Lecture 18 - UM 102 (Spring 2021)

Vamsi Pritham Pingali
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@ Proved that y’ = ky on R has a unique solution y = ypet.

e Studied a method to solve systems y’ = Ay in some cases
using linear algebra.

@ Recast y” + Py’ + Qy = 0 where P, Q € R are constants as a
system of first-order ODE.
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@ Proved that y’ = ky on R has a unique solution y = ypet.

e Studied a method to solve systems y’ = Ay in some cases
using linear algebra.

@ Recast y” + Py’ + Qy = 0 where P, Q € R are constants as a
system of first-order ODE. Solved it in the case where the
roots of D>+ PD + Q@ =0
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@ Proved that y’ = ky on R has a unique solution y = ypet.

e Studied a method to solve systems y’ = Ay in some cases
using linear algebra.

@ Recast y” + Py’ + Qy = 0 where P, Q € R are constants as a
system of first-order ODE. Solved it in the case where the
roots of D? + PD + @ = 0 real and distinct.
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Second-order linear homogeneous ODE with

constant-coefficients (Distinct complex roots)

Vamsi Pritham Pingali Lecture 18 3/8



Second-order linear homogeneous ODE with

constant-coefficients (Distinct complex roots)

o If the roots of

Vamsi Pritham Pingali Lecture 18 3/8



Second-order linear homogeneous ODE with

constant-coefficients (Distinct complex roots)

o If the roots of D? + PD + Q = 0 are complex distinct A\; # o
and

Vamsi Pritham Pingali Lecture 18 3/8
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constant-coefficients (Distinct complex roots)

o If the roots of D? + PD + Q = 0 are complex distinct A\; # o
and \; = o + \/jlﬁ,',
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Second-order linear homogeneous ODE with

constant-coefficients (Distinct complex roots)

o If the roots of D? + PD + Q = 0 are complex distinct A\; # o
and \; = a; + +/—10;, then as before,
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Second-order linear homogeneous ODE with

constant-coefficients (Distinct complex roots)

o If the roots of D? + PD + Q = 0 are complex distinct A\; # o
and \; = a;j + v/—10;, then as before, the corresponding
matrix is diagonalisable and hence
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Second-order linear homogeneous ODE with

constant-coefficients (Distinct complex roots)

o If the roots of D? + PD + Q = 0 are complex distinct A\; # o
and \; = o + /—153;, then as before, the corresponding
matrix is diagonalisable and hence the solutions form a
two-dimensional complex vector space.

Vamsi Pritham Pingali Lecture 18 3/8



Second-order linear homogeneous ODE with

constant-coefficients (Distinct complex roots)

o If the roots of D? + PD + Q = 0 are complex distinct A\; # o
and \; = o + /—153;, then as before, the corresponding
matrix is diagonalisable and hence the solutions form a
two-dimensional complex vector space. In other words,

Vamsi Pritham Pingali Lecture 18 3/8



Second-order linear homogeneous ODE with
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Second-order linear homogeneous ODE with

constant-coefficients (Distinct complex roots)

o If the roots of D? + PD + Q = 0 are complex distinct A\; # o
and \; = o + /—153;, then as before, the corresponding
matrix is diagonalisable and hence the solutions form a
two-dimensional complex vector space. In other words,

y(t) = ae*1teV =181t | peo2teV =182t \where a, b € C is the
solution. Note that since P, Q are real, A\ = Ao, ie., a1 = an
and B, = —f1.
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o If the roots of D? + PD + Q = 0 are complex distinct A\; # o
and \; = o + /—153;, then as before, the corresponding
matrix is diagonalisable and hence the solutions form a
two-dimensional complex vector space. In other words,

y(t) = ae*1teV =181t | peo2teV =182t \where a, b € C is the
solution. Note that since P, Q are real, A\ = Ao, ie., a1 = an
and B = —B1. Thus y(t) = e*(aeV =18t 4 pe=V=15t),

Vamsi Pritham Pingali Lecture 18 3/8



Second-order linear homogeneous ODE with

constant-coefficients (Distinct complex roots)

o If the roots of D? + PD + Q = 0 are complex distinct A\; # o
and \; = o + /—153;, then as before, the corresponding
matrix is diagonalisable and hence the solutions form a
two-dimensional complex vector space. In other words,

y(t) = ae*1teV =181t | peo2teV =182t \where a, b € C is the
solution. Note that since P, Q are real, A\ = Ao, ie., a1 = an
and B = —B1. Thus y(t) = e*(aeV =18t 4 pe=V=15t),
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Second-order linear homogeneous ODE with

constant-coefficients (Distinct complex roots)

o If the roots of D? + PD + Q = 0 are complex distinct A\; # o
and \; = o + /—153;, then as before, the corresponding
matrix is diagonalisable and hence the solutions form a
two-dimensional complex vector space. In other words,

y(t) = ae*1teV =181t | peo2teV =182t \where a, b € C is the
solution. Note that since P, Q are real, A\ = Ao, ie., a1 = an
and B = —B1. Thus y(t) = e*(aeV =18t 4 pe=V=15t),

o If we insist on real solutions then y = y.
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Second-order linear homogeneous ODE with

constant-coefficients (Distinct complex roots)

o If the roots of D? + PD + Q = 0 are complex distinct A\; # o
and \; = o + /—153;, then as before, the corresponding
matrix is diagonalisable and hence the solutions form a
two-dimensional complex vector space. In other words,

y(t) = ae*1teV =181t | peo2teV =182t \where a, b € C is the
solution. Note that since P, Q are real, A\ = Ao, ie., a1 = an
and B = —B1. Thus y(t) = e*(aeV =18t 4 pe=V=15t),

@ If we insist on real solutions then y = y. Thus (why?)

y(t) = e**(Acos(St) + Bsin(5t)) where A, B € R.
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Second-order linear homogeneous ODE with

constant-coefficients (repeated roots)
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o If D2+ PD+ Q= (D— \)?
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Second-order linear homogeneous ODE with

constant-coefficients (repeated roots)

o If D2+ PD + @ = (D — X\)? then ) is necessarily real and

P2=4Q, A= —

@ In this case

P
5

Vamsi Pritham Pingali Lecture 18 4/8



Second-order linear homogeneous ODE with

constant-coefficients (repeated roots)

o If D2+ PD + @ = (D — X\)? then ) is necessarily real and
P?=4Q, A=-5.

@ In this case Taking x = y/, X' = —Px — Qy, then unfortunately
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constant-coefficients (repeated roots)

o If D2+ PD + @ = (D — X\)? then ) is necessarily real and
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@ In this case Taklng X = —Px — Qy, then unfortunately

X =
E
the matrix A = [ 4 ] is not diagonalisable.
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Second-order linear homogeneous ODE with

constant-coefficients (repeated roots)

o If D2+ PD + @ = (D — X\)? then ) is necessarily real and
P?=4Q, A=-5.
@ In this case Taking x = y/, x
_p —
1
@ In this case it turns out (HW)

" = —Px — Qy, then unfortunately

X =
the matrix A = [ 04 ] is not diagonalisable.

Vamsi Pritham Pingali Lecture 18 4/8



Second-order linear homogeneous ODE with

constant-coefficients (repeated roots)

o If D2+ PD + @ = (D — X\)? then ) is necessarily real and

P?=4Q, A=-5.
@ In this case Taking x = = —Px — Qy, then unfortunately
the matrix A = [ ] is not diagonalisable.
@ In this case it turns out (HW) one can bring A to

Vamsi Pritham Pingali Lecture 18 4/8



Second-order linear homogeneous ODE with

constant-coefficients (repeated roots)

o If D2+ PD + @ = (D — X\)? then ) is necessarily real and

P?2=4Q,Ax=-£.
@ In this case Taking x = = —Px — Qy, then unfortunately
the matrix A = [ ] is not diagonalisable.
@ In this case it turns out (HW) one can bring A to an

upper-triangular form.
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Second-order linear homogeneous ODE with

constant-coefficients (repeated roots)

o If D°+PD+ Q=
P2=4Q X=-%.

@ In this case Taking x =

(D — X\)? then ) is necessarily real and

—Px — Qy, then unfortunately

X =
E
the matrix A = [ 4 ] is not diagonalisable.

@ In this case it turns out (HW one can bring A to an
upper-triangular form. One can still prove (HW)
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the matrix A = [ 4 ] is not diagonalisable.
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Second-order linear homogeneous ODE with

constant-coefficients (repeated roots)

o If D2+ PD + @ = (D — X\)? then ) is necessarily real and
P?2=4Q,Ax=-£.

@ In this case Taklng X = —Px — Qy, then unfortunately

X =
E
the matrix A = [ 4 ] is not diagonalisable.

@ In this case it turns out (HW one can bring A to an
upper-triangular form. One can still prove (HW) that one has
a two-dimensional real vector space
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Second-order linear homogeneous ODE with

constant-coefficients (repeated roots)

o If D2+ PD + @ = (D — X\)? then ) is necessarily real and
P?2=4Q,Ax=-£.

@ In this case Taklng X = —Px — Qy, then unfortunately

X =
E
the matrix A = [ 4 ] is not diagonalisable.

@ In this case it turns out (HW one can bring A to an
upper-triangular form. One can still prove (HW) that one has
a two-dimensional real vector space worth of solutions.
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Second-order linear homogeneous ODE with

constant-coefficients (repeated roots)

o If D2+ PD + @ = (D — X\)? then ) is necessarily real and
P?2=4Q,Ax=-£.

@ In this case Taklng X = —Px — Qy, then unfortunately

X =
E
the matrix A = [ 4 ] is not diagonalisable.

@ In this case it turns out (HW one can bring A to an
upper-triangular form. One can still prove (HW) that one has
a two-dimensional real vector space worth of solutions.

o Consider y = e*(A + Bt).
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Second-order linear homogeneous ODE with

constant-coefficients (repeated roots)

o If D2+ PD + @ = (D — X\)? then ) is necessarily real and
P?2=4Q,Ax=-£.

@ In this case Taklng X = —Px — Qy, then unfortunately

X =
E
the matrix A = [ 4 ] is not diagonalisable.

@ In this case it turns out (HW one can bring A to an
upper-triangular form. One can still prove (HW) that one has
a two-dimensional real vector space worth of solutions.

o Consider y = e (A + Bt). Clearly this is two-dimensional
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Second-order linear homogeneous ODE with

constant-coefficients (repeated roots)

o If D2+ PD + @ = (D — X\)? then ) is necessarily real and
P?2=4Q,Ax=-£.

@ In this case Taklng X = —Px — Qy, then unfortunately

X =
E
the matrix A = [ 4 ] is not diagonalisable.

@ In this case it turns out (HW one can bring A to an
upper-triangular form. One can still prove (HW) that one has
a two-dimensional real vector space worth of solutions.

o Consider y = e’ (A + Bt). Clearly this is two-dimensional and
a solution.
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Second-order linear homogeneous ODE with

constant-coefficients (repeated roots)

o If D2+ PD + @ = (D — X\)? then ) is necessarily real and
P?2=4Q,Ax=-£.

@ In this case Taklng X = —Px — Qy, then unfortunately

X =
E
the matrix A = [ 4 ] is not diagonalisable.

@ In this case it turns out (HW one can bring A to an
upper-triangular form. One can still prove (HW) that one has
a two-dimensional real vector space worth of solutions.

o Consider y = e’ (A + Bt). Clearly this is two-dimensional and
a solution. Thus it is the solution.
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First-order linear homogeneous ODE
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First-order linear homogeneous ODE

e Consider y' + P(x)y = 0.
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@ Theorem:
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@ Theorem: Let P : (a, b) — R be continuous. Let xg € (a, b).
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First-order linear homogeneous ODE

e Consider y' + P(x)y = 0.
@ Theorem: Let P : (a, b) — R be continuous. Let xg € (a, b).
There exists a
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There exists a unique differentiable function y : (a,b) - R
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First-order linear homogeneous ODE

e Consider y' + P(x)y = 0.

@ Theorem: Let P : (a, b) — R be continuous. Let xg € (a, b).
There exists a unique differentiable function y : (a,b) - R
satisfying the ODE above
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First-order linear homogeneous ODE

e Consider y' + P(x)y = 0.

@ Theorem: Let P : (a, b) — R be continuous. Let xg € (a, b).
There exists a unique differentiable function y : (a,b) - R
satisfying the ODE above and y(xg) = A where

Vamsi Pritham Pingali Lecture 18 5/8



First-order linear homogeneous ODE

e Consider y' + P(x)y = 0.

@ Theorem: Let P : (a, b) — R be continuous. Let xg € (a, b).
There exists a unique differentiable function y : (a,b) - R
satisfying the ODE above and y(xp) = A where A € R is

given.

Vamsi Pritham Pingali Lecture 18 5/8



First-order linear homogeneous ODE

e Consider y' + P(x)y = 0.

@ Theorem: Let P : (a, b) — R be continuous. Let xg € (a, b).
There exists a unique differentiable function y : (a,b) - R
satisfying the ODE above and y(xp) = A where A € R is

/ P(t)dt
given. Moreover, y(x) = Ae /x :
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First-order linear homogeneous ODE

e Consider y' + P(x)y = 0.

@ Theorem: Let P : (a, b) — R be continuous. Let xg € (a, b).
There exists a unique differentiable function y : (a,b) - R
satisfying the ODE above and y(xp) = A where A € R is

/ P(t)dt
given. Moreover, y(x) = Ae /x :

@ Proof:
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First-order linear homogeneous ODE

e Consider y' + P(x)y = 0.

@ Theorem: Let P : (a, b) — R be continuous. Let xg € (a, b).
There exists a unique differentiable function y : (a,b) - R
satisfying the ODE above and y(xp) = A where A € R is

/ P(t)dt
given. Moreover, y(x) = Ae /x :
@ Proof: Let g(x) :/ P(t)dt.

X0
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First-order linear homogeneous ODE

e Consider y' + P(x)y = 0.

@ Theorem: Let P : (a, b) — R be continuous. Let xg € (a, b).
There exists a unique differentiable function y : (a,b) - R
satisfying the ODE above and y(xp) = A where A € R is

/ P(t)dt
given. Moreover, y(x) = Ae /x :
@ Proof: Let g(x) :/ P(t)dt. By the FTC

X0
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First-order linear homogeneous ODE

e Consider y' + P(x)y = 0.

@ Theorem: Let P : (a, b) — R be continuous. Let xg € (a, b).
There exists a unique differentiable function y : (a,b) - R
satisfying the ODE above and y(xp) = A where A € R is

/ P(t)dt
given. Moreover, y(x) = Ae /x :
@ Proof: Let g(x) = / P(t)dt. By the FTC g is differentiable
X0
on (a, b)
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First-order linear homogeneous ODE

e Consider y' + P(x)y = 0.

@ Theorem: Let P : (a, b) — R be continuous. Let xg € (a, b).
There exists a unique differentiable function y : (a,b) - R
satisfying the ODE above and y(xp) = A where A € R is

/ P(t)dt
given. Moreover, y(x) = Ae /x :
@ Proof: Let g(x) = / P(t)dt. By the FTC g is differentiable
X0
on (a, b) and g’'(x) = P(x).
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First-order linear homogeneous ODE

e Consider y' + P(x)y = 0.

@ Theorem: Let P : (a, b) — R be continuous. Let xg € (a, b).
There exists a unique differentiable function y : (a,b) - R
satisfying the ODE above and y(xp) = A where A € R is

/ P(t)dt
given. Moreover, y(x) = Ae /x :
@ Proof: Let g(x) = / P(t)dt. By the FTC g is differentiable
X0
on (a, b) and g’(x) = P(x). Note that
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First-order linear homogeneous ODE

e Consider y' + P(x)y = 0.

@ Theorem: Let P : (a, b) — R be continuous. Let xg € (a, b).
There exists a unique differentiable function y : (a,b) - R
satisfying the ODE above and y(xp) = A where A € R is

/XX P(t)dt

@ Proof: Let g(x / t)dt. By the FTC g is differentiable
_l_

on (a, b) and g’(x)
(yeg(X)Ye—e() =y

given. Moreover, y

(x). Note that
g'(x) =y + P(x)y =0.
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First-order linear homogeneous ODE

e Consider y' + P(x)y = 0.

@ Theorem: Let P : (a, b) — R be continuous. Let xg € (a, b).
There exists a unique differentiable function y : (a,b) - R
satisfying the ODE above and y(xp) = A where A € R is

/ P(t)dt
given. Moreover, y X0 .

@ Proof: Let g(x / t)dt. By the FTC g is differentiable
_l_

on (a, b) and g’(x)
(yeg(X)Ye—e() =y

(x). Note that
g'(x) =y’ + P(x)y = 0. Hence ye&®)

is a constant.
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First-order linear homogeneous ODE

e Consider y' + P(x)y = 0.
@ Theorem: Let P : (a, b) — R be continuous. Let xg € (a, b).

There exists a unique differentiable function y : (a,b) - R
satisfying the ODE above and y(xp) = A where A € R is

/ (t)dt
given. Moreover, y(x) = Ae /x :

X

@ Proof: Let g(x) =

\

P(t)dt. By the FTC g is differentiable

X0

on (a, b) and g’(x) = P(x). Note that

(ves™))'e 809 = y/ 4 yg/(x) = y' + P(x)y = 0. Hence yes™)
- [ P(t)dt

is a constant. Thus y = Ae /X ) O
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First-order linear inhomogeneous ODE
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First-order linear inhomogeneous ODE

e Consider y' + P(x)y = Q(x) where
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First-order linear inhomogeneous ODE

e Consider y' + P(x)y = Q(x) where P, Q : (a,b) — R are
continuous.
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First-order linear inhomogeneous ODE

e Consider y' + P(x)y = Q(x) where P, Q : (a,b) — R are
continuous. The aim is to
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First-order linear inhomogeneous ODE

e Consider y' + P(x)y = Q(x) where P, Q : (a,b) — R are
continuous. The aim is to find a diff. function y : (a,b) = R
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First-order linear inhomogeneous ODE

e Consider y' + P(x)y = Q(x) where P, Q : (a,b) — R are
continuous. The aim is to find a diff. function y : (a,b) = R
such that y(xp) = A.
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e Consider y' + P(x)y = Q(x) where P, Q : (a,b) — R are
continuous. The aim is to find a diff. function y : (a,b) = R
such that y(xp) = A.

If there are two solutions y1, y», then y; — y» satisfies the
homogeneous equation with y;(xp) — y2(x0) = 0. Hence, there
is a unique solution.

Moreover, even without the initial conditon any solution of
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e Consider y' + P(x)y = Q(x) where P, Q : (a,b) — R are
continuous. The aim is to find a diff. function y : (a,b) = R
such that y(xp) = A.

If there are two solutions y1, y», then y; — y» satisfies the
homogeneous equation with y;(xp) — y2(x0) = 0. Hence, there
is a unique solution.

Moreover, even without the initial conditon any solution of
the inhomogeneous equation is a particular solution of the
inhomogeneous equation plus a solution of the homogeneous
one.

Let g(x) = /X P(t)dt and h(x) = /X Q(t)ef®dt. Then

0
(yeg(X))/e—g(X) = Q(x). Hence (yeg(x))/ = h/(X). Thus
yeg(X) — h(x) is a constant.
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e Consider y' + P(x)y = Q(x) where P, Q : (a,b) — R are
continuous. The aim is to find a diff. function y : (a,b) = R
such that y(xp) = A.

If there are two solutions y1, y», then y; — y» satisfies the
homogeneous equation with y;(xp) — y2(x0) = 0. Hence, there
is a unique solution.

Moreover, even without the initial conditon any solution of
the inhomogeneous equation is a particular solution of the
inhomogeneous equation plus a solution of the homogeneous
one.

Let g(x) = /X P(t)dt and h(x) = /X Q(t)ef®dt. Then

0
(ye8(¥)Ye=8() = Q(x). Hence (ye8™X)) = K(x). Thus
ye8(X) — h(x) is a constant. Therefore
y = h(X)efg(X) + Aefg(x)_
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@ An ODE of the form y'(x) = g(y)f(x) is called separable and
is most commonly solved by [ % = [ f(x)dx provided

g(y) #0.

Vamsi Pritham Pingali Lecture 18 7/8



An example of a separable nonlinear first-order ODE

@ An ODE of the form y'(x) = g(y)f(x) is called separable and
is most commonly solved by [ % = [ f(x)dx provided

g(y) # 0. More rigorously,

Vamsi Pritham Pingali Lecture 18 7/8



An example of a separable nonlinear first-order ODE

@ An ODE of the form y'(x) = g(y)f(x) is called separable and
is most commonly solved by [ % = [ f(x)dx provided
g(y) # 0. More rigorously, one uses FTC.

Vamsi Pritham Pingali Lecture 18 7/8



An example of a separable nonlinear first-order ODE

@ An ODE of the form y'(x) = g(y)f(x) is called separable and
is most commonly solved by [ % = [ f(x)dx provided

g(y) # 0. More rigorously, one uses FTC.
@ For instance,

Vamsi Pritham Pingali Lecture 18 7/8



An example of a separable nonlinear first-order ODE

@ An ODE of the form y'(x) = g(y)f(x) is called separable and
is most commonly solved by [ % = [ f(x)dx provided

g(y) # 0. More rigorously, one uses FTC.
@ For instance, consider the logistic equation

Vamsi Pritham Pingali Lecture 18 7/8



An example of a separable nonlinear first-order ODE

@ An ODE of the form y'(x) = g(y)f(x) is called separable and
is most commonly solved by [ % = [ f(x)dx provided
g(y) # 0. More rigorously, one uses FTC.

e For instance, consider the logistic equation N' = kN(M — N)
for

Vamsi Pritham Pingali Lecture 18 7/8



An example of a separable nonlinear first-order ODE

@ An ODE of the form y'(x) = g(y)f(x) is called separable and
is most commonly solved by [ % = [ f(x)dx provided
g(y) # 0. More rigorously, one uses FTC.

e For instance, consider the logistic equation N' = kN(M — N)
for modelling constrained population growth.

Vamsi Pritham Pingali Lecture 18 7/8



An example of a separable nonlinear first-order ODE

@ An ODE of the form y'(x) = g(y)f(x) is called separable and
is most commonly solved by [ % = [ f(x)dx provided
g(y) # 0. More rigorously, one uses FTC.

e For instance, consider the logistic equation N' = kN(M — N)

for modelling constrained population growth.
o If0< Np < M,

Vamsi Pritham Pingali Lecture 18 7/8



An example of a separable nonlinear first-order ODE

@ An ODE of the form y'(x) = g(y)f(x) is called separable and
is most commonly solved by [ % = [ f(x)dx provided
g(y) # 0. More rigorously, one uses FTC.

e For instance, consider the logistic equation N' = kN(M — N)

for modelling constrained population growth.

e IfO< Ng < M, N(M ) = kt + C and hence

Vamsi Pritham Pingali Lecture 18 7/8



An example of a separable nonlinear first-order ODE

@ An ODE of the form y'(x) = g(y)f(x) is called separable and
is most commonly solved by [ % = [ f(x)dx provided
g(y) # 0. More rigorously, one uses FTC.

e For instance, consider the logistic equation N' = kN(M — N)
for modelling constrained population growth.

e IfO< Ng < M, N(M Ny = = kt + C and hence

In(5/%y) = M(kt + C) for short times.

Vamsi Pritham Pingali Lecture 18 7/8



An example of a separable nonlinear first-order ODE

@ An ODE of the form y'(x) = g(y)f(x) is called separable and
is most commonly solved by [ % = [ f(x)dx provided
g(y) # 0. More rigorously, one uses FTC.

e For instance, consider the logistic equation N' = kN(M — N)
for modelling constrained population growth.

e IfO< Ng < M, N(M Ny = = kt + C and hence
In(5/%y) = M(kt + C) for short times.

MAeI\/Ikt
@ Thus N = T AV

Vamsi Pritham Pingali Lecture 18 7/8



An example of a separable nonlinear first-order ODE

@ An ODE of the form y'(x) = g(y)f(x) is called separable and
is most commonly solved by [ % = [ f(x)dx provided
g(y) # 0. More rigorously, one uses FTC.

e For instance, consider the logistic equation N' = kN(M — N)
for modelling constrained population growth.

e IfO< Ng < M, N(M Ny = = kt + C and hence
In(7y) = (kt + C) for short times.

@ Thus N = 1+A Lo potentially only for short times.

Vamsi Pritham Pingali Lecture 18 7/8



An example of a separable nonlinear first-order ODE

@ An ODE of the form y'(x) = g(y)f(x) is called separable and
is most commonly solved by [ % = [ f(x)dx provided
g(y) # 0. More rigorously, one uses FTC.

e For instance, consider the logistic equation N' = kN(M — N)
for modelling constrained population growth.

e IfO< Ng < M, N(M Ny = = kt + C and hence
In(7y) = (kt + C) for short times.

@ Thus N = 1+A Lo potentially only for short times. However,
the formula shows

Vamsi Pritham Pingali Lecture 18 7/8



An example of a separable nonlinear first-order ODE

@ An ODE of the form y'(x) = g(y)f(x) is called separable and
is most commonly solved by [ % = [ f(x)dx provided
g(y) # 0. More rigorously, one uses FTC.

e For instance, consider the logistic equation N' = kN(M — N)
for modelling constrained population growth.

e IfO< Ng < M, N(M Ny = = kt + C and hence
In(7y) = (kt + C) for short times.

@ Thus N = W potentially only for short times. However,
the formula shows that the solution is defined

Vamsi Pritham Pingali Lecture 18 7/8



An example of a separable nonlinear first-order ODE

@ An ODE of the form y'(x) = g(y)f(x) is called separable and
is most commonly solved by [ % = [ f(x)dx provided
g(y) # 0. More rigorously, one uses FTC.

e For instance, consider the logistic equation N' = kN(M — N)
for modelling constrained population growth.

e IfO< Ng < M, N(M Ny = = kt + C and hence
In(ﬂ) = (kt + C) for short times.

@ Thus N = W potentially only for short times. However,
the formula shows that the solution is defined for all t € R if
A >0 and

Vamsi Pritham Pingali Lecture 18 7/8



An example of a separable nonlinear first-order ODE

@ An ODE of the form y'(x) = g(y)f(x) is called separable and
is most commonly solved by [ % = [ f(x)dx provided
g(y) # 0. More rigorously, one uses FTC.

e For instance, consider the logistic equation N' = kN(M — N)
for modelling constrained population growth.

e IfO< Ng < M, N(M Ny = = kt + C and hence
In(ﬂ) = (kt + C) for short times.

@ Thus N = W potentially only for short times. However,
the formula shows that the solution is defined for all t € R if
A>0andast— oo

Vamsi Pritham Pingali Lecture 18 7/8



An example of a separable nonlinear first-order ODE

@ An ODE of the form y'(x) = g(y)f(x) is called separable and
is most commonly solved by [ % = [ f(x)dx provided
g(y) # 0. More rigorously, one uses FTC.

e For instance, consider the logistic equation N' = kN(M — N)
for modelling constrained population growth.

e IfO< Ng < M, N(M Ny = = kt + C and hence
In(ﬂ) = (kt + C) for short times.

@ Thus N = W potentially only for short times. However,
the formula shows that the solution is defined for all t € R if
A>0andast— oo N— M.

Vamsi Pritham Pingali Lecture 18 7/8



An example of a separable nonlinear first-order ODE

@ An ODE of the form y'(x) = g(y)f(x) is called separable and
is most commonly solved by [ % = [ f(x)dx provided
g(y) # 0. More rigorously, one uses FTC.

e For instance, consider the logistic equation N' = kN(M — N)
for modelling constrained population growth.

e IfO< Ng < M, N(M Ny = = kt + C and hence
In(ﬂ) = (kt + C) for short times.

@ Thus N = W potentially only for short times. However,
the formula shows that the solution is defined for all t € R if
A>0and ast— oo N — M. One can prove a

Vamsi Pritham Pingali Lecture 18 7/8



An example of a separable nonlinear first-order ODE

@ An ODE of the form y'(x) = g(y)f(x) is called separable and
is most commonly solved by [ % = [ f(x)dx provided
g(y) # 0. More rigorously, one uses FTC.

e For instance, consider the logistic equation N' = kN(M — N)
for modelling constrained population growth.

e IfO< Ng < M, N(M Ny = = kt + C and hence
In(7y) = (kt + C) for short times.

@ Thus N = 1+A Lo potentially only for short times. However,
the formula shows that the solution is defined for all t € R if
A>0andast— oo N— M. One can prove a general
uniqueness result

Vamsi Pritham Pingali Lecture 18 7/8



An example of a separable nonlinear first-order ODE

@ An ODE of the form y'(x) = g(y)f(x) is called separable and
is most commonly solved by [ % = [ f(x)dx provided
g(y) # 0. More rigorously, one uses FTC.

e For instance, consider the logistic equation N' = kN(M — N)
for modelling constrained population growth.

e IfO< Ng < M, N(M Ny = = kt + C and hence

In(7y) = (kt + C) for short times.

@ Thus N = 1+A Lo potentially only for short times. However,
the formula shows that the solution is defined for all t € R if
A>0andast— oo N— M. One can prove a general
uniqueness result for solutions of

Vamsi Pritham Pingali Lecture 18 7/8



An example of a separable nonlinear first-order ODE

@ An ODE of the form y'(x) = g(y)f(x) is called separable and
is most commonly solved by [ % = [ f(x)dx provided
g(y) # 0. More rigorously, one uses FTC.

e For instance, consider the logistic equation N' = kN(M — N)
for modelling constrained population growth.

e IfO< Ng < M, N(M Ny = = kt + C and hence

In(7y) = (kt + C) for short times.

@ Thus N = 1+A Lo potentially only for short times. However,
the formula shows that the solution is defined for all t € R if
A>0andast— oo N— M. One can prove a general
uniqueness result for solutions of y’ = g(y)f(x) where

Vamsi Pritham Pingali Lecture 18 7/8



An example of a separable nonlinear first-order ODE

@ An ODE of the form y'(x) = g(y)f(x) is called separable and
is most commonly solved by [ % = [ f(x)dx provided
g(y) # 0. More rigorously, one uses FTC.

e For instance, consider the logistic equation N' = kN(M — N)
for modelling constrained population growth.

e IfO< Ng < M, N(M Ny = = kt + C and hence
In(ﬂ) = (kt + C) for short times.

@ Thus N = 1+A Lo potentially only for short times. However,
the formula shows that the solution is defined for all t € R if
A>0andast— oo N— M. One can prove a general
uniqueness result for solutions of y' = g(y)f(x) where f is
continuous, and

Vamsi Pritham Pingali Lecture 18 7/8



An example of a separable nonlinear first-order ODE

@ An ODE of the form y'(x) = g(y)f(x) is called separable and
is most commonly solved by [ % = [ f(x)dx provided
g(y) # 0. More rigorously, one uses FTC.

e For instance, consider the logistic equation N' = kN(M — N)
for modelling constrained population growth.

e IfO< Ng < M, N(M Ny = = kt + C and hence
In(ﬂ) = (kt + C) for short times.

@ Thus N = 1+A Lo potentially only for short times. However,
the formula shows that the solution is defined for all t € R if
A>0andast— oo N— M. One can prove a general
uniqueness result for solutions of y' = g(y)f(x) where f is
continuous, and g is differentiable and

Vamsi Pritham Pingali Lecture 18 7/8



An example of a separable nonlinear first-order ODE

@ An ODE of the form y'(x) = g(y)f(x) is called separable and
is most commonly solved by [ % = [ f(x)dx provided
g(y) # 0. More rigorously, one uses FTC.

e For instance, consider the logistic equation N' = kN(M — N)
for modelling constrained population growth.

e IfO< Ng < M, N(M Ny = = kt + C and hence

In(7y) = (kt + C) for short times.

@ Thus N = 1+A Lo potentially only for short times. However,
the formula shows that the solution is defined for all t € R if
A>0andast— oo N— M. One can prove a general
uniqueness result for solutions of y' = g(y)f(x) where f is
continuous, and g is differentiable and its derivative is
continuous.

Vamsi Pritham Pingali Lecture 18 7/8



An example of a separable nonlinear first-order ODE

@ An ODE of the form y'(x) = g(y)f(x) is called separable and
is most commonly solved by [ % = [ f(x)dx provided
g(y) # 0. More rigorously, one uses FTC.

e For instance, consider the logistic equation N' = kN(M — N)
for modelling constrained population growth.

e IfO< Ng < M, N(M Ny = = kt + C and hence

In(7y) = (kt + C) for short times.

@ Thus N = 1+A Lo potentially only for short times. However,
the formula shows that the solution is defined for all t € R if
A>0andast— oo N— M. One can prove a general
uniqueness result for solutions of y' = g(y)f(x) where f is
continuous, and g is differentiable and its derivative is
continuous. Thus this solution

Vamsi Pritham Pingali Lecture 18 7/8



An example of a separable nonlinear first-order ODE

@ An ODE of the form y'(x) = g(y)f(x) is called separable and
is most commonly solved by [ % = [ f(x)dx provided
g(y) # 0. More rigorously, one uses FTC.

e For instance, consider the logistic equation N' = kN(M — N)
for modelling constrained population growth.

e IfO< Ng < M, N(M Ny = = kt + C and hence

In(7y) = (kt + C) for short times.

@ Thus N = 1+A Lo potentially only for short times. However,
the formula shows that the solution is defined for all t € R if
A>0andast— oo N— M. One can prove a general
uniqueness result for solutions of y' = g(y)f(x) where f is
continuous, and g is differentiable and its derivative is
continuous. Thus this solution is the solution.

Vamsi Pritham Pingali Lecture 18 7/8



An example of a separable nonlinear first-order ODE

@ An ODE of the form y'(x) = g(y)f(x) is called separable and
is most commonly solved by [ % = [ f(x)dx provided
g(y) # 0. More rigorously, one uses FTC.

e For instance, consider the logistic equation N' = kN(M — N)
for modelling constrained population growth.

e IfO< Ng < M, N(M Ny = = kt + C and hence

In(7y) = (kt + C) for short times.

@ Thus N = 1+A Lo potentially only for short times. However,
the formula shows that the solution is defined for all t € R if
A>0andast— oo N— M. One can prove a general
uniqueness result for solutions of y' = g(y)f(x) where f is
continuous, and g is differentiable and its derivative is
continuous. Thus this solution is the solution.

@ One can create

Vamsi Pritham Pingali Lecture 18 7/8



An example of a separable nonlinear first-order ODE

@ An ODE of the form y'(x) = g(y)f(x) is called separable and
is most commonly solved by [ % = [ f(x)dx provided
g(y) # 0. More rigorously, one uses FTC.

e For instance, consider the logistic equation N' = kN(M — N)
for modelling constrained population growth.

@0 If0 < Ny < M, N(M Ny = = kt + C and hence

In(7y) = (kt + C) for short times.

@ Thus N = 1+A Lo potentially only for short times. However,
the formula shows that the solution is defined for all t € R if
A>0andast— oo N— M. One can prove a general
uniqueness result for solutions of y' = g(y)f(x) where f is
continuous, and g is differentiable and its derivative is
continuous. Thus this solution is the solution.

@ One can create realistic population models

Vamsi Pritham Pingali Lecture 18 7/8



An example of a separable nonlinear first-order ODE

@ An ODE of the form y'(x) = g(y)f(x) is called separable and
is most commonly solved by [ % = [ f(x)dx provided
g(y) # 0. More rigorously, one uses FTC.

e For instance, consider the logistic equation N' = kN(M — N)
for modelling constrained population growth.

@0 If0 < Ny < M, N(M Ny = = kt + C and hence

In(7y) = (kt + C) for short times.

@ Thus N = 1+A Lo potentially only for short times. However,
the formula shows that the solution is defined for all t € R if
A>0andast— oo N— M. One can prove a general
uniqueness result for solutions of y' = g(y)f(x) where f is
continuous, and g is differentiable and its derivative is
continuous. Thus this solution is the solution.

@ One can create realistic population models of predator-prey
and

Vamsi Pritham Pingali Lecture 18 7/8



An example of a separable nonlinear first-order ODE

@ An ODE of the form y'(x) = g(y)f(x) is called separable and
is most commonly solved by [ % = [ f(x)dx provided
g(y) # 0. More rigorously, one uses FTC.

e For instance, consider the logistic equation N' = kN(M — N)
for modelling constrained population growth.

@0 If0 < Ny < M, N(M Ny = = kt + C and hence

In(7y) = (kt + C) for short times.

@ Thus N = 1+A Lo potentially only for short times. However,
the formula shows that the solution is defined for all t € R if
A>0andast— oo N— M. One can prove a general
uniqueness result for solutions of y' = g(y)f(x) where f is
continuous, and g is differentiable and its derivative is
continuous. Thus this solution is the solution.

@ One can create realistic population models of predator-prey
and other systems using

Vamsi Pritham Pingali Lecture 18 7/8



An example of a separable nonlinear first-order ODE

@ An ODE of the form y'(x) = g(y)f(x) is called separable and
is most commonly solved by [ % = [ f(x)dx provided
g(y) # 0. More rigorously, one uses FTC.

e For instance, consider the logistic equation N' = kN(M — N)
for modelling constrained population growth.

@0 If0 < Ny < M, N(M Ny = = kt + C and hence

In(7y) = (kt + C) for short times.

@ Thus N = 1+A Lo potentially only for short times. However,
the formula shows that the solution is defined for all t € R if
A>0andast— oo N— M. One can prove a general
uniqueness result for solutions of y' = g(y)f(x) where f is
continuous, and g is differentiable and its derivative is
continuous. Thus this solution is the solution.

@ One can create realistic population models of predator-prey
and other systems using the logistic equation.

Vamsi Pritham Pingali Lecture 18 7/8



An example of a separable nonlinear first-order ODE

@ An ODE of the form y'(x) = g(y)f(x) is called separable and
is most commonly solved by [ % = [ f(x)dx provided
g(y) # 0. More rigorously, one uses FTC.

e For instance, consider the logistic equation N' = kN(M — N)
for modelling constrained population growth.

@0 If0 < Ny < M, N(M Ny = = kt + C and hence

In(7y) = (kt + C) for short times.

@ Thus N = 1+A Lo potentially only for short times. However,
the formula shows that the solution is defined for all t € R if
A>0andast— oo N— M. One can prove a general
uniqueness result for solutions of y' = g(y)f(x) where f is
continuous, and g is differentiable and its derivative is
continuous. Thus this solution is the solution.

@ One can create realistic population models of predator-prey
and other systems using the logistic equation. Surprisingly,
the logistic function

Vamsi Pritham Pingali Lecture 18 7/8



An example of a separable nonlinear first-order ODE

@ An ODE of the form y'(x) = g(y)f(x) is called separable and
is most commonly solved by [ % = [ f(x)dx provided
g(y) # 0. More rigorously, one uses FTC.

e For instance, consider the logistic equation N' = kN(M — N)
for modelling constrained population growth.

@0 If0 < Ny < M, N(M Ny = = kt + C and hence

In(7y) = (kt + C) for short times.

@ Thus N = 1+A Lo potentially only for short times. However,
the formula shows that the solution is defined for all t € R if
A>0andast— oo N— M. One can prove a general
uniqueness result for solutions of y' = g(y)f(x) where f is
continuous, and g is differentiable and its derivative is
continuous. Thus this solution is the solution.

@ One can create realistic population models of predator-prey
and other systems using the logistic equation. Surprisingly,
the logistic function makes an appearance in

Vamsi Pritham Pingali Lecture 18 7/8



An example of a separable nonlinear first-order ODE

@ An ODE of the form y'(x) = g(y)f(x) is called separable and
is most commonly solved by [ % = [ f(x)dx provided
g(y) # 0. More rigorously, one uses FTC.

e For instance, consider the logistic equation N' = kN(M — N)
for modelling constrained population growth.

@0 If0 < Ny < M, N(M Ny = = kt + C and hence

In(7y) = (kt + C) for short times.

@ Thus N = 1+A Lo potentially only for short times. However,
the formula shows that the solution is defined for all t € R if
A>0andast— oo N— M. One can prove a general
uniqueness result for solutions of y' = g(y)f(x) where f is
continuous, and g is differentiable and its derivative is
continuous. Thus this solution is the solution.

@ One can create realistic population models of predator-prey
and other systems using the logistic equation. Surprisingly,
the logistic function makes an appearance in machine learning

as well.
Vamsi Pritham Pingali Lecture 18 7/8



Equilibria (Not for exams)

Vamsi Pritham Pingali Lecture 18 8/8



Equilibria (Not for exams)

@ In general,

Vamsi Pritham Pingali Lecture 18 8/8



Equilibria (Not for exams)

e In general, if y = g(y) is an ODE

Vamsi Pritham Pingali Lecture 18 8/8



Equilibria (Not for exams)

o In general, if y/ = g(y) is an ODE where g : R — R is say

Vamsi Pritham Pingali Lecture 18 8/8



Equilibria (Not for exams)

o In general, if y/ = g(y) is an ODE where g : R — R is say
infinitely differentiable,

Vamsi Pritham Pingali Lecture 18 8/8



Equilibria (Not for exams)

o In general, if y/ = g(y) is an ODE where g : R — R is say
infinitely differentiable, the roots of g,

Vamsi Pritham Pingali Lecture 18 8/8



Equilibria (Not for exams)

o In general, if y/ = g(y) is an ODE where g : R — R is say
infinitely differentiable, the roots of g, i.e., yp such that

g(y) =0

Vamsi Pritham Pingali Lecture 18 8/8



Equilibria (Not for exams)

o In general, if y/ = g(y) is an ODE where g : R — R is say
infinitely differentiable, the roots of g, i.e., yp such that
g(yo) = 0 are called equilibrium points.

Vamsi Pritham Pingali Lecture 18 8/8



Equilibria (Not for exams)

o In general, if y/ = g(y) is an ODE where g : R — R is say
infinitely differentiable, the roots of g, i.e., yp such that
g(yo) = 0 are called equilibrium points.

@ Indeed,

Vamsi Pritham Pingali Lecture 18 8/8



Equilibria (Not for exams)

o In general, if y/ = g(y) is an ODE where g : R — R is say
infinitely differentiable, the roots of g, i.e., yp such that
g(yo) = 0 are called equilibrium points.

e Indeed, if y(0) = yp for

Vamsi Pritham Pingali Lecture 18 8/8



Equilibria (Not for exams)

o In general, if y/ = g(y) is an ODE where g : R — R is say
infinitely differentiable, the roots of g, i.e., yp such that
g(yo) = 0 are called equilibrium points.

e Indeed, if y(0) = yp for such a yp,

Vamsi Pritham Pingali Lecture 18 8/8



Equilibria (Not for exams)

o In general, if y/ = g(y) is an ODE where g : R — R is say
infinitely differentiable, the roots of g, i.e., yp such that
g(yo) = 0 are called equilibrium points.

e Indeed, if y(0) = yp for such a yp, then y(t) = yp for

Vamsi Pritham Pingali Lecture 18 8/8



Equilibria (Not for exams)

o In general, if y/ = g(y) is an ODE where g : R — R is say
infinitely differentiable, the roots of g, i.e., yp such that
g(yo) = 0 are called equilibrium points.

e Indeed, if y(0) = yp for such a yp, then y(t) = yp for all of
time to come.

Vamsi Pritham Pingali Lecture 18 8/8



Equilibria (Not for exams)

o In general, if y/ = g(y) is an ODE where g : R — R is say
infinitely differentiable, the roots of g, i.e., yp such that
g(yo) = 0 are called equilibrium points.

e Indeed, if y(0) = yp for such a yp, then y(t) = yp for all of
time to come.

@ What happens if we

Vamsi Pritham Pingali Lecture 18 8/8



Equilibria (Not for exams)

o In general, if y/ = g(y) is an ODE where g : R — R is say
infinitely differentiable, the roots of g, i.e., yp such that
g(yo) = 0 are called equilibrium points.

e Indeed, if y(0) = yp for such a yp, then y(t) = yp for all of
time to come.

@ What happens if we start from yy + § for a

Vamsi Pritham Pingali Lecture 18 8/8



Equilibria (Not for exams)

o In general, if y/ = g(y) is an ODE where g : R — R is say
infinitely differentiable, the roots of g, i.e., yp such that
g(yo) = 0 are called equilibrium points.

e Indeed, if y(0) = yp for such a yp, then y(t) = yp for all of
time to come.

e What happens if we start from yp + d for a small §7 (

Vamsi Pritham Pingali Lecture 18 8/8



Equilibria (Not for exams)

o In general, if y/ = g(y) is an ODE where g : R — R is say
infinitely differentiable, the roots of g, i.e., yp such that
g(yo) = 0 are called equilibrium points.

e Indeed, if y(0) = yp for such a yp, then y(t) = yp for all of
time to come.

e What happens if we start from yp + d for a small §7 (These
sorts of questions

Vamsi Pritham Pingali Lecture 18 8/8



Equilibria (Not for exams)

o In general, if y/ = g(y) is an ODE where g : R — R is say
infinitely differentiable, the roots of g, i.e., yp such that
g(yo) = 0 are called equilibrium points.

e Indeed, if y(0) = yp for such a yp, then y(t) = yp for all of
time to come.

e What happens if we start from yp + d for a small §7 (These
sorts of questions are important in Chaos theory.

Vamsi Pritham Pingali Lecture 18 8/8



Equilibria (Not for exams)

o In general, if y/ = g(y) is an ODE where g : R — R is say
infinitely differentiable, the roots of g, i.e., yp such that
g(yo) = 0 are called equilibrium points.

e Indeed, if y(0) = yp for such a yp, then y(t) = yp for all of
time to come.

e What happens if we start from yp + d for a small §7 (These
sorts of questions are important in Chaos theory. See Jurassic
Park for details.)

Vamsi Pritham Pingali Lecture 18 8/8



Equilibria (Not for exams)

o In general, if y/ = g(y) is an ODE where g : R — R is say
infinitely differentiable, the roots of g, i.e., yp such that
g(yo) = 0 are called equilibrium points.

e Indeed, if y(0) = yp for such a yp, then y(t) = yp for all of
time to come.

e What happens if we start from yp + d for a small §7 (These
sorts of questions are important in Chaos theory. See Jurassic
Park for details.)

o Naively,

Vamsi Pritham Pingali Lecture 18 8/8



Equilibria (Not for exams)

o In general, if y/ = g(y) is an ODE where g : R — R is say
infinitely differentiable, the roots of g, i.e., yp such that
g(yo) = 0 are called equilibrium points.

e Indeed, if y(0) = yp for such a yp, then y(t) = yp for all of
time to come.

e What happens if we start from yp + d for a small §7 (These
sorts of questions are important in Chaos theory. See Jurassic
Park for details.)

o Naively, g(yo + Ay) = 0+ Ayg’(vo).

Vamsi Pritham Pingali Lecture 18 8/8



Equilibria (Not for exams)

o In general, if y/ = g(y) is an ODE where g : R — R is say
infinitely differentiable, the roots of g, i.e., yp such that
g(yo) = 0 are called equilibrium points.

e Indeed, if y(0) = yp for such a yp, then y(t) = yp for all of
time to come.

e What happens if we start from yp + d for a small §7 (These
sorts of questions are important in Chaos theory. See Jurassic
Park for details.)

o Naively, g(yo + Ay) = 0+ Ayg'(yo). If g’(y0) # 0,

Vamsi Pritham Pingali Lecture 18 8/8



Equilibria (Not for exams)

o In general, if y/ = g(y) is an ODE where g : R — R is say
infinitely differentiable, the roots of g, i.e., yp such that
g(yo) = 0 are called equilibrium points.

e Indeed, if y(0) = yp for such a yp, then y(t) = yp for all of
time to come.

e What happens if we start from yp + d for a small §7 (These
sorts of questions are important in Chaos theory. See Jurassic
Park for details.)

o Naively, g(yo + Ay) =~ 0+ Ayg'(yo). If g'(y0) # 0, then
g(y) ~ Ayg'(yo) and hence y ~ yo + de& (o)t

Vamsi Pritham Pingali Lecture 18 8/8



Equilibria (Not for exams)

o In general, if y/ = g(y) is an ODE where g : R — R is say
infinitely differentiable, the roots of g, i.e., yp such that
g(yo) = 0 are called equilibrium points.

e Indeed, if y(0) = yp for such a yp, then y(t) = yp for all of
time to come.

e What happens if we start from yp + d for a small §7 (These
sorts of questions are important in Chaos theory. See Jurassic
Park for details.)

o Naively, g(yo + Ay) =~ 0+ Ayg'(yo). If g'(y0) # 0, then
g(y) = Ayg'(yo) and hence y ~ yg + de& )t at |east for
short t.

Vamsi Pritham Pingali Lecture 18 8/8



Equilibria (Not for exams)

o In general, if y/ = g(y) is an ODE where g : R — R is say
infinitely differentiable, the roots of g, i.e., yp such that
g(yo) = 0 are called equilibrium points.

e Indeed, if y(0) = yp for such a yp, then y(t) = yp for all of
time to come.

e What happens if we start from yp + d for a small §7 (These
sorts of questions are important in Chaos theory. See Jurassic
Park for details.)

o Naively, g(yo + Ay) =~ 0+ Ayg'(yo). If g'(y0) # 0, then
g(y) = Ayg'(yo) and hence y ~ yg + de& )t at |east for
short t. Thus if g’(yo) <0,

Vamsi Pritham Pingali Lecture 18 8/8



Equilibria (Not for exams)

o In general, if y/ = g(y) is an ODE where g : R — R is say
infinitely differentiable, the roots of g, i.e., yp such that
g(yo) = 0 are called equilibrium points.

e Indeed, if y(0) = yp for such a yp, then y(t) = yp for all of
time to come.

e What happens if we start from yp + d for a small §7 (These
sorts of questions are important in Chaos theory. See Jurassic
Park for details.)

o Naively, g(yo + Ay) =~ 0+ Ayg'(yo). If g'(y0) # 0, then
g(y) = Ayg'(yo) and hence y ~ yg + de& )t at |east for
short t. Thus if g’(yp) < 0, y “returns” back to equilibrium

Vamsi Pritham Pingali Lecture 18 8/8



Equilibria (Not for exams)

o In general, if y/ = g(y) is an ODE where g : R — R is say
infinitely differentiable, the roots of g, i.e., yp such that
g(yo) = 0 are called equilibrium points.

e Indeed, if y(0) = yp for such a yp, then y(t) = yp for all of
time to come.

e What happens if we start from yp + d for a small §7 (These
sorts of questions are important in Chaos theory. See Jurassic
Park for details.)

o Naively, g(yo + Ay) =~ 0+ Ayg'(yo). If g'(y0) # 0, then
g(y) = Ayg'(yo) and hence y ~ yg + de& )t at |east for
short t. Thus if g’(yp) < 0, y “returns” back to equilibrium
and flies away to infinity otherwise.

Vamsi Pritham Pingali Lecture 18 8/8



Equilibria (Not for exams)

o In general, if y/ = g(y) is an ODE where g : R — R is say
infinitely differentiable, the roots of g, i.e., yp such that
g(yo) = 0 are called equilibrium points.

e Indeed, if y(0) = yp for such a yp, then y(t) = yp for all of
time to come.

e What happens if we start from yp + d for a small §7 (These
sorts of questions are important in Chaos theory. See Jurassic
Park for details.)

o Naively, g(yo + Ay) =~ 0+ Ayg'(yo). If g'(y0) # 0, then
g(y) = Ayg'(yo) and hence y ~ yg + de& )t at |east for
short t. Thus if g’(yp) < 0, y “returns” back to equilibrium
and flies away to infinity otherwise. The former is called stable
equilbrium

Vamsi Pritham Pingali Lecture 18 8/8



Equilibria (Not for exams)

o In general, if y/ = g(y) is an ODE where g : R — R is say
infinitely differentiable, the roots of g, i.e., yp such that
g(yo) = 0 are called equilibrium points.

e Indeed, if y(0) = yp for such a yp, then y(t) = yp for all of
time to come.

e What happens if we start from yp + d for a small §7 (These
sorts of questions are important in Chaos theory. See Jurassic
Park for details.)

o Naively, g(yo + Ay) =~ 0+ Ayg'(yo). If g'(y0) # 0, then
g(y) = Ayg'(yo) and hence y ~ yg + de& )t at |east for
short t. Thus if g’(yp) < 0, y “returns” back to equilibrium
and flies away to infinity otherwise. The former is called stable
equilbrium and the latter unstable equilibrium.

Vamsi Pritham Pingali Lecture 18 8/8



Equilibria (Not for exams)

o In general, if y/ = g(y) is an ODE where g : R — R is say
infinitely differentiable, the roots of g, i.e., yp such that
g(yo) = 0 are called equilibrium points.

e Indeed, if y(0) = yp for such a yp, then y(t) = yp for all of
time to come.

e What happens if we start from yp + d for a small §7 (These
sorts of questions are important in Chaos theory. See Jurassic
Park for details.)

o Naively, g(yo + Ay) =~ 0+ Ayg'(yo). If g'(y0) # 0, then
g(y) = Ayg'(yo) and hence y ~ yg + de& )t at |east for
short t. Thus if g’(yp) < 0, y “returns” back to equilibrium
and flies away to infinity otherwise. The former is called stable
equilbrium and the latter unstable equilibrium.

@ This picture

Vamsi Pritham Pingali Lecture 18 8/8



Equilibria (Not for exams)

o In general, if y/ = g(y) is an ODE where g : R — R is say
infinitely differentiable, the roots of g, i.e., yp such that
g(yo) = 0 are called equilibrium points.

e Indeed, if y(0) = yp for such a yp, then y(t) = yp for all of
time to come.

e What happens if we start from yp + d for a small §7 (These
sorts of questions are important in Chaos theory. See Jurassic
Park for details.)

o Naively, g(yo + Ay) =~ 0+ Ayg'(yo). If g'(y0) # 0, then
g(y) = Ayg'(yo) and hence y ~ yg + de& )t at |east for
short t. Thus if g’(yp) < 0, y “returns” back to equilibrium
and flies away to infinity otherwise. The former is called stable
equilbrium and the latter unstable equilibrium.

@ This picture can be generalised to y' = g(y) too

Vamsi Pritham Pingali Lecture 18 8/8



Equilibria (Not for exams)

o In general, if y/ = g(y) is an ODE where g : R — R is say
infinitely differentiable, the roots of g, i.e., yp such that
g(yo) = 0 are called equilibrium points.

e Indeed, if y(0) = yp for such a yp, then y(t) = yp for all of
time to come.

e What happens if we start from yp + d for a small §7 (These
sorts of questions are important in Chaos theory. See Jurassic
Park for details.)

o Naively, g(yo + Ay) =~ 0+ Ayg'(yo). If g'(y0) # 0, then
g(y) = Ayg'(yo) and hence y ~ yg + de& )t at |east for
short t. Thus if g’(yp) < 0, y “returns” back to equilibrium
and flies away to infinity otherwise. The former is called stable
equilbrium and the latter unstable equilibrium.

@ This picture can be generalised to y' = g(y) too but it is
more complicated

Vamsi Pritham Pingali Lecture 18 8/8



Equilibria (Not for exams)

o In general, if y/ = g(y) is an ODE where g : R — R is say
infinitely differentiable, the roots of g, i.e., yp such that
g(yo) = 0 are called equilibrium points.

e Indeed, if y(0) = yp for such a yp, then y(t) = yp for all of
time to come.

e What happens if we start from yp + d for a small §7 (These
sorts of questions are important in Chaos theory. See Jurassic
Park for details.)

o Naively, g(yo + Ay) =~ 0+ Ayg'(yo). If g'(y0) # 0, then
g(y) = Ayg'(yo) and hence y ~ yg + de& )t at |east for
short t. Thus if g’(yp) < 0, y “returns” back to equilibrium
and flies away to infinity otherwise. The former is called stable
equilbrium and the latter unstable equilibrium.

@ This picture can be generalised to y' = g(y) too but it is
more complicated and involves computing eigenvalues of

Vamsi Pritham Pingali Lecture 18 8/8



Equilibria (Not for exams)

o In general, if y/ = g(y) is an ODE where g : R — R is say
infinitely differentiable, the roots of g, i.e., yp such that
g(yo) = 0 are called equilibrium points.

e Indeed, if y(0) = yp for such a yp, then y(t) = yp for all of
time to come.

e What happens if we start from yp + d for a small §7 (These
sorts of questions are important in Chaos theory. See Jurassic
Park for details.)

o Naively, g(yo + Ay) =~ 0+ Ayg'(yo). If g'(y0) # 0, then
g(y) = Ayg'(yo) and hence y ~ yg + de& )t at |east for
short t. Thus if g’(yp) < 0, y “returns” back to equilibrium
and flies away to infinity otherwise. The former is called stable
equilbrium and the latter unstable equilibrium.

@ This picture can be generalised to y' = g(y) too but it is
more complicated and involves computing eigenvalues of a
certain “derivative matrix”.

Vamsi Pritham Pingali Lecture 18 8/8



Equilibria (Not for exams)

o In general, if y/ = g(y) is an ODE where g : R — R is say
infinitely differentiable, the roots of g, i.e., yp such that
g(yo) = 0 are called equilibrium points.

e Indeed, if y(0) = yp for such a yp, then y(t) = yp for all of
time to come.

e What happens if we start from yp + d for a small §7 (These
sorts of questions are important in Chaos theory. See Jurassic
Park for details.)

o Naively, g(yo + Ay) =~ 0+ Ayg'(yo). If g'(y0) # 0, then
g(y) = Ayg'(yo) and hence y ~ yg + de& )t at |east for
short t. Thus if g’(yp) < 0, y “returns” back to equilibrium
and flies away to infinity otherwise. The former is called stable
equilbrium and the latter unstable equilibrium.

@ This picture can be generalised to y' = g(y) too but it is
more complicated and involves computing eigenvalues of a
certain “derivative matrix”. The rigorous statement of such

Vamsi Pritham Pingali Lecture 18 8/8



Equilibria (Not for exams)

o In general, if y/ = g(y) is an ODE where g : R — R is say
infinitely differentiable, the roots of g, i.e., yp such that
g(yo) = 0 are called equilibrium points.

e Indeed, if y(0) = yp for such a yp, then y(t) = yp for all of
time to come.

e What happens if we start from yp + d for a small §7 (These
sorts of questions are important in Chaos theory. See Jurassic
Park for details.)

o Naively, g(yo + Ay) =~ 0+ Ayg'(yo). If g'(y0) # 0, then
g(y) = Ayg'(yo) and hence y ~ yg + de& )t at |east for
short t. Thus if g’(yp) < 0, y “returns” back to equilibrium
and flies away to infinity otherwise. The former is called stable
equilbrium and the latter unstable equilibrium.

@ This picture can be generalised to y' = g(y) too but it is
more complicated and involves computing eigenvalues of a
certain “derivative matrix". The rigorous statement of such a

theorem is due to Hartman and Grobman.
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