb{R}$ satisfying the ODE above and $y(x_0) = A$ where

- Consider y' + P(x)y = 0.
- Theorem: Let $P : (a, b) \to \mathbb{R}$ be continuous. Let $x_0 \in (a, b)$. There exists a unique differentiable function $y : (a, b) \to \mathbb{R}$ satisfying the ODE above and $y(x_0) = A$ where $A \in \mathbb{R}$ is

given.

• Consider y' + P(x)y = 0.

• Theorem: Let $P : (a, b) \to \mathbb{R}$ be continuous. Let $x_0 \in (a, b)$. There exists a unique differentiable function $y : (a, b) \to \mathbb{R}$ satisfying the ODE above and $y(x_0) = A$ where $A \in \mathbb{R}$ is given. Moreover, $y(x) = Ae^{-\int_{x_0}^{x} P(t)dt}$

• Consider y' + P(x)y = 0.

• Theorem: Let $P : (a, b) \to \mathbb{R}$ be continuous. Let $x_0 \in (a, b)$. There exists a unique differentiable function $y : (a, b) \to \mathbb{R}$ satisfying the ODE above and $y(x_0) = A$ where $A \in \mathbb{R}$ is given. Moreover, $y(x) = Ae^{-\int_{x_0}^{x} P(t)dt}$

• Proof:

• Consider y' + P(x)y = 0.

• Theorem: Let $P : (a, b) \to \mathbb{R}$ be continuous. Let $x_0 \in (a, b)$. There exists a unique differentiable function $y : (a, b) \to \mathbb{R}$ satisfying the ODE above and $y(x_0) = A$ where $A \in \mathbb{R}$ is

given. Moreover, $y(x) = Ae^{-\int_{x_0}^{x} P(t)dt}$.

• Proof: Let
$$g(x) = \int_{x_0}^{x} P(t) dt$$
.

• Consider y' + P(x)y = 0.

• Theorem: Let $P : (a, b) \to \mathbb{R}$ be continuous. Let $x_0 \in (a, b)$. There exists a unique differentiable function $y : (a, b) \to \mathbb{R}$ satisfying the ODE above and $y(x_0) = A$ where $A \in \mathbb{R}$ is given. Moreover, $y(x) = Ae^{-\int_{x_0}^{x} P(t)dt}$.

• Proof: Let
$$g(x) = \int_{x_0}^x P(t) dt$$
. By the FTC

• Consider y' + P(x)y = 0.

• Theorem: Let $P : (a, b) \to \mathbb{R}$ be continuous. Let $x_0 \in (a, b)$. There exists a unique differentiable function $y : (a, b) \to \mathbb{R}$ satisfying the ODE above and $y(x_0) = A$ where $A \in \mathbb{R}$ is given. Moreover, $y(x) = Ae^{-\int_{x_0}^{x} P(t)dt}$.

• Proof: Let $g(x) = \int_{a}^{x} P(t) dt$. By the FTC g is differentiable on (*a*, *b*)

• Consider y' + P(x)y = 0.

• Theorem: Let $P : (a, b) \to \mathbb{R}$ be continuous. Let $x_0 \in (a, b)$. There exists a unique differentiable function $y : (a, b) \to \mathbb{R}$ satisfying the ODE above and $y(x_0) = A$ where $A \in \mathbb{R}$ is

given. Moreover, $y(x) = Ae^{-\int_{x_0}^{x} P(t)dt}$.

• Proof: Let $g(x) = \int_{x_0}^{x} P(t)dt$. By the FTC g is differentiable on (a, b) and g'(x) = P(x).

• Consider y' + P(x)y = 0.

• Theorem: Let $P : (a, b) \to \mathbb{R}$ be continuous. Let $x_0 \in (a, b)$. There exists a unique differentiable function $y : (a, b) \to \mathbb{R}$ satisfying the ODE above and $y(x_0) = A$ where $A \in \mathbb{R}$ is

given. Moreover, $y(x) = Ae^{-\int_{x_0}^{x} P(t)dt}$.

• Proof: Let $g(x) = \int_{x_0}^{x} P(t)dt$. By the FTC g is differentiable on (a, b) and g'(x) = P(x). Note that

• Consider y' + P(x)y = 0.

 Theorem: Let P : (a, b) → ℝ be continuous. Let x₀ ∈ (a, b). There exists a unique differentiable function y : (a, b) → ℝ satisfying the ODE above and y(x₀) = A where A ∈ ℝ is

$$= Ae^{-\int_{x_0} P(t)dt}$$

given. Moreover, $y(x) = Ae^{-Jx_0}$

• Proof: Let $g(x) = \int_{x_0}^{x} P(t)dt$. By the FTC g is differentiable on (a, b) and g'(x) = P(x). Note that $(ye^{g(x)})'e^{-g(x)} = y' + yg'(x) = y' + P(x)y = 0$.

5/8

• Consider y' + P(x)y = 0.

 Theorem: Let P : (a, b) → ℝ be continuous. Let x₀ ∈ (a, b). There exists a unique differentiable function y : (a, b) → ℝ satisfying the ODE above and y(x₀) = A where A ∈ ℝ is

$$= Ae^{-\int_{x_0}^{\infty} P(t)dt}.$$

given. Moreover, $y(x) = Ae^{-\int x}$

• Proof: Let $g(x) = \int_{x_0}^{x} P(t)dt$. By the FTC g is differentiable on (a, b) and g'(x) = P(x). Note that $(ye^{g(x)})'e^{-g(x)} = y' + yg'(x) = y' + P(x)y = 0$. Hence $ye^{g(x)}$

is a constant.

• Consider y' + P(x)y = 0.

given. Moreover, y(x)

 Theorem: Let P : (a, b) → ℝ be continuous. Let x₀ ∈ (a, b). There exists a unique differentiable function y : (a, b) → ℝ satisfying the ODE above and y(x₀) = A where A ∈ ℝ is

$$=Ae^{-\int_{x_0}^{x}P(t)dt}.$$

• Proof: Let $g(x) = \int_{x_0}^{x} P(t)dt$. By the FTC g is differentiable on (a, b) and g'(x) = P(x). Note that $(ye^{g(x)})'e^{-g(x)} = y' + yg'(x) = y' + P(x)y = 0$. Hence $ye^{g(x)}$ is a constant. Thus $y = Ae^{-\int_{x_0}^{x} P(t)dt}$.

æ

• Consider y' + P(x)y = Q(x) where

▲ 문 ▶ ▲ 문 ▶

• Consider y' + P(x)y = Q(x) where $P, Q : (a, b) \rightarrow \mathbb{R}$ are continuous.

(E)

• Consider y' + P(x)y = Q(x) where $P, Q : (a, b) \to \mathbb{R}$ are continuous. The aim is to

3 D (3 D)

• Consider y' + P(x)y = Q(x) where $P, Q : (a, b) \to \mathbb{R}$ are continuous. The aim is to find a diff. function $y : (a, b) \to \mathbb{R}$

• Consider y' + P(x)y = Q(x) where $P, Q : (a, b) \to \mathbb{R}$ are continuous. The aim is to find a diff. function $y : (a, b) \to \mathbb{R}$ such that $y(x_0) = A$.

6/8

- Consider y' + P(x)y = Q(x) where $P, Q : (a, b) \to \mathbb{R}$ are continuous. The aim is to find a diff. function $y : (a, b) \to \mathbb{R}$ such that $y(x_0) = A$.
- If there are

- Consider y' + P(x)y = Q(x) where $P, Q : (a, b) \to \mathbb{R}$ are continuous. The aim is to find a diff. function $y : (a, b) \to \mathbb{R}$ such that $y(x_0) = A$.
- If there are two solutions y_1, y_2 ,

- Consider y' + P(x)y = Q(x) where P, Q: (a, b) → ℝ are continuous. The aim is to find a diff. function y : (a, b) → ℝ such that y(x₀) = A.
- If there are two solutions y_1, y_2 , then $y_1 y_2$ satisfies

- Consider y' + P(x)y = Q(x) where $P, Q : (a, b) \to \mathbb{R}$ are continuous. The aim is to find a diff. function $y : (a, b) \to \mathbb{R}$ such that $y(x_0) = A$.
- If there are two solutions y_1, y_2 , then $y_1 y_2$ satisfies the homogeneous equation

- Consider y' + P(x)y = Q(x) where $P, Q : (a, b) \to \mathbb{R}$ are continuous. The aim is to find a diff. function $y : (a, b) \to \mathbb{R}$ such that $y(x_0) = A$.
- If there are two solutions y₁, y₂, then y₁ y₂ satisfies the homogeneous equation with y₁(x₀) y₂(x₀) = 0.

- Consider y' + P(x)y = Q(x) where $P, Q : (a, b) \to \mathbb{R}$ are continuous. The aim is to find a diff. function $y : (a, b) \to \mathbb{R}$ such that $y(x_0) = A$.
- If there are two solutions y_1, y_2 , then $y_1 y_2$ satisfies the homogeneous equation with $y_1(x_0) y_2(x_0) = 0$. Hence, there is a

- Consider y' + P(x)y = Q(x) where $P, Q : (a, b) \to \mathbb{R}$ are continuous. The aim is to find a diff. function $y : (a, b) \to \mathbb{R}$ such that $y(x_0) = A$.
- If there are two solutions y₁, y₂, then y₁ − y₂ satisfies the homogeneous equation with y₁(x₀) − y₂(x₀) = 0. Hence, there is a unique solution.

- Consider y' + P(x)y = Q(x) where $P, Q : (a, b) \to \mathbb{R}$ are continuous. The aim is to find a diff. function $y : (a, b) \to \mathbb{R}$ such that $y(x_0) = A$.
- If there are two solutions y₁, y₂, then y₁ − y₂ satisfies the homogeneous equation with y₁(x₀) − y₂(x₀) = 0. Hence, there is a unique solution.
- Moreover,

- Consider y' + P(x)y = Q(x) where $P, Q : (a, b) \to \mathbb{R}$ are continuous. The aim is to find a diff. function $y : (a, b) \to \mathbb{R}$ such that $y(x_0) = A$.
- If there are two solutions y₁, y₂, then y₁ − y₂ satisfies the homogeneous equation with y₁(x₀) − y₂(x₀) = 0. Hence, there is a unique solution.
- Moreover, even without the initial conditon

- Consider y' + P(x)y = Q(x) where $P, Q : (a, b) \to \mathbb{R}$ are continuous. The aim is to find a diff. function $y : (a, b) \to \mathbb{R}$ such that $y(x_0) = A$.
- If there are two solutions y₁, y₂, then y₁ − y₂ satisfies the homogeneous equation with y₁(x₀) − y₂(x₀) = 0. Hence, there is a unique solution.
- Moreover, even without the initial conditon any solution of

- Consider y' + P(x)y = Q(x) where $P, Q : (a, b) \to \mathbb{R}$ are continuous. The aim is to find a diff. function $y : (a, b) \to \mathbb{R}$ such that $y(x_0) = A$.
- If there are two solutions y₁, y₂, then y₁ − y₂ satisfies the homogeneous equation with y₁(x₀) − y₂(x₀) = 0. Hence, there is a unique solution.
- Moreover, even without the initial conditon any solution of the inhomogeneous equation is

6/8

- Consider y' + P(x)y = Q(x) where $P, Q : (a, b) \to \mathbb{R}$ are continuous. The aim is to find a diff. function $y : (a, b) \to \mathbb{R}$ such that $y(x_0) = A$.
- If there are two solutions y₁, y₂, then y₁ − y₂ satisfies the homogeneous equation with y₁(x₀) − y₂(x₀) = 0. Hence, there is a unique solution.
- Moreover, even without the initial conditon any solution of the inhomogeneous equation is a *particular* solution of the inhomogeneous equation

- Consider y' + P(x)y = Q(x) where $P, Q : (a, b) \to \mathbb{R}$ are continuous. The aim is to find a diff. function $y : (a, b) \to \mathbb{R}$ such that $y(x_0) = A$.
- If there are two solutions y₁, y₂, then y₁ − y₂ satisfies the homogeneous equation with y₁(x₀) − y₂(x₀) = 0. Hence, there is a unique solution.
- Moreover, even without the initial conditon any solution of the inhomogeneous equation is a *particular* solution of the inhomogeneous equation plus a solution of the homogeneous one.

- Consider y' + P(x)y = Q(x) where P, Q : (a, b) → ℝ are continuous. The aim is to find a diff. function y : (a, b) → ℝ such that y(x₀) = A.
- If there are two solutions y₁, y₂, then y₁ − y₂ satisfies the homogeneous equation with y₁(x₀) − y₂(x₀) = 0. Hence, there is a unique solution.
- Moreover, even without the initial conditon any solution of the inhomogeneous equation is a *particular* solution of the inhomogeneous equation plus a solution of the homogeneous one.

• Let
$$g(x) = \int_{x_0}^x P(t) dt$$
 and

- Consider y' + P(x)y = Q(x) where P, Q : (a, b) → ℝ are continuous. The aim is to find a diff. function y : (a, b) → ℝ such that y(x₀) = A.
- If there are two solutions y₁, y₂, then y₁ − y₂ satisfies the homogeneous equation with y₁(x₀) − y₂(x₀) = 0. Hence, there is a unique solution.
- Moreover, even without the initial conditon any solution of the inhomogeneous equation is a *particular* solution of the inhomogeneous equation plus a solution of the homogeneous one.

• Let
$$g(x) = \int_{x_0}^{x} P(t) dt$$
 and $h(x) = \int_{x_0}^{x} Q(t) e^{g(t)} dt$.

- Consider y' + P(x)y = Q(x) where P, Q : (a, b) → ℝ are continuous. The aim is to find a diff. function y : (a, b) → ℝ such that y(x₀) = A.
- If there are two solutions y₁, y₂, then y₁ − y₂ satisfies the homogeneous equation with y₁(x₀) − y₂(x₀) = 0. Hence, there is a unique solution.
- Moreover, even without the initial conditon any solution of the inhomogeneous equation is a *particular* solution of the inhomogeneous equation plus a solution of the homogeneous one.

• Let
$$g(x) = \int_{x_0}^{x} P(t)dt$$
 and $h(x) = \int_{x_0}^{x} Q(t)e^{g(t)}dt$. Then $(ye^{g(x)})'e^{-g(x)} = Q(x)$. Hence

- Consider y' + P(x)y = Q(x) where P, Q : (a, b) → ℝ are continuous. The aim is to find a diff. function y : (a, b) → ℝ such that y(x₀) = A.
- If there are two solutions y₁, y₂, then y₁ − y₂ satisfies the homogeneous equation with y₁(x₀) − y₂(x₀) = 0. Hence, there is a unique solution.
- Moreover, even without the initial conditon any solution of the inhomogeneous equation is a *particular* solution of the inhomogeneous equation plus a solution of the homogeneous one.

• Let
$$g(x) = \int_{x_0}^{x} P(t)dt$$
 and $h(x) = \int_{x_0}^{x} Q(t)e^{g(t)}dt$. Then $(ye^{g(x)})'e^{-g(x)} = Q(x)$. Hence $(ye^{g(x)})' = h'(x)$.

- Consider y' + P(x)y = Q(x) where P, Q : (a, b) → ℝ are continuous. The aim is to find a diff. function y : (a, b) → ℝ such that y(x₀) = A.
- If there are two solutions y₁, y₂, then y₁ − y₂ satisfies the homogeneous equation with y₁(x₀) − y₂(x₀) = 0. Hence, there is a unique solution.
- Moreover, even without the initial conditon any solution of the inhomogeneous equation is a *particular* solution of the inhomogeneous equation plus a solution of the homogeneous one.

• Let
$$g(x) = \int_{x_0}^{x} P(t)dt$$
 and $h(x) = \int_{x_0}^{x} Q(t)e^{g(t)}dt$. Then $(ye^{g(x)})'e^{-g(x)} = Q(x)$. Hence $(ye^{g(x)})' = h'(x)$. Thus $ye^{g(x)} - h(x)$ is a constant.

- Consider y' + P(x)y = Q(x) where P, Q : (a, b) → ℝ are continuous. The aim is to find a diff. function y : (a, b) → ℝ such that y(x₀) = A.
- If there are two solutions y₁, y₂, then y₁ − y₂ satisfies the homogeneous equation with y₁(x₀) − y₂(x₀) = 0. Hence, there is a unique solution.
- Moreover, even without the initial conditon any solution of the inhomogeneous equation is a *particular* solution of the inhomogeneous equation plus a solution of the homogeneous one.

• Let
$$g(x) = \int_{x_0}^{x} P(t)dt$$
 and $h(x) = \int_{x_0}^{x} Q(t)e^{g(t)}dt$. Then
 $(ye^{g(x)})'e^{-g(x)} = Q(x)$. Hence $(ye^{g(x)})' = h'(x)$. Thus
 $ye^{g(x)} - h(x)$ is a constant. Therefore
 $y = h(x)e^{-g(x)} + Ae^{-g(x)}$.

문▶ 문

An ODE of the form

• An ODE of the form y'(x) = g(y)f(x) is called

 An ODE of the form y'(x) = g(y)f(x) is called separable and is

 An ODE of the form y'(x) = g(y)f(x) is called separable and is most commonly solved by

An ODE of the form y'(x) = g(y)f(x) is called *separable* and is most commonly solved by ∫ dy/g(y) = ∫ f(x)dx provided g(y) ≠ 0.

An ODE of the form y'(x) = g(y)f(x) is called *separable* and is most commonly solved by ∫ dy/g(y) = ∫ f(x)dx provided g(y) ≠ 0. More rigorously,

An ODE of the form y'(x) = g(y)f(x) is called *separable* and is most commonly solved by ∫ dy/g(y) = ∫ f(x)dx provided g(y) ≠ 0. More rigorously, one uses FTC.

- An ODE of the form y'(x) = g(y)f(x) is called *separable* and is most commonly solved by ∫ dy/g(y) = ∫ f(x)dx provided g(y) ≠ 0. More rigorously, one uses FTC.
- For instance,

- An ODE of the form y'(x) = g(y)f(x) is called *separable* and is most commonly solved by ∫ dy/g(y) = ∫ f(x)dx provided g(y) ≠ 0. More rigorously, one uses FTC.
- For instance, consider the logistic equation

- An ODE of the form y'(x) = g(y)f(x) is called *separable* and is most commonly solved by ∫ dy/g(y) = ∫ f(x)dx provided g(y) ≠ 0. More rigorously, one uses FTC.
- For instance, consider the logistic equation N' = kN(M N) for

- An ODE of the form y'(x) = g(y)f(x) is called *separable* and is most commonly solved by ∫ dy/g(y) = ∫ f(x)dx provided g(y) ≠ 0. More rigorously, one uses FTC.
- For instance, consider the logistic equation N' = kN(M N) for modelling constrained population growth.

- An ODE of the form y'(x) = g(y)f(x) is called *separable* and is most commonly solved by ∫ dy/g(y) = ∫ f(x)dx provided g(y) ≠ 0. More rigorously, one uses FTC.
- For instance, consider the logistic equation N' = kN(M N) for modelling constrained population growth.
- If $0 < N_0 < M$,

- An ODE of the form y'(x) = g(y)f(x) is called *separable* and is most commonly solved by ∫ dy/g(y) = ∫ f(x)dx provided g(y) ≠ 0. More rigorously, one uses FTC.
- For instance, consider the logistic equation N' = kN(M N) for modelling constrained population growth.
- If $0 < N_0 < M$, $\frac{dN}{N(M-N)} = kt + C$ and hence

- An ODE of the form y'(x) = g(y)f(x) is called *separable* and is most commonly solved by ∫ dy/g(y) = ∫ f(x)dx provided g(y) ≠ 0. More rigorously, one uses FTC.
- For instance, consider the logistic equation N' = kN(M N) for modelling constrained population growth.

• If
$$0 < N_0 < M$$
, $\frac{dN}{N(M-N)} = kt + C$ and hence $\ln(\frac{N}{M-N}) = M(kt + C)$ for short times.

- An ODE of the form y'(x) = g(y)f(x) is called *separable* and is most commonly solved by ∫ dy/g(y) = ∫ f(x)dx provided g(y) ≠ 0. More rigorously, one uses FTC.
- For instance, consider the logistic equation N' = kN(M N) for modelling constrained population growth.

• If
$$0 < N_0 < M$$
, $\frac{dN}{N(M-N)} = kt + C$ and hence $\ln(\frac{N}{M-N}) = M(kt + C)$ for short times.

• Thus
$$N = \frac{MAe^{Mkt}}{1 + Ae^{Mkt}}$$

- An ODE of the form y'(x) = g(y)f(x) is called *separable* and is most commonly solved by ∫ dy/g(y) = ∫ f(x)dx provided g(y) ≠ 0. More rigorously, one uses FTC.
- For instance, consider the logistic equation N' = kN(M N) for modelling constrained population growth.

• If
$$0 < N_0 < M$$
, $\frac{dN}{N(M-N)} = kt + C$ and hence
 $\ln(\frac{N}{M-N}) = M(kt + C)$ for short times.

• Thus
$$N = \frac{MAe^{MRt}}{1+Ae^{Mkt}}$$
 potentially only for short times.

- An ODE of the form y'(x) = g(y)f(x) is called *separable* and is most commonly solved by ∫ dy/g(y) = ∫ f(x)dx provided g(y) ≠ 0. More rigorously, one uses FTC.
- For instance, consider the logistic equation N' = kN(M N) for modelling constrained population growth.

• If
$$0 < N_0 < M$$
, $\frac{dN}{N(M-N)} = kt + C$ and hence $\ln(\frac{N}{M-N}) = M(kt + C)$ for short times.

• Thus $N = \frac{MAe^{Mkt}}{1+Ae^{Mkt}}$ potentially only for short times. However, the formula shows

- An ODE of the form y'(x) = g(y)f(x) is called *separable* and is most commonly solved by ∫ dy/g(y) = ∫ f(x)dx provided g(y) ≠ 0. More rigorously, one uses FTC.
- For instance, consider the logistic equation N' = kN(M N) for modelling constrained population growth.

• If
$$0 < N_0 < M$$
, $\frac{dN}{N(M-N)} = kt + C$ and hence $\ln(\frac{N}{M-N}) = M(kt + C)$ for short times.

• Thus $N = \frac{MAe^{Mkt}}{1+Ae^{Mkt}}$ potentially only for short times. However, the formula shows that the solution is defined

- An ODE of the form y'(x) = g(y)f(x) is called *separable* and is most commonly solved by ∫ dy/g(y) = ∫ f(x)dx provided g(y) ≠ 0. More rigorously, one uses FTC.
- For instance, consider the logistic equation N' = kN(M N) for modelling constrained population growth.

• If
$$0 < N_0 < M$$
, $\frac{dN}{N(M-N)} = kt + C$ and hence $\ln(\frac{N}{M-N}) = M(kt + C)$ for short times.

• Thus $N = \frac{MAe^{Mkt}}{1+Ae^{Mkt}}$ potentially only for short times. However, the formula shows that the solution is defined for all $t \in \mathbb{R}$ if A > 0 and

- An ODE of the form y'(x) = g(y)f(x) is called *separable* and is most commonly solved by ∫ dy/g(y) = ∫ f(x)dx provided g(y) ≠ 0. More rigorously, one uses FTC.
- For instance, consider the logistic equation N' = kN(M N) for modelling constrained population growth.

• If
$$0 < N_0 < M$$
, $\frac{dN}{N(M-N)} = kt + C$ and hence $\ln(\frac{N}{M-N}) = M(kt + C)$ for short times.

• Thus $N = \frac{MAe^{Mkt}}{1+Ae^{Mkt}}$ potentially only for short times. However, the formula shows that the solution is defined for all $t \in \mathbb{R}$ if A > 0 and as $t \to \infty$

- An ODE of the form y'(x) = g(y)f(x) is called *separable* and is most commonly solved by ∫ dy/g(y) = ∫ f(x)dx provided g(y) ≠ 0. More rigorously, one uses FTC.
- For instance, consider the logistic equation N' = kN(M N) for modelling constrained population growth.

• If
$$0 < N_0 < M$$
, $\frac{dN}{N(M-N)} = kt + C$ and hence $\ln(\frac{N}{M-N}) = M(kt + C)$ for short times.

• Thus $N = \frac{MAe^{Mkt}}{1+Ae^{Mkt}}$ potentially only for short times. However, the formula shows that the solution is defined for all $t \in \mathbb{R}$ if A > 0 and as $t \to \infty$ $N \to M$.

- An ODE of the form y'(x) = g(y)f(x) is called *separable* and is most commonly solved by ∫ dy/g(y) = ∫ f(x)dx provided g(y) ≠ 0. More rigorously, one uses FTC.
- For instance, consider the logistic equation N' = kN(M N) for modelling constrained population growth.

• If
$$0 < N_0 < M$$
, $\frac{dN}{N(M-N)} = kt + C$ and hence $\ln(\frac{N}{M-N}) = M(kt + C)$ for short times.

• Thus $N = \frac{MAe^{Mkt}}{1+Ae^{Mkt}}$ potentially only for short times. However, the formula shows that the solution is defined for all $t \in \mathbb{R}$ if A > 0 and as $t \to \infty$ $N \to M$. One can prove a

- An ODE of the form y'(x) = g(y)f(x) is called *separable* and is most commonly solved by ∫ dy/g(y) = ∫ f(x)dx provided g(y) ≠ 0. More rigorously, one uses FTC.
- For instance, consider the logistic equation N' = kN(M N) for modelling constrained population growth.

• If
$$0 < N_0 < M$$
, $\frac{dN}{N(M-N)} = kt + C$ and hence $\ln(\frac{N}{M-N}) = M(kt + C)$ for short times.

• Thus $N = \frac{MAe^{Mkt}}{1+Ae^{Mkt}}$ potentially only for short times. However, the formula shows that the solution is defined for all $t \in \mathbb{R}$ if A > 0 and as $t \to \infty$ $N \to M$. One can prove a general uniqueness result

- An ODE of the form y'(x) = g(y)f(x) is called *separable* and is most commonly solved by ∫ dy/g(y) = ∫ f(x)dx provided g(y) ≠ 0. More rigorously, one uses FTC.
- For instance, consider the logistic equation N' = kN(M N) for modelling constrained population growth.

• If
$$0 < N_0 < M$$
, $\frac{dN}{N(M-N)} = kt + C$ and hence $\ln(\frac{N}{M-N}) = M(kt + C)$ for short times.

• Thus $N = \frac{MAe^{Mkt}}{1+Ae^{Mkt}}$ potentially only for short times. However, the formula shows that the solution is defined for all $t \in \mathbb{R}$ if A > 0 and as $t \to \infty$ $N \to M$. One can prove a general uniqueness result for solutions of

- An ODE of the form y'(x) = g(y)f(x) is called *separable* and is most commonly solved by ∫ dy/g(y) = ∫ f(x)dx provided g(y) ≠ 0. More rigorously, one uses FTC.
- For instance, consider the logistic equation N' = kN(M N) for modelling constrained population growth.

• If
$$0 < N_0 < M$$
, $\frac{dN}{N(M-N)} = kt + C$ and hence $\ln(\frac{N}{M-N}) = M(kt + C)$ for short times.

• Thus $N = \frac{MAe^{Mkt}}{1+Ae^{Mkt}}$ potentially only for short times. However, the formula shows that the solution is defined for all $t \in \mathbb{R}$ if A > 0 and as $t \to \infty$ $N \to M$. One can prove a general uniqueness result for solutions of y' = g(y)f(x) where

- An ODE of the form y'(x) = g(y)f(x) is called *separable* and is most commonly solved by ∫ dy/g(y) = ∫ f(x)dx provided g(y) ≠ 0. More rigorously, one uses FTC.
- For instance, consider the logistic equation N' = kN(M N) for modelling constrained population growth.

• If
$$0 < N_0 < M$$
, $\frac{dN}{N(M-N)} = kt + C$ and hence $\ln(\frac{N}{M-N}) = M(kt + C)$ for short times.

• Thus $N = \frac{MAe^{Mkt}}{1+Ae^{Mkt}}$ potentially only for short times. However, the formula shows that the solution is defined for all $t \in \mathbb{R}$ if A > 0 and as $t \to \infty$ $N \to M$. One can prove a general uniqueness result for solutions of y' = g(y)f(x) where f is continuous, and

- An ODE of the form y'(x) = g(y)f(x) is called *separable* and is most commonly solved by ∫ dy/g(y) = ∫ f(x)dx provided g(y) ≠ 0. More rigorously, one uses FTC.
- For instance, consider the logistic equation N' = kN(M N) for modelling constrained population growth.

• If
$$0 < N_0 < M$$
, $\frac{dN}{N(M-N)} = kt + C$ and hence $\ln(\frac{N}{M-N}) = M(kt + C)$ for short times.

• Thus $N = \frac{MAe^{Mkt}}{1+Ae^{Mkt}}$ potentially only for short times. However, the formula shows that the solution is defined for all $t \in \mathbb{R}$ if A > 0 and as $t \to \infty$ $N \to M$. One can prove a general uniqueness result for solutions of y' = g(y)f(x) where f is continuous, and g is differentiable and

- An ODE of the form y'(x) = g(y)f(x) is called *separable* and is most commonly solved by ∫ dy/g(y) = ∫ f(x)dx provided g(y) ≠ 0. More rigorously, one uses FTC.
- For instance, consider the logistic equation N' = kN(M N) for modelling constrained population growth.

• If
$$0 < N_0 < M$$
, $\frac{dN}{N(M-N)} = kt + C$ and hence $\ln(\frac{N}{M-N}) = M(kt + C)$ for short times.

• Thus $N = \frac{MAe^{Mkt}}{1+Ae^{Mkt}}$ potentially only for short times. However, the formula shows that the solution is defined for all $t \in \mathbb{R}$ if A > 0 and as $t \to \infty$ $N \to M$. One can prove a general uniqueness result for solutions of y' = g(y)f(x) where f is continuous, and g is differentiable and its derivative is continuous.

- An ODE of the form y'(x) = g(y)f(x) is called *separable* and is most commonly solved by ∫ dy/g(y) = ∫ f(x)dx provided g(y) ≠ 0. More rigorously, one uses FTC.
- For instance, consider the logistic equation N' = kN(M N) for modelling constrained population growth.

• If
$$0 < N_0 < M$$
, $\frac{dN}{N(M-N)} = kt + C$ and hence $\ln(\frac{N}{M-N}) = M(kt + C)$ for short times.

• Thus $N = \frac{MAe^{Mkt}}{1+Ae^{Mkt}}$ potentially only for short times. However, the formula shows that the solution is defined for all $t \in \mathbb{R}$ if A > 0 and as $t \to \infty$ $N \to M$. One can prove a general uniqueness result for solutions of y' = g(y)f(x) where f is continuous, and g is differentiable and its derivative is continuous. Thus this solution

- An ODE of the form y'(x) = g(y)f(x) is called *separable* and is most commonly solved by ∫ dy/g(y) = ∫ f(x)dx provided g(y) ≠ 0. More rigorously, one uses FTC.
- For instance, consider the logistic equation N' = kN(M N) for modelling constrained population growth.

• If
$$0 < N_0 < M$$
, $\frac{dN}{N(M-N)} = kt + C$ and hence $\ln(\frac{N}{M-N}) = M(kt + C)$ for short times.

• Thus $N = \frac{MAe^{Mkt}}{1+Ae^{Mkt}}$ potentially only for short times. However, the formula shows that the solution is defined for all $t \in \mathbb{R}$ if A > 0 and as $t \to \infty$ $N \to M$. One can prove a general uniqueness result for solutions of y' = g(y)f(x) where f is continuous, and g is differentiable and its derivative is continuous. Thus this solution is *the* solution.

- An ODE of the form y'(x) = g(y)f(x) is called *separable* and is most commonly solved by ∫ dy/g(y) = ∫ f(x)dx provided g(y) ≠ 0. More rigorously, one uses FTC.
- For instance, consider the logistic equation N' = kN(M N) for modelling constrained population growth.

• If
$$0 < N_0 < M$$
, $\frac{dN}{N(M-N)} = kt + C$ and hence $\ln(\frac{N}{M-N}) = M(kt + C)$ for short times.

- Thus $N = \frac{MAe^{Mkt}}{1+Ae^{Mkt}}$ potentially only for short times. However, the formula shows that the solution is defined for all $t \in \mathbb{R}$ if A > 0 and as $t \to \infty$ $N \to M$. One can prove a general uniqueness result for solutions of y' = g(y)f(x) where f is continuous, and g is differentiable and its derivative is continuous. Thus this solution is *the* solution.
- One can create

7/8

- An ODE of the form y'(x) = g(y)f(x) is called *separable* and is most commonly solved by ∫ dy/g(y) = ∫ f(x)dx provided g(y) ≠ 0. More rigorously, one uses FTC.
- For instance, consider the logistic equation N' = kN(M N) for modelling constrained population growth.

• If
$$0 < N_0 < M$$
, $\frac{dN}{N(M-N)} = kt + C$ and hence $\ln(\frac{N}{M-N}) = M(kt + C)$ for short times.

- Thus $N = \frac{MAe^{Mkt}}{1+Ae^{Mkt}}$ potentially only for short times. However, the formula shows that the solution is defined for all $t \in \mathbb{R}$ if A > 0 and as $t \to \infty$ $N \to M$. One can prove a general uniqueness result for solutions of y' = g(y)f(x) where f is continuous, and g is differentiable and its derivative is continuous. Thus this solution is *the* solution.
- One can create realistic population models

- An ODE of the form y'(x) = g(y)f(x) is called *separable* and is most commonly solved by ∫ dy/g(y) = ∫ f(x)dx provided g(y) ≠ 0. More rigorously, one uses FTC.
- For instance, consider the logistic equation N' = kN(M N) for modelling constrained population growth.

• If
$$0 < N_0 < M$$
, $\frac{dN}{N(M-N)} = kt + C$ and hence $\ln(\frac{N}{M-N}) = M(kt + C)$ for short times.

- Thus $N = \frac{MAe^{Mkt}}{1+Ae^{Mkt}}$ potentially only for short times. However, the formula shows that the solution is defined for all $t \in \mathbb{R}$ if A > 0 and as $t \to \infty$ $N \to M$. One can prove a general uniqueness result for solutions of y' = g(y)f(x) where f is continuous, and g is differentiable and its derivative is continuous. Thus this solution is *the* solution.
- One can create realistic population models of predator-prey and

- An ODE of the form y'(x) = g(y)f(x) is called *separable* and is most commonly solved by $\int \frac{dy}{g(y)} = \int f(x) dx$ provided $g(y) \neq 0$. More rigorously, one uses FTC.
- For instance, consider the logistic equation N' = kN(M N)for modelling constrained population growth.

• If
$$0 < N_0 < M$$
, $\frac{dN}{N(M-N)} = kt + C$ and hence $\ln(\frac{N}{M-N}) = M(kt + C)$ for short times.

- Thus $N = \frac{MAe^{Mkt}}{1 + Ae^{Mkt}}$ potentially only for short times. However, the formula shows that the solution is defined for all $t \in \mathbb{R}$ if A > 0 and as $t \to \infty$ $N \to M$. One can prove a general uniqueness result for solutions of y' = g(y)f(x) where f is continuous, and g is differentiable and its derivative is continuous. Thus this solution is *the* solution.
- One can create realistic population models of predator-prey and other systems using

- An ODE of the form y'(x) = g(y)f(x) is called *separable* and is most commonly solved by ∫ dy/g(y) = ∫ f(x)dx provided g(y) ≠ 0. More rigorously, one uses FTC.
- For instance, consider the logistic equation N' = kN(M N) for modelling constrained population growth.

• If
$$0 < N_0 < M$$
, $\frac{dN}{N(M-N)} = kt + C$ and hence $\ln(\frac{N}{M-N}) = M(kt + C)$ for short times.

- Thus $N = \frac{MAe^{Mkt}}{1+Ae^{Mkt}}$ potentially only for short times. However, the formula shows that the solution is defined for all $t \in \mathbb{R}$ if A > 0 and as $t \to \infty$ $N \to M$. One can prove a general uniqueness result for solutions of y' = g(y)f(x) where f is continuous, and g is differentiable and its derivative is continuous. Thus this solution is *the* solution.
- One can create realistic population models of predator-prey and other systems using the logistic equation.

- An ODE of the form y'(x) = g(y)f(x) is called *separable* and is most commonly solved by ∫ dy/g(y) = ∫ f(x)dx provided g(y) ≠ 0. More rigorously, one uses FTC.
- For instance, consider the logistic equation N' = kN(M N) for modelling constrained population growth.

• If
$$0 < N_0 < M$$
, $\frac{dN}{N(M-N)} = kt + C$ and hence $\ln(\frac{N}{M-N}) = M(kt + C)$ for short times.

- Thus $N = \frac{MAe^{Mkt}}{1+Ae^{Mkt}}$ potentially only for short times. However, the formula shows that the solution is defined for all $t \in \mathbb{R}$ if A > 0 and as $t \to \infty$ $N \to M$. One can prove a general uniqueness result for solutions of y' = g(y)f(x) where f is continuous, and g is differentiable and its derivative is continuous. Thus this solution is *the* solution.
- One can create realistic population models of predator-prey and other systems using the logistic equation. Surprisingly, the logistic function

- An ODE of the form y'(x) = g(y)f(x) is called *separable* and is most commonly solved by ∫ dy/g(y) = ∫ f(x)dx provided g(y) ≠ 0. More rigorously, one uses FTC.
- For instance, consider the logistic equation N' = kN(M N) for modelling constrained population growth.

• If
$$0 < N_0 < M$$
, $\frac{dN}{N(M-N)} = kt + C$ and hence $\ln(\frac{N}{M-N}) = M(kt + C)$ for short times.

- Thus $N = \frac{MAe^{Mkt}}{1+Ae^{Mkt}}$ potentially only for short times. However, the formula shows that the solution is defined for all $t \in \mathbb{R}$ if A > 0 and as $t \to \infty$ $N \to M$. One can prove a general uniqueness result for solutions of y' = g(y)f(x) where f is continuous, and g is differentiable and its derivative is continuous. Thus this solution is *the* solution.
- One can create realistic population models of predator-prey and other systems using the logistic equation. Surprisingly, the logistic function makes an appearance in

- An ODE of the form y'(x) = g(y)f(x) is called *separable* and is most commonly solved by ∫ dy/g(y) = ∫ f(x)dx provided g(y) ≠ 0. More rigorously, one uses FTC.
- For instance, consider the logistic equation N' = kN(M N) for modelling constrained population growth.

• If
$$0 < N_0 < M$$
, $\frac{dN}{N(M-N)} = kt + C$ and hence $\ln(\frac{N}{M-N}) = M(kt + C)$ for short times.

- Thus $N = \frac{MAe^{Mkt}}{1+Ae^{Mkt}}$ potentially only for short times. However, the formula shows that the solution is defined for all $t \in \mathbb{R}$ if A > 0 and as $t \to \infty$ $N \to M$. One can prove a general uniqueness result for solutions of y' = g(y)f(x) where f is continuous, and g is differentiable and its derivative is continuous. Thus this solution is *the* solution.
- One can create realistic population models of predator-prey and other systems using the logistic equation. Surprisingly, the logistic function makes an appearance in machine learning as well.

æ

• In general,

문 문 문

• In general, if y' = g(y) is an ODE

-

• In general, if y' = g(y) is an ODE where $g: \mathbb{R} \to \mathbb{R}$ is say

• In general, if y' = g(y) is an ODE where $g : \mathbb{R} \to \mathbb{R}$ is say infinitely differentiable,

• In general, if y' = g(y) is an ODE where $g : \mathbb{R} \to \mathbb{R}$ is say infinitely differentiable, the roots of g,

In general, if y' = g(y) is an ODE where g : ℝ → ℝ is say infinitely differentiable, the roots of g, i.e., y₀ such that g(y₀) = 0

In general, if y' = g(y) is an ODE where g : ℝ → ℝ is say infinitely differentiable, the roots of g, i.e., y₀ such that g(y₀) = 0 are called *equilibrium points*.

- In general, if y' = g(y) is an ODE where $g : \mathbb{R} \to \mathbb{R}$ is say infinitely differentiable, the roots of g, i.e., y_0 such that $g(y_0) = 0$ are called *equilibrium points*.
- Indeed,

In general, if y' = g(y) is an ODE where g : ℝ → ℝ is say infinitely differentiable, the roots of g, i.e., y₀ such that g(y₀) = 0 are called *equilibrium points*.

• Indeed, if $y(0) = y_0$ for

In general, if y' = g(y) is an ODE where g : ℝ → ℝ is say infinitely differentiable, the roots of g, i.e., y₀ such that g(y₀) = 0 are called *equilibrium points*.

• Indeed, if $y(0) = y_0$ for such a y_0 ,

In general, if y' = g(y) is an ODE where g : ℝ → ℝ is say infinitely differentiable, the roots of g, i.e., y₀ such that g(y₀) = 0 are called *equilibrium points*.

• Indeed, if $y(0) = y_0$ for such a y_0 , then $y(t) = y_0$ for

- In general, if y' = g(y) is an ODE where g : ℝ → ℝ is say infinitely differentiable, the roots of g, i.e., y₀ such that g(y₀) = 0 are called *equilibrium points*.
- Indeed, if $y(0) = y_0$ for such a y_0 , then $y(t) = y_0$ for all of time to come.

- In general, if y' = g(y) is an ODE where g : ℝ → ℝ is say infinitely differentiable, the roots of g, i.e., y₀ such that g(y₀) = 0 are called *equilibrium points*.
- Indeed, if y(0) = y₀ for such a y₀, then y(t) = y₀ for all of time to come.
- What happens if we

- In general, if y' = g(y) is an ODE where g : ℝ → ℝ is say infinitely differentiable, the roots of g, i.e., y₀ such that g(y₀) = 0 are called *equilibrium points*.
- Indeed, if y(0) = y₀ for such a y₀, then y(t) = y₀ for all of time to come.
- What happens if we start from $y_0 + \delta$ for a

- In general, if y' = g(y) is an ODE where g : ℝ → ℝ is say infinitely differentiable, the roots of g, i.e., y₀ such that g(y₀) = 0 are called *equilibrium points*.
- Indeed, if y(0) = y₀ for such a y₀, then y(t) = y₀ for all of time to come.
- What happens if we start from $y_0 + \delta$ for a small δ ? (

- In general, if y' = g(y) is an ODE where g : ℝ → ℝ is say infinitely differentiable, the roots of g, i.e., y₀ such that g(y₀) = 0 are called *equilibrium points*.
- Indeed, if y(0) = y₀ for such a y₀, then y(t) = y₀ for all of time to come.
- What happens if we start from $y_0 + \delta$ for a small δ ? (These sorts of questions

- In general, if y' = g(y) is an ODE where g : ℝ → ℝ is say infinitely differentiable, the roots of g, i.e., y₀ such that g(y₀) = 0 are called *equilibrium points*.
- Indeed, if y(0) = y₀ for such a y₀, then y(t) = y₀ for all of time to come.
- What happens if we start from y₀ + δ for a small δ? (These sorts of questions are important in Chaos theory.

- In general, if y' = g(y) is an ODE where g : ℝ → ℝ is say infinitely differentiable, the roots of g, i.e., y₀ such that g(y₀) = 0 are called *equilibrium points*.
- Indeed, if $y(0) = y_0$ for such a y_0 , then $y(t) = y_0$ for all of time to come.
- What happens if we start from y₀ + δ for a small δ? (These sorts of questions are important in Chaos theory. See Jurassic Park for details.)

- In general, if y' = g(y) is an ODE where g : ℝ → ℝ is say infinitely differentiable, the roots of g, i.e., y₀ such that g(y₀) = 0 are called *equilibrium points*.
- Indeed, if $y(0) = y_0$ for such a y_0 , then $y(t) = y_0$ for all of time to come.
- What happens if we start from y₀ + δ for a small δ? (These sorts of questions are important in Chaos theory. See Jurassic Park for details.)
- Naively,

- In general, if y' = g(y) is an ODE where g : ℝ → ℝ is say infinitely differentiable, the roots of g, i.e., y₀ such that g(y₀) = 0 are called *equilibrium points*.
- Indeed, if $y(0) = y_0$ for such a y_0 , then $y(t) = y_0$ for all of time to come.
- What happens if we start from y₀ + δ for a small δ? (These sorts of questions are important in Chaos theory. See Jurassic Park for details.)
- Naively, $g(y_0 + \Delta y) \approx 0 + \Delta y g'(y_0)$.

- In general, if y' = g(y) is an ODE where g : ℝ → ℝ is say infinitely differentiable, the roots of g, i.e., y₀ such that g(y₀) = 0 are called *equilibrium points*.
- Indeed, if y(0) = y₀ for such a y₀, then y(t) = y₀ for all of time to come.
- What happens if we start from y₀ + δ for a small δ? (These sorts of questions are important in Chaos theory. See Jurassic Park for details.)
- Naively, $g(y_0+\Delta y)pprox 0+\Delta yg'(y_0).$ If $g'(y_0)
 eq 0$,

8/8

- In general, if y' = g(y) is an ODE where g : ℝ → ℝ is say infinitely differentiable, the roots of g, i.e., y₀ such that g(y₀) = 0 are called *equilibrium points*.
- Indeed, if $y(0) = y_0$ for such a y_0 , then $y(t) = y_0$ for all of time to come.
- What happens if we start from y₀ + δ for a small δ? (These sorts of questions are important in Chaos theory. See Jurassic Park for details.)
- Naively, $g(y_0 + \Delta y) \approx 0 + \Delta y g'(y_0)$. If $g'(y_0) \neq 0$, then $g(y) \approx \Delta y g'(y_0)$ and hence $y \approx y_0 + \delta e^{g'(y_0)t}$

- In general, if y' = g(y) is an ODE where g : ℝ → ℝ is say infinitely differentiable, the roots of g, i.e., y₀ such that g(y₀) = 0 are called *equilibrium points*.
- Indeed, if $y(0) = y_0$ for such a y_0 , then $y(t) = y_0$ for all of time to come.
- What happens if we start from y₀ + δ for a small δ? (These sorts of questions are important in Chaos theory. See Jurassic Park for details.)
- Naively, $g(y_0 + \Delta y) \approx 0 + \Delta y g'(y_0)$. If $g'(y_0) \neq 0$, then $g(y) \approx \Delta y g'(y_0)$ and hence $y \approx y_0 + \delta e^{g'(y_0)t}$ at least for short t.

- In general, if y' = g(y) is an ODE where g : ℝ → ℝ is say infinitely differentiable, the roots of g, i.e., y₀ such that g(y₀) = 0 are called *equilibrium points*.
- Indeed, if y(0) = y₀ for such a y₀, then y(t) = y₀ for all of time to come.
- What happens if we start from y₀ + δ for a small δ? (These sorts of questions are important in Chaos theory. See Jurassic Park for details.)
- Naively, $g(y_0 + \Delta y) \approx 0 + \Delta y g'(y_0)$. If $g'(y_0) \neq 0$, then $g(y) \approx \Delta y g'(y_0)$ and hence $y \approx y_0 + \delta e^{g'(y_0)t}$ at least for short t. Thus if $g'(y_0) < 0$,

- In general, if y' = g(y) is an ODE where g : ℝ → ℝ is say infinitely differentiable, the roots of g, i.e., y₀ such that g(y₀) = 0 are called *equilibrium points*.
- Indeed, if y(0) = y₀ for such a y₀, then y(t) = y₀ for all of time to come.
- What happens if we start from y₀ + δ for a small δ? (These sorts of questions are important in Chaos theory. See Jurassic Park for details.)
- Naively, g(y₀ + Δy) ≈ 0 + Δyg'(y₀). If g'(y₀) ≠ 0, then g(y) ≈ Δyg'(y₀) and hence y ≈ y₀ + δe^{g'(y₀)t} at least for short t. Thus if g'(y₀) < 0, y "returns" back to equilibrium

- In general, if y' = g(y) is an ODE where g : ℝ → ℝ is say infinitely differentiable, the roots of g, i.e., y₀ such that g(y₀) = 0 are called *equilibrium points*.
- Indeed, if $y(0) = y_0$ for such a y_0 , then $y(t) = y_0$ for all of time to come.
- What happens if we start from y₀ + δ for a small δ? (These sorts of questions are important in Chaos theory. See Jurassic Park for details.)
- Naively, g(y₀ + Δy) ≈ 0 + Δyg'(y₀). If g'(y₀) ≠ 0, then g(y) ≈ Δyg'(y₀) and hence y ≈ y₀ + δe^{g'(y₀)t} at least for short t. Thus if g'(y₀) < 0, y "returns" back to equilibrium and flies away to infinity otherwise.

- In general, if y' = g(y) is an ODE where g : ℝ → ℝ is say infinitely differentiable, the roots of g, i.e., y₀ such that g(y₀) = 0 are called *equilibrium points*.
- Indeed, if $y(0) = y_0$ for such a y_0 , then $y(t) = y_0$ for all of time to come.
- What happens if we start from y₀ + δ for a small δ? (These sorts of questions are important in Chaos theory. See Jurassic Park for details.)
- Naively, g(y₀ + Δy) ≈ 0 + Δyg'(y₀). If g'(y₀) ≠ 0, then g(y) ≈ Δyg'(y₀) and hence y ≈ y₀ + δe^{g'(y₀)t} at least for short t. Thus if g'(y₀) < 0, y "returns" back to equilibrium and flies away to infinity otherwise. The former is called stable equilbrium

- In general, if y' = g(y) is an ODE where g : ℝ → ℝ is say infinitely differentiable, the roots of g, i.e., y₀ such that g(y₀) = 0 are called *equilibrium points*.
- Indeed, if $y(0) = y_0$ for such a y_0 , then $y(t) = y_0$ for all of time to come.
- What happens if we start from y₀ + δ for a small δ? (These sorts of questions are important in Chaos theory. See Jurassic Park for details.)
- Naively, g(y₀ + Δy) ≈ 0 + Δyg'(y₀). If g'(y₀) ≠ 0, then g(y) ≈ Δyg'(y₀) and hence y ≈ y₀ + δe^{g'(y₀)t} at least for short t. Thus if g'(y₀) < 0, y "returns" back to equilibrium and flies away to infinity otherwise. The former is called stable equilbrium and the latter unstable equilibrium.

- In general, if y' = g(y) is an ODE where g : ℝ → ℝ is say infinitely differentiable, the roots of g, i.e., y₀ such that g(y₀) = 0 are called *equilibrium points*.
- Indeed, if $y(0) = y_0$ for such a y_0 , then $y(t) = y_0$ for all of time to come.
- What happens if we start from y₀ + δ for a small δ? (These sorts of questions are important in Chaos theory. See Jurassic Park for details.)
- Naively, g(y₀ + Δy) ≈ 0 + Δyg'(y₀). If g'(y₀) ≠ 0, then g(y) ≈ Δyg'(y₀) and hence y ≈ y₀ + δe^{g'(y₀)t} at least for short t. Thus if g'(y₀) < 0, y "returns" back to equilibrium and flies away to infinity otherwise. The former is called stable equilbrium and the latter unstable equilibrium.
- This picture

- In general, if y' = g(y) is an ODE where g : ℝ → ℝ is say infinitely differentiable, the roots of g, i.e., y₀ such that g(y₀) = 0 are called *equilibrium points*.
- Indeed, if $y(0) = y_0$ for such a y_0 , then $y(t) = y_0$ for all of time to come.
- What happens if we start from y₀ + δ for a small δ? (These sorts of questions are important in Chaos theory. See Jurassic Park for details.)
- Naively, g(y₀ + Δy) ≈ 0 + Δyg'(y₀). If g'(y₀) ≠ 0, then g(y) ≈ Δyg'(y₀) and hence y ≈ y₀ + δe^{g'(y₀)t} at least for short t. Thus if g'(y₀) < 0, y "returns" back to equilibrium and flies away to infinity otherwise. The former is called stable equilbrium and the latter unstable equilibrium.
- This picture can be generalised to $\vec{y}' = \vec{g}(\vec{y})$ too

- In general, if y' = g(y) is an ODE where g : ℝ → ℝ is say infinitely differentiable, the roots of g, i.e., y₀ such that g(y₀) = 0 are called *equilibrium points*.
- Indeed, if $y(0) = y_0$ for such a y_0 , then $y(t) = y_0$ for all of time to come.
- What happens if we start from y₀ + δ for a small δ? (These sorts of questions are important in Chaos theory. See Jurassic Park for details.)
- Naively, g(y₀ + Δy) ≈ 0 + Δyg'(y₀). If g'(y₀) ≠ 0, then g(y) ≈ Δyg'(y₀) and hence y ≈ y₀ + δe^{g'(y₀)t} at least for short t. Thus if g'(y₀) < 0, y "returns" back to equilibrium and flies away to infinity otherwise. The former is called stable equilbrium and the latter unstable equilibrium.
- This picture can be generalised to $\vec{y}' = \vec{g}(\vec{y})$ too but it is more complicated

- In general, if y' = g(y) is an ODE where g : ℝ → ℝ is say infinitely differentiable, the roots of g, i.e., y₀ such that g(y₀) = 0 are called *equilibrium points*.
- Indeed, if $y(0) = y_0$ for such a y_0 , then $y(t) = y_0$ for all of time to come.
- What happens if we start from y₀ + δ for a small δ? (These sorts of questions are important in Chaos theory. See Jurassic Park for details.)
- Naively, g(y₀ + Δy) ≈ 0 + Δyg'(y₀). If g'(y₀) ≠ 0, then g(y) ≈ Δyg'(y₀) and hence y ≈ y₀ + δe^{g'(y₀)t} at least for short t. Thus if g'(y₀) < 0, y "returns" back to equilibrium and flies away to infinity otherwise. The former is called stable equilbrium and the latter unstable equilibrium.
- This picture can be generalised to $\vec{y}' = \vec{g}(\vec{y})$ too but it is more complicated and involves computing eigenvalues of

- In general, if y' = g(y) is an ODE where g : ℝ → ℝ is say infinitely differentiable, the roots of g, i.e., y₀ such that g(y₀) = 0 are called *equilibrium points*.
- Indeed, if $y(0) = y_0$ for such a y_0 , then $y(t) = y_0$ for all of time to come.
- What happens if we start from y₀ + δ for a small δ? (These sorts of questions are important in Chaos theory. See Jurassic Park for details.)
- Naively, g(y₀ + Δy) ≈ 0 + Δyg'(y₀). If g'(y₀) ≠ 0, then g(y) ≈ Δyg'(y₀) and hence y ≈ y₀ + δe^{g'(y₀)t} at least for short t. Thus if g'(y₀) < 0, y "returns" back to equilibrium and flies away to infinity otherwise. The former is called stable equilbrium and the latter unstable equilibrium.
- This picture can be generalised to y' = g(y) too but it is more complicated and involves computing eigenvalues of a certain "derivative matrix".

- In general, if y' = g(y) is an ODE where g : ℝ → ℝ is say infinitely differentiable, the roots of g, i.e., y₀ such that g(y₀) = 0 are called *equilibrium points*.
- Indeed, if $y(0) = y_0$ for such a y_0 , then $y(t) = y_0$ for all of time to come.
- What happens if we start from y₀ + δ for a small δ? (These sorts of questions are important in Chaos theory. See Jurassic Park for details.)
- Naively, g(y₀ + Δy) ≈ 0 + Δyg'(y₀). If g'(y₀) ≠ 0, then g(y) ≈ Δyg'(y₀) and hence y ≈ y₀ + δe^{g'(y₀)t} at least for short t. Thus if g'(y₀) < 0, y "returns" back to equilibrium and flies away to infinity otherwise. The former is called stable equilbrium and the latter unstable equilibrium.
- This picture can be generalised to $\vec{y}' = \vec{g}(\vec{y})$ too but it is more complicated and involves computing eigenvalues of a certain "derivative matrix". The rigorous statement of such

- In general, if y' = g(y) is an ODE where g : ℝ → ℝ is say infinitely differentiable, the roots of g, i.e., y₀ such that g(y₀) = 0 are called *equilibrium points*.
- Indeed, if $y(0) = y_0$ for such a y_0 , then $y(t) = y_0$ for all of time to come.
- What happens if we start from y₀ + δ for a small δ? (These sorts of questions are important in Chaos theory. See Jurassic Park for details.)
- Naively, g(y₀ + Δy) ≈ 0 + Δyg'(y₀). If g'(y₀) ≠ 0, then g(y) ≈ Δyg'(y₀) and hence y ≈ y₀ + δe^{g'(y₀)t} at least for short t. Thus if g'(y₀) < 0, y "returns" back to equilibrium and flies away to infinity otherwise. The former is called stable equilbrium and the latter unstable equilibrium.
- This picture can be generalised to \$\vec{y}' = \vec{g}(\vec{y})\$ too but it is more complicated and involves computing eigenvalues of a certain "derivative matrix". The rigorous statement of such a theorem is due to Hartman and Grobman.