Lecture 18 - UM 102 (Spring 2021)

Vamsi Pritham Pingali

IISc

Recap

Recap

- Proved that

Recap

- Proved that $y^{\prime}=k y$ on \mathbb{R}

Recap

- Proved that $y^{\prime}=k y$ on \mathbb{R} has a unique solution

Recap

- Proved that $y^{\prime}=k y$ on \mathbb{R} has a unique solution $y=y_{0} e^{k t}$.
- Proved that $y^{\prime}=k y$ on \mathbb{R} has a unique solution $y=y_{0} e^{k t}$.
- Studied a method
- Proved that $y^{\prime}=k y$ on \mathbb{R} has a unique solution $y=y_{0} e^{k t}$.
- Studied a method to solve systems
- Proved that $y^{\prime}=k y$ on \mathbb{R} has a unique solution $y=y_{0} e^{k t}$.
- Studied a method to solve systems $y^{\prime}=A y$ in some cases
- Proved that $y^{\prime}=k y$ on \mathbb{R} has a unique solution $y=y_{0} e^{k t}$.
- Studied a method to solve systems $y^{\prime}=A y$ in some cases using linear algebra.
- Proved that $y^{\prime}=k y$ on \mathbb{R} has a unique solution $y=y_{0} e^{k t}$.
- Studied a method to solve systems $y^{\prime}=A y$ in some cases using linear algebra.
- Recast $y^{\prime \prime}+P y^{\prime}+Q y=0$ where
- Proved that $y^{\prime}=k y$ on \mathbb{R} has a unique solution $y=y_{0} e^{k t}$.
- Studied a method to solve systems $y^{\prime}=A y$ in some cases using linear algebra.
- Recast $y^{\prime \prime}+P y^{\prime}+Q y=0$ where $P, Q \in \mathbb{R}$ are constants as
- Proved that $y^{\prime}=k y$ on \mathbb{R} has a unique solution $y=y_{0} e^{k t}$.
- Studied a method to solve systems $y^{\prime}=A y$ in some cases using linear algebra.
- Recast $y^{\prime \prime}+P y^{\prime}+Q y=0$ where $P, Q \in \mathbb{R}$ are constants as a system of first-order ODE.
- Proved that $y^{\prime}=k y$ on \mathbb{R} has a unique solution $y=y_{0} e^{k t}$.
- Studied a method to solve systems $y^{\prime}=A y$ in some cases using linear algebra.
- Recast $y^{\prime \prime}+P y^{\prime}+Q y=0$ where $P, Q \in \mathbb{R}$ are constants as a system of first-order ODE. Solved it in the case
- Proved that $y^{\prime}=k y$ on \mathbb{R} has a unique solution $y=y_{0} e^{k t}$.
- Studied a method to solve systems $y^{\prime}=A y$ in some cases using linear algebra.
- Recast $y^{\prime \prime}+P y^{\prime}+Q y=0$ where $P, Q \in \mathbb{R}$ are constants as a system of first-order ODE. Solved it in the case where the roots of $D^{2}+P D+Q=0$
- Proved that $y^{\prime}=k y$ on \mathbb{R} has a unique solution $y=y_{0} e^{k t}$.
- Studied a method to solve systems $y^{\prime}=A y$ in some cases using linear algebra.
- Recast $y^{\prime \prime}+P y^{\prime}+Q y=0$ where $P, Q \in \mathbb{R}$ are constants as a system of first-order ODE. Solved it in the case where the roots of $D^{2}+P D+Q=0$ real and distinct.

Second-order linear homogeneous ODE with constant-coefficients (Distinct complex roots)

Second-order linear homogeneous ODE with constant-coefficients (Distinct complex roots)

- If the roots of

Second-order linear homogeneous ODE with constant-coefficients (Distinct complex roots)

- If the roots of $D^{2}+P D+Q=0$ are complex distinct $\lambda_{1} \neq \lambda_{2}$ and

Second-order linear homogeneous ODE with constant-coefficients (Distinct complex roots)

- If the roots of $D^{2}+P D+Q=0$ are complex distinct $\lambda_{1} \neq \lambda_{2}$ and $\lambda_{i}=\alpha_{i}+\sqrt{-1} \beta_{i}$,

Second-order linear homogeneous ODE with constant-coefficients (Distinct complex roots)

- If the roots of $D^{2}+P D+Q=0$ are complex distinct $\lambda_{1} \neq \lambda_{2}$ and $\lambda_{i}=\alpha_{i}+\sqrt{-1} \beta_{i}$, then as before,

Second-order linear homogeneous ODE with constant-coefficients (Distinct complex roots)

- If the roots of $D^{2}+P D+Q=0$ are complex distinct $\lambda_{1} \neq \lambda_{2}$ and $\lambda_{i}=\alpha_{i}+\sqrt{-1} \beta_{i}$, then as before, the corresponding matrix

Second-order linear homogeneous ODE with constant-coefficients (Distinct complex roots)

- If the roots of $D^{2}+P D+Q=0$ are complex distinct $\lambda_{1} \neq \lambda_{2}$ and $\lambda_{i}=\alpha_{i}+\sqrt{-1} \beta_{i}$, then as before, the corresponding matrix is diagonalisable and hence

Second-order linear homogeneous ODE with constant-coefficients (Distinct complex roots)

- If the roots of $D^{2}+P D+Q=0$ are complex distinct $\lambda_{1} \neq \lambda_{2}$ and $\lambda_{i}=\alpha_{i}+\sqrt{-1} \beta_{i}$, then as before, the corresponding matrix is diagonalisable and hence the solutions form a two-dimensional complex vector space.

Second-order linear homogeneous ODE with constant-coefficients (Distinct complex roots)

- If the roots of $D^{2}+P D+Q=0$ are complex distinct $\lambda_{1} \neq \lambda_{2}$ and $\lambda_{i}=\alpha_{i}+\sqrt{-1} \beta_{i}$, then as before, the corresponding matrix is diagonalisable and hence the solutions form a two-dimensional complex vector space. In other words,

Second-order linear homogeneous ODE with constant-coefficients (Distinct complex roots)

- If the roots of $D^{2}+P D+Q=0$ are complex distinct $\lambda_{1} \neq \lambda_{2}$ and $\lambda_{i}=\alpha_{i}+\sqrt{-1} \beta_{i}$, then as before, the corresponding matrix is diagonalisable and hence the solutions form a two-dimensional complex vector space. In other words, $y(t)=a e^{\alpha_{1} t} e^{\sqrt{-1} \beta_{1} t}+b e^{\alpha_{2} t} e^{\sqrt{-1} \beta_{2} t}$ where $a, b \in \mathbb{C}$ is the solution.

Second-order linear homogeneous ODE with constant-coefficients (Distinct complex roots)

- If the roots of $D^{2}+P D+Q=0$ are complex distinct $\lambda_{1} \neq \lambda_{2}$ and $\lambda_{i}=\alpha_{i}+\sqrt{-1} \beta_{i}$, then as before, the corresponding matrix is diagonalisable and hence the solutions form a two-dimensional complex vector space. In other words, $y(t)=a e^{\alpha_{1} t} e^{\sqrt{-1} \beta_{1} t}+b e^{\alpha_{2} t} e^{\sqrt{-1} \beta_{2} t}$ where $a, b \in \mathbb{C}$ is the solution. Note that since P, Q are real,

Second-order linear homogeneous ODE with constant-coefficients (Distinct complex roots)

- If the roots of $D^{2}+P D+Q=0$ are complex distinct $\lambda_{1} \neq \lambda_{2}$ and $\lambda_{i}=\alpha_{i}+\sqrt{-1} \beta_{i}$, then as before, the corresponding matrix is diagonalisable and hence the solutions form a two-dimensional complex vector space. In other words, $y(t)=a e^{\alpha_{1} t} e^{\sqrt{-1} \beta_{1} t}+b e^{\alpha_{2} t} e^{\sqrt{-1} \beta_{2} t}$ where $a, b \in \mathbb{C}$ is the solution. Note that since P, Q are real, $\lambda_{1}=\overline{\lambda_{2}}$, i.e.,

Second-order linear homogeneous ODE with constant-coefficients (Distinct complex roots)

- If the roots of $D^{2}+P D+Q=0$ are complex distinct $\lambda_{1} \neq \lambda_{2}$ and $\lambda_{i}=\alpha_{i}+\sqrt{-1} \beta_{i}$, then as before, the corresponding matrix is diagonalisable and hence the solutions form a two-dimensional complex vector space. In other words, $y(t)=a e^{\alpha_{1} t} e^{\sqrt{-1} \beta_{1} t}+b e^{\alpha_{2} t} e^{\sqrt{-1} \beta_{2} t}$ where $a, b \in \mathbb{C}$ is the solution. Note that since P, Q are real, $\lambda_{1}=\overline{\lambda_{2}}$, i.e., $\alpha_{1}=\alpha_{2}$ and $\beta_{2}=-\beta_{1}$.

Second-order linear homogeneous ODE with constant-coefficients (Distinct complex roots)

- If the roots of $D^{2}+P D+Q=0$ are complex distinct $\lambda_{1} \neq \lambda_{2}$ and $\lambda_{i}=\alpha_{i}+\sqrt{-1} \beta_{i}$, then as before, the corresponding matrix is diagonalisable and hence the solutions form a two-dimensional complex vector space. In other words, $y(t)=a e^{\alpha_{1} t} e^{\sqrt{-1} \beta_{1} t}+b e^{\alpha_{2} t} e^{\sqrt{-1} \beta_{2} t}$ where $a, b \in \mathbb{C}$ is the solution. Note that since P, Q are real, $\lambda_{1}=\overline{\lambda_{2}}$, i.e., $\alpha_{1}=\alpha_{2}$ and $\beta_{2}=-\beta_{1}$. Thus $y(t)=e^{\alpha t}\left(a e^{\sqrt{-1} \beta t}+b e^{-\sqrt{-1} \beta t}\right)$.

Second-order linear homogeneous ODE with constant-coefficients (Distinct complex roots)

- If the roots of $D^{2}+P D+Q=0$ are complex distinct $\lambda_{1} \neq \lambda_{2}$ and $\lambda_{i}=\alpha_{i}+\sqrt{-1} \beta_{i}$, then as before, the corresponding matrix is diagonalisable and hence the solutions form a two-dimensional complex vector space. In other words, $y(t)=a e^{\alpha_{1} t} e^{\sqrt{-1} \beta_{1} t}+b e^{\alpha_{2} t} e^{\sqrt{-1} \beta_{2} t}$ where $a, b \in \mathbb{C}$ is the solution. Note that since P, Q are real, $\lambda_{1}=\overline{\lambda_{2}}$, i.e., $\alpha_{1}=\alpha_{2}$ and $\beta_{2}=-\beta_{1}$. Thus $y(t)=e^{\alpha t}\left(a e^{\sqrt{-1} \beta t}+b e^{-\sqrt{-1} \beta t}\right)$.
- If we insist on real solutions

Second-order linear homogeneous ODE with constant-coefficients (Distinct complex roots)

- If the roots of $D^{2}+P D+Q=0$ are complex distinct $\lambda_{1} \neq \lambda_{2}$ and $\lambda_{i}=\alpha_{i}+\sqrt{-1} \beta_{i}$, then as before, the corresponding matrix is diagonalisable and hence the solutions form a two-dimensional complex vector space. In other words, $y(t)=a e^{\alpha_{1} t} e^{\sqrt{-1} \beta_{1} t}+b e^{\alpha_{2} t} e^{\sqrt{-1} \beta_{2} t}$ where $a, b \in \mathbb{C}$ is the solution. Note that since P, Q are real, $\lambda_{1}=\overline{\lambda_{2}}$, i.e., $\alpha_{1}=\alpha_{2}$ and $\beta_{2}=-\beta_{1}$. Thus $y(t)=e^{\alpha t}\left(a e^{\sqrt{-1} \beta t}+b e^{-\sqrt{-1} \beta t}\right)$.
- If we insist on real solutions then $\bar{y}=y$.

Second-order linear homogeneous ODE with constant-coefficients (Distinct complex roots)

- If the roots of $D^{2}+P D+Q=0$ are complex distinct $\lambda_{1} \neq \lambda_{2}$ and $\lambda_{i}=\alpha_{i}+\sqrt{-1} \beta_{i}$, then as before, the corresponding matrix is diagonalisable and hence the solutions form a two-dimensional complex vector space. In other words, $y(t)=a e^{\alpha_{1} t} e^{\sqrt{-1} \beta_{1} t}+b e^{\alpha_{2} t} e^{\sqrt{-1} \beta_{2} t}$ where $a, b \in \mathbb{C}$ is the solution. Note that since P, Q are real, $\lambda_{1}=\overline{\lambda_{2}}$, i.e., $\alpha_{1}=\alpha_{2}$ and $\beta_{2}=-\beta_{1}$. Thus $y(t)=e^{\alpha t}\left(a e^{\sqrt{-1} \beta t}+b e^{-\sqrt{-1} \beta t}\right)$.
- If we insist on real solutions then $\bar{y}=y$. Thus (why?) $y(t)=e^{\alpha t}(A \cos (\beta t)+B \sin (\beta t))$ where $A, B \in \mathbb{R}$.

Second-order linear homogeneous ODE with constant-coefficients (repeated roots)

Second-order linear homogeneous ODE with constant-coefficients (repeated roots)

- If $D^{2}+P D+Q=(D-\lambda)^{2}$

Second-order linear homogeneous ODE with constant-coefficients (repeated roots)

- If $D^{2}+P D+Q=(D-\lambda)^{2}$ then λ is necessarily real

Second-order linear homogeneous ODE with constant-coefficients (repeated roots)

- If $D^{2}+P D+Q=(D-\lambda)^{2}$ then λ is necessarily real and $P^{2}=4 Q, \lambda=-\frac{P}{2}$.

Second-order linear homogeneous ODE with constant-coefficients (repeated roots)

- If $D^{2}+P D+Q=(D-\lambda)^{2}$ then λ is necessarily real and $P^{2}=4 Q, \lambda=-\frac{P}{2}$.
- In this case

Second-order linear homogeneous ODE with constant-coefficients (repeated roots)

- If $D^{2}+P D+Q=(D-\lambda)^{2}$ then λ is necessarily real and $P^{2}=4 Q, \lambda=-\frac{P}{2}$.
- In this case Taking $x=y^{\prime}, x^{\prime}=-P x-Q y$, then unfortunately

Second-order linear homogeneous ODE with constant-coefficients (repeated roots)

- If $D^{2}+P D+Q=(D-\lambda)^{2}$ then λ is necessarily real and $P^{2}=4 Q, \lambda=-\frac{P}{2}$.
- In this case Taking $x=y^{\prime}, x^{\prime}=-P x-Q y$, then unfortunately the matrix $A=\left[\begin{array}{cc}-P & -\frac{P^{2}}{4} \\ 1 & 0\end{array}\right]$ is not diagonalisable.

Second-order linear homogeneous ODE with constant-coefficients (repeated roots)

- If $D^{2}+P D+Q=(D-\lambda)^{2}$ then λ is necessarily real and $P^{2}=4 Q, \lambda=-\frac{P}{2}$.
- In this case Taking $x=y^{\prime}, x^{\prime}=-P x-Q y$, then unfortunately the matrix $A=\left[\begin{array}{cc}-P & -\frac{P^{2}}{4} \\ 1 & 0\end{array}\right]$ is not diagonalisable.
- In this case

Second-order linear homogeneous ODE with constant-coefficients (repeated roots)

- If $D^{2}+P D+Q=(D-\lambda)^{2}$ then λ is necessarily real and $P^{2}=4 Q, \lambda=-\frac{P}{2}$.
- In this case Taking $x=y^{\prime}, x^{\prime}=-P x-Q y$, then unfortunately the matrix $A=\left[\begin{array}{cc}-P & -\frac{P^{2}}{4} \\ 1 & 0\end{array}\right]$ is not diagonalisable.
- In this case it turns out (HW)

Second-order linear homogeneous ODE with constant-coefficients (repeated roots)

- If $D^{2}+P D+Q=(D-\lambda)^{2}$ then λ is necessarily real and $P^{2}=4 Q, \lambda=-\frac{P}{2}$.
- In this case Taking $x=y^{\prime}, x^{\prime}=-P x-Q y$, then unfortunately the matrix $A=\left[\begin{array}{cc}-P & -\frac{P^{2}}{4} \\ 1 & 0\end{array}\right]$ is not diagonalisable.
- In this case it turns out (HW) one can bring A to

Second-order linear homogeneous ODE with constant-coefficients (repeated roots)

- If $D^{2}+P D+Q=(D-\lambda)^{2}$ then λ is necessarily real and $P^{2}=4 Q, \lambda=-\frac{P}{2}$.
- In this case Taking $x=y^{\prime}, x^{\prime}=-P x-Q y$, then unfortunately the matrix $A=\left[\begin{array}{cc}-P & -\frac{P^{2}}{4} \\ 1 & 0\end{array}\right]$ is not diagonalisable.
- In this case it turns out (HW) one can bring A to an upper-triangular form.

Second-order linear homogeneous ODE with constant-coefficients (repeated roots)

- If $D^{2}+P D+Q=(D-\lambda)^{2}$ then λ is necessarily real and $P^{2}=4 Q, \lambda=-\frac{P}{2}$.
- In this case Taking $x=y^{\prime}, x^{\prime}=-P x-Q y$, then unfortunately the matrix $A=\left[\begin{array}{cc}-P & -\frac{P^{2}}{4} \\ 1 & 0\end{array}\right]$ is not diagonalisable.
- In this case it turns out (HW) one can bring A to an upper-triangular form. One can still prove (HW)

Second-order linear homogeneous ODE with constant-coefficients (repeated roots)

- If $D^{2}+P D+Q=(D-\lambda)^{2}$ then λ is necessarily real and $P^{2}=4 Q, \lambda=-\frac{P}{2}$.
- In this case Taking $x=y^{\prime}, x^{\prime}=-P x-Q y$, then unfortunately the matrix $A=\left[\begin{array}{cc}-P & -\frac{P^{2}}{4} \\ 1 & 0\end{array}\right]$ is not diagonalisable.
- In this case it turns out (HW) one can bring A to an upper-triangular form. One can still prove (HW) that one has a

Second-order linear homogeneous ODE with constant-coefficients (repeated roots)

- If $D^{2}+P D+Q=(D-\lambda)^{2}$ then λ is necessarily real and $P^{2}=4 Q, \lambda=-\frac{P}{2}$.
- In this case Taking $x=y^{\prime}, x^{\prime}=-P x-Q y$, then unfortunately the matrix $A=\left[\begin{array}{cc}-P & -\frac{P^{2}}{4} \\ 1 & 0\end{array}\right]$ is not diagonalisable.
- In this case it turns out (HW) one can bring A to an upper-triangular form. One can still prove (HW) that one has a two-dimensional real vector space

Second-order linear homogeneous ODE with constant-coefficients (repeated roots)

- If $D^{2}+P D+Q=(D-\lambda)^{2}$ then λ is necessarily real and $P^{2}=4 Q, \lambda=-\frac{P}{2}$.
- In this case Taking $x=y^{\prime}, x^{\prime}=-P x-Q y$, then unfortunately the matrix $A=\left[\begin{array}{cc}-P & -\frac{P^{2}}{4} \\ 1 & 0\end{array}\right]$ is not diagonalisable.
- In this case it turns out (HW) one can bring A to an upper-triangular form. One can still prove (HW) that one has a two-dimensional real vector space worth of solutions.

Second-order linear homogeneous ODE with constant-coefficients (repeated roots)

- If $D^{2}+P D+Q=(D-\lambda)^{2}$ then λ is necessarily real and $P^{2}=4 Q, \lambda=-\frac{P}{2}$.
- In this case Taking $x=y^{\prime}, x^{\prime}=-P x-Q y$, then unfortunately the matrix $A=\left[\begin{array}{cc}-P & -\frac{P^{2}}{4} \\ 1 & 0\end{array}\right]$ is not diagonalisable.
- In this case it turns out (HW) one can bring A to an upper-triangular form. One can still prove (HW) that one has a two-dimensional real vector space worth of solutions.
- Consider $y=e^{\lambda t}(A+B t)$.

Second-order linear homogeneous ODE with constant-coefficients (repeated roots)

- If $D^{2}+P D+Q=(D-\lambda)^{2}$ then λ is necessarily real and $P^{2}=4 Q, \lambda=-\frac{P}{2}$.
- In this case Taking $x=y^{\prime}, x^{\prime}=-P x-Q y$, then unfortunately the matrix $A=\left[\begin{array}{cc}-P & -\frac{P^{2}}{4} \\ 1 & 0\end{array}\right]$ is not diagonalisable.
- In this case it turns out (HW) one can bring A to an upper-triangular form. One can still prove (HW) that one has a two-dimensional real vector space worth of solutions.
- Consider $y=e^{\lambda t}(A+B t)$. Clearly this is two-dimensional

Second-order linear homogeneous ODE with constant-coefficients (repeated roots)

- If $D^{2}+P D+Q=(D-\lambda)^{2}$ then λ is necessarily real and $P^{2}=4 Q, \lambda=-\frac{P}{2}$.
- In this case Taking $x=y^{\prime}, x^{\prime}=-P x-Q y$, then unfortunately the matrix $A=\left[\begin{array}{cc}-P & -\frac{P^{2}}{4} \\ 1 & 0\end{array}\right]$ is not diagonalisable.
- In this case it turns out (HW) one can bring A to an upper-triangular form. One can still prove (HW) that one has a two-dimensional real vector space worth of solutions.
- Consider $y=e^{\lambda t}(A+B t)$. Clearly this is two-dimensional and a solution.

Second-order linear homogeneous ODE with constant-coefficients (repeated roots)

- If $D^{2}+P D+Q=(D-\lambda)^{2}$ then λ is necessarily real and $P^{2}=4 Q, \lambda=-\frac{P}{2}$.
- In this case Taking $x=y^{\prime}, x^{\prime}=-P x-Q y$, then unfortunately the matrix $A=\left[\begin{array}{cc}-P & -\frac{P^{2}}{4} \\ 1 & 0\end{array}\right]$ is not diagonalisable.
- In this case it turns out (HW) one can bring A to an upper-triangular form. One can still prove (HW) that one has a two-dimensional real vector space worth of solutions.
- Consider $y=e^{\lambda t}(A+B t)$. Clearly this is two-dimensional and a solution. Thus it is the solution.
- Consider $y^{\prime}+P(x) y=0$.
- Consider $y^{\prime}+P(x) y=0$.
- Theorem:

First-order linear homogeneous ODE

- Consider $y^{\prime}+P(x) y=0$.
- Theorem: Let $P:(a, b) \rightarrow \mathbb{R}$ be continuous.
- Consider $y^{\prime}+P(x) y=0$.
- Theorem: Let $P:(a, b) \rightarrow \mathbb{R}$ be continuous. Let $x_{0} \in(a, b)$.
- Consider $y^{\prime}+P(x) y=0$.
- Theorem: Let $P:(a, b) \rightarrow \mathbb{R}$ be continuous. Let $x_{0} \in(a, b)$. There exists a
- Consider $y^{\prime}+P(x) y=0$.
- Theorem: Let $P:(a, b) \rightarrow \mathbb{R}$ be continuous. Let $x_{0} \in(a, b)$. There exists a unique differentiable function $y:(a, b) \rightarrow \mathbb{R}$
- Consider $y^{\prime}+P(x) y=0$.
- Theorem: Let $P:(a, b) \rightarrow \mathbb{R}$ be continuous. Let $x_{0} \in(a, b)$. There exists a unique differentiable function $y:(a, b) \rightarrow \mathbb{R}$ satisfying the ODE above
- Consider $y^{\prime}+P(x) y=0$.
- Theorem: Let $P:(a, b) \rightarrow \mathbb{R}$ be continuous. Let $x_{0} \in(a, b)$. There exists a unique differentiable function $y:(a, b) \rightarrow \mathbb{R}$ satisfying the ODE above and $y\left(x_{0}\right)=A$ where
- Consider $y^{\prime}+P(x) y=0$.
- Theorem: Let $P:(a, b) \rightarrow \mathbb{R}$ be continuous. Let $x_{0} \in(a, b)$. There exists a unique differentiable function $y:(a, b) \rightarrow \mathbb{R}$ satisfying the ODE above and $y\left(x_{0}\right)=A$ where $A \in \mathbb{R}$ is given.
- Consider $y^{\prime}+P(x) y=0$.
- Theorem: Let $P:(a, b) \rightarrow \mathbb{R}$ be continuous. Let $x_{0} \in(a, b)$. There exists a unique differentiable function $y:(a, b) \rightarrow \mathbb{R}$ satisfying the ODE above and $y\left(x_{0}\right)=A$ where $A \in \mathbb{R}$ is
given. Moreover, $y(x)=A e^{-\int_{x_{0}} P(t) d t}$.
- Consider $y^{\prime}+P(x) y=0$.
- Theorem: Let $P:(a, b) \rightarrow \mathbb{R}$ be continuous. Let $x_{0} \in(a, b)$. There exists a unique differentiable function $y:(a, b) \rightarrow \mathbb{R}$ satisfying the ODE above and $y\left(x_{0}\right)=A$ where $A \in \mathbb{R}$ is
given. Moreover, $y(x)=A e^{-\int_{x_{0}} P(t) d t}$.
- Proof:
- Consider $y^{\prime}+P(x) y=0$.
- Theorem: Let $P:(a, b) \rightarrow \mathbb{R}$ be continuous. Let $x_{0} \in(a, b)$. There exists a unique differentiable function $y:(a, b) \rightarrow \mathbb{R}$ satisfying the ODE above and $y\left(x_{0}\right)=A$ where $A \in \mathbb{R}$ is
given. Moreover, $y(x)=A e^{-\int_{x_{0}} P(t) d t}$.
- Proof: Let $g(x)=\int_{x_{0}}^{x} P(t) d t$.
- Consider $y^{\prime}+P(x) y=0$.
- Theorem: Let $P:(a, b) \rightarrow \mathbb{R}$ be continuous. Let $x_{0} \in(a, b)$. There exists a unique differentiable function $y:(a, b) \rightarrow \mathbb{R}$ satisfying the ODE above and $y\left(x_{0}\right)=A$ where $A \in \mathbb{R}$ is
given. Moreover, $y(x)=A e^{-\int_{x_{0}} P(t) d t}$.
- Proof: Let $g(x)=\int_{x_{0}}^{x} P(t) d t$. By the FTC
- Consider $y^{\prime}+P(x) y=0$.
- Theorem: Let $P:(a, b) \rightarrow \mathbb{R}$ be continuous. Let $x_{0} \in(a, b)$. There exists a unique differentiable function $y:(a, b) \rightarrow \mathbb{R}$ satisfying the ODE above and $y\left(x_{0}\right)=A$ where $A \in \mathbb{R}$ is
given. Moreover, $y(x)=A e^{-\int_{x_{0}} P(t) d t}$.
- Proof: Let $g(x)=\int_{x_{0}}^{x} P(t) d t$. By the FTC g is differentiable on (a, b)
- Consider $y^{\prime}+P(x) y=0$.
- Theorem: Let $P:(a, b) \rightarrow \mathbb{R}$ be continuous. Let $x_{0} \in(a, b)$. There exists a unique differentiable function $y:(a, b) \rightarrow \mathbb{R}$ satisfying the ODE above and $y\left(x_{0}\right)=A$ where $A \in \mathbb{R}$ is
given. Moreover, $y(x)=A e^{-\int_{x_{0}} P(t) d t}$.
- Proof: Let $g(x)=\int_{x_{0}}^{x} P(t) d t$. By the FTC g is differentiable on (a, b) and $g^{\prime}(x)=P(x)$.
- Consider $y^{\prime}+P(x) y=0$.
- Theorem: Let $P:(a, b) \rightarrow \mathbb{R}$ be continuous. Let $x_{0} \in(a, b)$. There exists a unique differentiable function $y:(a, b) \rightarrow \mathbb{R}$ satisfying the ODE above and $y\left(x_{0}\right)=A$ where $A \in \mathbb{R}$ is
given. Moreover, $y(x)=A e^{-\int_{x_{0}} P(t) d t}$.
- Proof: Let $g(x)=\int_{x_{0}}^{x} P(t) d t$. By the FTC g is differentiable on (a, b) and $g^{\prime}(x)=P(x)$. Note that
- Consider $y^{\prime}+P(x) y=0$.
- Theorem: Let $P:(a, b) \rightarrow \mathbb{R}$ be continuous. Let $x_{0} \in(a, b)$. There exists a unique differentiable function $y:(a, b) \rightarrow \mathbb{R}$ satisfying the ODE above and $y\left(x_{0}\right)=A$ where $A \in \mathbb{R}$ is given. Moreover, $y(x)=A e^{-\int_{x_{0}} P(t) d t}$.
- Proof: Let $g(x)=\int_{x_{0}}^{x} P(t) d t$. By the FTC g is differentiable on (a, b) and $g^{\prime}(x)=P(x)$. Note that $\left(y e^{g(x)}\right)^{\prime} e^{-g(x)}=y^{\prime}+y g^{\prime}(x)=y^{\prime}+P(x) y=0$.
- Consider $y^{\prime}+P(x) y=0$.
- Theorem: Let $P:(a, b) \rightarrow \mathbb{R}$ be continuous. Let $x_{0} \in(a, b)$. There exists a unique differentiable function $y:(a, b) \rightarrow \mathbb{R}$ satisfying the ODE above and $y\left(x_{0}\right)=A$ where $A \in \mathbb{R}$ is
given. Moreover, $y(x)=A e^{-\int_{x_{0}} P(t) d t}$.
- Proof: Let $g(x)=\int_{x_{0}}^{x} P(t) d t$. By the FTC g is differentiable on (a, b) and $g^{\prime}(x)=P(x)$. Note that $\left(y e^{g(x)}\right)^{\prime} e^{-g(x)}=y^{\prime}+y g^{\prime}(x)=y^{\prime}+P(x) y=0$. Hence $y e^{g(x)}$
is a constant.
- Consider $y^{\prime}+P(x) y=0$.
- Theorem: Let $P:(a, b) \rightarrow \mathbb{R}$ be continuous. Let $x_{0} \in(a, b)$. There exists a unique differentiable function $y:(a, b) \rightarrow \mathbb{R}$ satisfying the ODE above and $y\left(x_{0}\right)=A$ where $A \in \mathbb{R}$ is given. Moreover, $y(x)=A e^{-\int_{x_{0}}^{x} P(t) d t}$.
- Proof: Let $g(x)=\int_{x_{0}}^{x} P(t) d t$. By the FTC g is differentiable on (a, b) and $g^{\prime}(x)=P(x)$. Note that $\left(y e^{g(x)}\right)^{\prime} e^{-g(x)}=y^{\prime}+y g^{\prime}(x)=y^{\prime}+P(x) y=0$. Hence $y e^{g(x)}$
is a constant. Thus $y=A e^{-\int_{x_{0}}^{x} P(t) d t}$.

First-order linear inhomogeneous ODE

- Consider $y^{\prime}+P(x) y=Q(x)$ where

First-order linear inhomogeneous ODE

- Consider $y^{\prime}+P(x) y=Q(x)$ where $P, Q:(a, b) \rightarrow \mathbb{R}$ are continuous.

First-order linear inhomogeneous ODE

- Consider $y^{\prime}+P(x) y=Q(x)$ where $P, Q:(a, b) \rightarrow \mathbb{R}$ are continuous. The aim is to

First-order linear inhomogeneous ODE

- Consider $y^{\prime}+P(x) y=Q(x)$ where $P, Q:(a, b) \rightarrow \mathbb{R}$ are continuous. The aim is to find a diff. function $y:(a, b) \rightarrow \mathbb{R}$
- Consider $y^{\prime}+P(x) y=Q(x)$ where $P, Q:(a, b) \rightarrow \mathbb{R}$ are continuous. The aim is to find a diff. function $y:(a, b) \rightarrow \mathbb{R}$ such that $y\left(x_{0}\right)=A$.
- Consider $y^{\prime}+P(x) y=Q(x)$ where $P, Q:(a, b) \rightarrow \mathbb{R}$ are continuous. The aim is to find a diff. function $y:(a, b) \rightarrow \mathbb{R}$ such that $y\left(x_{0}\right)=A$.
- If there are
- Consider $y^{\prime}+P(x) y=Q(x)$ where $P, Q:(a, b) \rightarrow \mathbb{R}$ are continuous. The aim is to find a diff. function $y:(a, b) \rightarrow \mathbb{R}$ such that $y\left(x_{0}\right)=A$.
- If there are two solutions y_{1}, y_{2},
- Consider $y^{\prime}+P(x) y=Q(x)$ where $P, Q:(a, b) \rightarrow \mathbb{R}$ are continuous. The aim is to find a diff. function $y:(a, b) \rightarrow \mathbb{R}$ such that $y\left(x_{0}\right)=A$.
- If there are two solutions y_{1}, y_{2}, then $y_{1}-y_{2}$ satisfies
- Consider $y^{\prime}+P(x) y=Q(x)$ where $P, Q:(a, b) \rightarrow \mathbb{R}$ are continuous. The aim is to find a diff. function $y:(a, b) \rightarrow \mathbb{R}$ such that $y\left(x_{0}\right)=A$.
- If there are two solutions y_{1}, y_{2}, then $y_{1}-y_{2}$ satisfies the homogeneous equation

First-order linear inhomogeneous ODE

- Consider $y^{\prime}+P(x) y=Q(x)$ where $P, Q:(a, b) \rightarrow \mathbb{R}$ are continuous. The aim is to find a diff. function $y:(a, b) \rightarrow \mathbb{R}$ such that $y\left(x_{0}\right)=A$.
- If there are two solutions y_{1}, y_{2}, then $y_{1}-y_{2}$ satisfies the homogeneous equation with $y_{1}\left(x_{0}\right)-y_{2}\left(x_{0}\right)=0$.

First-order linear inhomogeneous ODE

- Consider $y^{\prime}+P(x) y=Q(x)$ where $P, Q:(a, b) \rightarrow \mathbb{R}$ are continuous. The aim is to find a diff. function $y:(a, b) \rightarrow \mathbb{R}$ such that $y\left(x_{0}\right)=A$.
- If there are two solutions y_{1}, y_{2}, then $y_{1}-y_{2}$ satisfies the homogeneous equation with $y_{1}\left(x_{0}\right)-y_{2}\left(x_{0}\right)=0$. Hence, there is a
- Consider $y^{\prime}+P(x) y=Q(x)$ where $P, Q:(a, b) \rightarrow \mathbb{R}$ are continuous. The aim is to find a diff. function $y:(a, b) \rightarrow \mathbb{R}$ such that $y\left(x_{0}\right)=A$.
- If there are two solutions y_{1}, y_{2}, then $y_{1}-y_{2}$ satisfies the homogeneous equation with $y_{1}\left(x_{0}\right)-y_{2}\left(x_{0}\right)=0$. Hence, there is a unique solution.
- Consider $y^{\prime}+P(x) y=Q(x)$ where $P, Q:(a, b) \rightarrow \mathbb{R}$ are continuous. The aim is to find a diff. function $y:(a, b) \rightarrow \mathbb{R}$ such that $y\left(x_{0}\right)=A$.
- If there are two solutions y_{1}, y_{2}, then $y_{1}-y_{2}$ satisfies the homogeneous equation with $y_{1}\left(x_{0}\right)-y_{2}\left(x_{0}\right)=0$. Hence, there is a unique solution.
- Moreover,

First-order linear inhomogeneous ODE

- Consider $y^{\prime}+P(x) y=Q(x)$ where $P, Q:(a, b) \rightarrow \mathbb{R}$ are continuous. The aim is to find a diff. function $y:(a, b) \rightarrow \mathbb{R}$ such that $y\left(x_{0}\right)=A$.
- If there are two solutions y_{1}, y_{2}, then $y_{1}-y_{2}$ satisfies the homogeneous equation with $y_{1}\left(x_{0}\right)-y_{2}\left(x_{0}\right)=0$. Hence, there is a unique solution.
- Moreover, even without the initial conditon

First-order linear inhomogeneous ODE

- Consider $y^{\prime}+P(x) y=Q(x)$ where $P, Q:(a, b) \rightarrow \mathbb{R}$ are continuous. The aim is to find a diff. function $y:(a, b) \rightarrow \mathbb{R}$ such that $y\left(x_{0}\right)=A$.
- If there are two solutions y_{1}, y_{2}, then $y_{1}-y_{2}$ satisfies the homogeneous equation with $y_{1}\left(x_{0}\right)-y_{2}\left(x_{0}\right)=0$. Hence, there is a unique solution.
- Moreover, even without the initial conditon any solution of
- Consider $y^{\prime}+P(x) y=Q(x)$ where $P, Q:(a, b) \rightarrow \mathbb{R}$ are continuous. The aim is to find a diff. function $y:(a, b) \rightarrow \mathbb{R}$ such that $y\left(x_{0}\right)=A$.
- If there are two solutions y_{1}, y_{2}, then $y_{1}-y_{2}$ satisfies the homogeneous equation with $y_{1}\left(x_{0}\right)-y_{2}\left(x_{0}\right)=0$. Hence, there is a unique solution.
- Moreover, even without the initial conditon any solution of the inhomogeneous equation is
- Consider $y^{\prime}+P(x) y=Q(x)$ where $P, Q:(a, b) \rightarrow \mathbb{R}$ are continuous. The aim is to find a diff. function $y:(a, b) \rightarrow \mathbb{R}$ such that $y\left(x_{0}\right)=A$.
- If there are two solutions y_{1}, y_{2}, then $y_{1}-y_{2}$ satisfies the homogeneous equation with $y_{1}\left(x_{0}\right)-y_{2}\left(x_{0}\right)=0$. Hence, there is a unique solution.
- Moreover, even without the initial conditon any solution of the inhomogeneous equation is a particular solution of the inhomogeneous equation
- Consider $y^{\prime}+P(x) y=Q(x)$ where $P, Q:(a, b) \rightarrow \mathbb{R}$ are continuous. The aim is to find a diff. function $y:(a, b) \rightarrow \mathbb{R}$ such that $y\left(x_{0}\right)=A$.
- If there are two solutions y_{1}, y_{2}, then $y_{1}-y_{2}$ satisfies the homogeneous equation with $y_{1}\left(x_{0}\right)-y_{2}\left(x_{0}\right)=0$. Hence, there is a unique solution.
- Moreover, even without the initial conditon any solution of the inhomogeneous equation is a particular solution of the inhomogeneous equation plus a solution of the homogeneous one.
- Consider $y^{\prime}+P(x) y=Q(x)$ where $P, Q:(a, b) \rightarrow \mathbb{R}$ are continuous. The aim is to find a diff. function $y:(a, b) \rightarrow \mathbb{R}$ such that $y\left(x_{0}\right)=A$.
- If there are two solutions y_{1}, y_{2}, then $y_{1}-y_{2}$ satisfies the homogeneous equation with $y_{1}\left(x_{0}\right)-y_{2}\left(x_{0}\right)=0$. Hence, there is a unique solution.
- Moreover, even without the initial conditon any solution of the inhomogeneous equation is a particular solution of the inhomogeneous equation plus a solution of the homogeneous one.
- Let $g(x)=\int_{x_{0}}^{x} P(t) d t$ and
- Consider $y^{\prime}+P(x) y=Q(x)$ where $P, Q:(a, b) \rightarrow \mathbb{R}$ are continuous. The aim is to find a diff. function $y:(a, b) \rightarrow \mathbb{R}$ such that $y\left(x_{0}\right)=A$.
- If there are two solutions y_{1}, y_{2}, then $y_{1}-y_{2}$ satisfies the homogeneous equation with $y_{1}\left(x_{0}\right)-y_{2}\left(x_{0}\right)=0$. Hence, there is a unique solution.
- Moreover, even without the initial conditon any solution of the inhomogeneous equation is a particular solution of the inhomogeneous equation plus a solution of the homogeneous one.
- Let $g(x)=\int_{x_{0}}^{x} P(t) d t$ and $h(x)=\int_{x_{0}}^{x} Q(t) e^{g(t)} d t$.
- Consider $y^{\prime}+P(x) y=Q(x)$ where $P, Q:(a, b) \rightarrow \mathbb{R}$ are continuous. The aim is to find a diff. function $y:(a, b) \rightarrow \mathbb{R}$ such that $y\left(x_{0}\right)=A$.
- If there are two solutions y_{1}, y_{2}, then $y_{1}-y_{2}$ satisfies the homogeneous equation with $y_{1}\left(x_{0}\right)-y_{2}\left(x_{0}\right)=0$. Hence, there is a unique solution.
- Moreover, even without the initial conditon any solution of the inhomogeneous equation is a particular solution of the inhomogeneous equation plus a solution of the homogeneous one.
- Let $g(x)=\int_{x_{0}}^{x} P(t) d t$ and $h(x)=\int_{x_{0}}^{x} Q(t) e^{g(t)} d t$. Then $\left(y e^{g(x)}\right)^{\prime} e^{-g(x)}=Q(x)$. Hence
- Consider $y^{\prime}+P(x) y=Q(x)$ where $P, Q:(a, b) \rightarrow \mathbb{R}$ are continuous. The aim is to find a diff. function $y:(a, b) \rightarrow \mathbb{R}$ such that $y\left(x_{0}\right)=A$.
- If there are two solutions y_{1}, y_{2}, then $y_{1}-y_{2}$ satisfies the homogeneous equation with $y_{1}\left(x_{0}\right)-y_{2}\left(x_{0}\right)=0$. Hence, there is a unique solution.
- Moreover, even without the initial conditon any solution of the inhomogeneous equation is a particular solution of the inhomogeneous equation plus a solution of the homogeneous one.
- Let $g(x)=\int_{x_{0}}^{x} P(t) d t$ and $h(x)=\int_{x_{0}}^{x} Q(t) e^{g(t)} d t$. Then $\left(y e^{g(x)}\right)^{\prime} e^{-g(x)}=Q(x)$. Hence $\left(y e^{g(x)}\right)^{\prime}=h^{\prime}(x)$.
- Consider $y^{\prime}+P(x) y=Q(x)$ where $P, Q:(a, b) \rightarrow \mathbb{R}$ are continuous. The aim is to find a diff. function $y:(a, b) \rightarrow \mathbb{R}$ such that $y\left(x_{0}\right)=A$.
- If there are two solutions y_{1}, y_{2}, then $y_{1}-y_{2}$ satisfies the homogeneous equation with $y_{1}\left(x_{0}\right)-y_{2}\left(x_{0}\right)=0$. Hence, there is a unique solution.
- Moreover, even without the initial conditon any solution of the inhomogeneous equation is a particular solution of the inhomogeneous equation plus a solution of the homogeneous one.
- Let $g(x)=\int_{x_{0}}^{x} P(t) d t$ and $h(x)=\int_{x_{0}}^{x} Q(t) e^{g(t)} d t$. Then $\left(y e^{g(x)}\right)^{\prime} e^{-g(x)}=Q(x)$. Hence $\left(y e^{g(x)}\right)^{\prime}=h^{\prime}(x)$. Thus $y e^{g(x)}-h(x)$ is a constant.
- Consider $y^{\prime}+P(x) y=Q(x)$ where $P, Q:(a, b) \rightarrow \mathbb{R}$ are continuous. The aim is to find a diff. function $y:(a, b) \rightarrow \mathbb{R}$ such that $y\left(x_{0}\right)=A$.
- If there are two solutions y_{1}, y_{2}, then $y_{1}-y_{2}$ satisfies the homogeneous equation with $y_{1}\left(x_{0}\right)-y_{2}\left(x_{0}\right)=0$. Hence, there is a unique solution.
- Moreover, even without the initial conditon any solution of the inhomogeneous equation is a particular solution of the inhomogeneous equation plus a solution of the homogeneous one.
- Let $g(x)=\int_{x_{0}}^{x} P(t) d t$ and $h(x)=\int_{x_{0}}^{x} Q(t) e^{g(t)} d t$. Then $\left(y e^{g(x)}\right)^{\prime} e^{-g(x)}=Q(x)$. Hence $\left(y e^{g(x)}\right)^{\prime}=h^{\prime}(x)$. Thus $y e^{g(x)}-h(x)$ is a constant. Therefore $y=h(x) e^{-g(x)}+A e^{-g(x)}$.

An example of a separable nonlinear first-order ODE

An example of a separable nonlinear first-order ODE

- An ODE of the form

An example of a separable nonlinear first-order ODE

- An ODE of the form $y^{\prime}(x)=g(y) f(x)$ is called

An example of a separable nonlinear first-order ODE

- An ODE of the form $y^{\prime}(x)=g(y) f(x)$ is called separable and is

An example of a separable nonlinear first-order ODE

- An ODE of the form $y^{\prime}(x)=g(y) f(x)$ is called separable and is most commonly solved by

An example of a separable nonlinear first-order ODE

- An ODE of the form $y^{\prime}(x)=g(y) f(x)$ is called separable and is most commonly solved by $\int \frac{d y}{g(y)}=\int f(x) d x$ provided $g(y) \neq 0$.

An example of a separable nonlinear first-order ODE

- An ODE of the form $y^{\prime}(x)=g(y) f(x)$ is called separable and is most commonly solved by $\int \frac{d y}{g(y)}=\int f(x) d x$ provided $g(y) \neq 0$. More rigorously,

An example of a separable nonlinear first-order ODE

- An ODE of the form $y^{\prime}(x)=g(y) f(x)$ is called separable and is most commonly solved by $\int \frac{d y}{g(y)}=\int f(x) d x$ provided $g(y) \neq 0$. More rigorously, one uses FTC.

An example of a separable nonlinear first-order ODE

- An ODE of the form $y^{\prime}(x)=g(y) f(x)$ is called separable and is most commonly solved by $\int \frac{d y}{g(y)}=\int f(x) d x$ provided $g(y) \neq 0$. More rigorously, one uses FTC.
- For instance,

An example of a separable nonlinear first-order ODE

- An ODE of the form $y^{\prime}(x)=g(y) f(x)$ is called separable and is most commonly solved by $\int \frac{d y}{g(y)}=\int f(x) d x$ provided $g(y) \neq 0$. More rigorously, one uses FTC.
- For instance, consider the logistic equation

An example of a separable nonlinear first-order ODE

- An ODE of the form $y^{\prime}(x)=g(y) f(x)$ is called separable and is most commonly solved by $\int \frac{d y}{g(y)}=\int f(x) d x$ provided $g(y) \neq 0$. More rigorously, one uses FTC.
- For instance, consider the logistic equation $N^{\prime}=k N(M-N)$ for

An example of a separable nonlinear first-order ODE

- An ODE of the form $y^{\prime}(x)=g(y) f(x)$ is called separable and is most commonly solved by $\int \frac{d y}{g(y)}=\int f(x) d x$ provided $g(y) \neq 0$. More rigorously, one uses FTC.
- For instance, consider the logistic equation $N^{\prime}=k N(M-N)$ for modelling constrained population growth.

An example of a separable nonlinear first-order ODE

- An ODE of the form $y^{\prime}(x)=g(y) f(x)$ is called separable and is most commonly solved by $\int \frac{d y}{g(y)}=\int f(x) d x$ provided $g(y) \neq 0$. More rigorously, one uses FTC.
- For instance, consider the logistic equation $N^{\prime}=k N(M-N)$ for modelling constrained population growth.
- If $0<N_{0}<M$,

An example of a separable nonlinear first-order ODE

- An ODE of the form $y^{\prime}(x)=g(y) f(x)$ is called separable and is most commonly solved by $\int \frac{d y}{g(y)}=\int f(x) d x$ provided $g(y) \neq 0$. More rigorously, one uses FTC.
- For instance, consider the logistic equation $N^{\prime}=k N(M-N)$ for modelling constrained population growth.
- If $0<N_{0}<M, \frac{d N}{N(M-N)}=k t+C$ and hence

An example of a separable nonlinear first-order ODE

- An ODE of the form $y^{\prime}(x)=g(y) f(x)$ is called separable and is most commonly solved by $\int \frac{d y}{g(y)}=\int f(x) d x$ provided $g(y) \neq 0$. More rigorously, one uses FTC.
- For instance, consider the logistic equation $N^{\prime}=k N(M-N)$ for modelling constrained population growth.
- If $0<N_{0}<M, \frac{d N}{N(M-N)}=k t+C$ and hence $\ln \left(\frac{N}{M-N}\right)=M(k t+C)$ for short times.

An example of a separable nonlinear first-order ODE

- An ODE of the form $y^{\prime}(x)=g(y) f(x)$ is called separable and is most commonly solved by $\int \frac{d y}{g(y)}=\int f(x) d x$ provided $g(y) \neq 0$. More rigorously, one uses FTC.
- For instance, consider the logistic equation $N^{\prime}=k N(M-N)$ for modelling constrained population growth.
- If $0<N_{0}<M, \frac{d N}{N(M-N)}=k t+C$ and hence $\ln \left(\frac{N}{M-N}\right)=M(k t+C)$ for short times.
- Thus $N=\frac{M A e^{M k t}}{1+A e^{M k t}}$

An example of a separable nonlinear first-order ODE

- An ODE of the form $y^{\prime}(x)=g(y) f(x)$ is called separable and is most commonly solved by $\int \frac{d y}{g(y)}=\int f(x) d x$ provided $g(y) \neq 0$. More rigorously, one uses FTC.
- For instance, consider the logistic equation $N^{\prime}=k N(M-N)$ for modelling constrained population growth.
- If $0<N_{0}<M, \frac{d N}{N(M-N)}=k t+C$ and hence $\ln \left(\frac{N}{M-N}\right)=M(k t+C)$ for short times.
- Thus $N=\frac{M A e^{M k t}}{1+A e^{M k t}}$ potentially only for short times.

An example of a separable nonlinear first-order ODE

- An ODE of the form $y^{\prime}(x)=g(y) f(x)$ is called separable and is most commonly solved by $\int \frac{d y}{g(y)}=\int f(x) d x$ provided $g(y) \neq 0$. More rigorously, one uses FTC.
- For instance, consider the logistic equation $N^{\prime}=k N(M-N)$ for modelling constrained population growth.
- If $0<N_{0}<M, \frac{d N}{N(M-N)}=k t+C$ and hence $\ln \left(\frac{N}{M-N}\right)=M(k t+C)$ for short times.
- Thus $N=\frac{M A e^{M k t}}{1+A e^{M k t}}$ potentially only for short times. However, the formula shows

An example of a separable nonlinear first-order ODE

- An ODE of the form $y^{\prime}(x)=g(y) f(x)$ is called separable and is most commonly solved by $\int \frac{d y}{g(y)}=\int f(x) d x$ provided $g(y) \neq 0$. More rigorously, one uses FTC.
- For instance, consider the logistic equation $N^{\prime}=k N(M-N)$ for modelling constrained population growth.
- If $0<N_{0}<M, \frac{d N}{N(M-N)}=k t+C$ and hence $\ln \left(\frac{N}{M-N}\right)=M(k t+C)$ for short times.
- Thus $N=\frac{M A e^{M k t}}{1+A e^{M k t}}$ potentially only for short times. However, the formula shows that the solution is defined

An example of a separable nonlinear first-order ODE

- An ODE of the form $y^{\prime}(x)=g(y) f(x)$ is called separable and is most commonly solved by $\int \frac{d y}{g(y)}=\int f(x) d x$ provided $g(y) \neq 0$. More rigorously, one uses FTC.
- For instance, consider the logistic equation $N^{\prime}=k N(M-N)$ for modelling constrained population growth.
- If $0<N_{0}<M, \frac{d N}{N(M-N)}=k t+C$ and hence $\ln \left(\frac{N}{M-N}\right)=M(k t+C)$ for short times.
- Thus $N=\frac{M A e^{M k t}}{1+A e^{M k t}}$ potentially only for short times. However, the formula shows that the solution is defined for all $t \in \mathbb{R}$ if $A>0$ and

An example of a separable nonlinear first-order ODE

- An ODE of the form $y^{\prime}(x)=g(y) f(x)$ is called separable and is most commonly solved by $\int \frac{d y}{g(y)}=\int f(x) d x$ provided $g(y) \neq 0$. More rigorously, one uses FTC.
- For instance, consider the logistic equation $N^{\prime}=k N(M-N)$ for modelling constrained population growth.
- If $0<N_{0}<M, \frac{d N}{N(M-N)}=k t+C$ and hence $\ln \left(\frac{N}{M-N}\right)=M(k t+C)$ for short times.
- Thus $N=\frac{M A e^{M k t}}{1+A e^{M k t}}$ potentially only for short times. However, the formula shows that the solution is defined for all $t \in \mathbb{R}$ if $A>0$ and as $t \rightarrow \infty$

An example of a separable nonlinear first-order ODE

- An ODE of the form $y^{\prime}(x)=g(y) f(x)$ is called separable and is most commonly solved by $\int \frac{d y}{g(y)}=\int f(x) d x$ provided $g(y) \neq 0$. More rigorously, one uses FTC.
- For instance, consider the logistic equation $N^{\prime}=k N(M-N)$ for modelling constrained population growth.
- If $0<N_{0}<M, \frac{d N}{N(M-N)}=k t+C$ and hence $\ln \left(\frac{N}{M-N}\right)=M(k t+C)$ for short times.
- Thus $N=\frac{M A e^{M k t}}{1+A e^{M k t}}$ potentially only for short times. However, the formula shows that the solution is defined for all $t \in \mathbb{R}$ if $A>0$ and as $t \rightarrow \infty N \rightarrow M$.

An example of a separable nonlinear first-order ODE

- An ODE of the form $y^{\prime}(x)=g(y) f(x)$ is called separable and is most commonly solved by $\int \frac{d y}{g(y)}=\int f(x) d x$ provided $g(y) \neq 0$. More rigorously, one uses FTC.
- For instance, consider the logistic equation $N^{\prime}=k N(M-N)$ for modelling constrained population growth.
- If $0<N_{0}<M, \frac{d N}{N(M-N)}=k t+C$ and hence $\ln \left(\frac{N}{M-N}\right)=M(k t+C)$ for short times.
- Thus $N=\frac{M A e^{M k t}}{1+A e^{M k t}}$ potentially only for short times. However, the formula shows that the solution is defined for all $t \in \mathbb{R}$ if $A>0$ and as $t \rightarrow \infty N \rightarrow M$. One can prove a

An example of a separable nonlinear first-order ODE

- An ODE of the form $y^{\prime}(x)=g(y) f(x)$ is called separable and is most commonly solved by $\int \frac{d y}{g(y)}=\int f(x) d x$ provided $g(y) \neq 0$. More rigorously, one uses FTC.
- For instance, consider the logistic equation $N^{\prime}=k N(M-N)$ for modelling constrained population growth.
- If $0<N_{0}<M, \frac{d N}{N(M-N)}=k t+C$ and hence $\ln \left(\frac{N}{M-N}\right)=M(k t+C)$ for short times.
- Thus $N=\frac{M A e^{M k t}}{1+A e^{M k t}}$ potentially only for short times. However, the formula shows that the solution is defined for all $t \in \mathbb{R}$ if $A>0$ and as $t \rightarrow \infty N \rightarrow M$. One can prove a general uniqueness result

An example of a separable nonlinear first-order ODE

- An ODE of the form $y^{\prime}(x)=g(y) f(x)$ is called separable and is most commonly solved by $\int \frac{d y}{g(y)}=\int f(x) d x$ provided $g(y) \neq 0$. More rigorously, one uses FTC.
- For instance, consider the logistic equation $N^{\prime}=k N(M-N)$ for modelling constrained population growth.
- If $0<N_{0}<M, \frac{d N}{N(M-N)}=k t+C$ and hence $\ln \left(\frac{N}{M-N}\right)=M(k t+C)$ for short times.
- Thus $N=\frac{M A e^{M k t}}{1+A e^{M k t}}$ potentially only for short times. However, the formula shows that the solution is defined for all $t \in \mathbb{R}$ if $A>0$ and as $t \rightarrow \infty N \rightarrow M$. One can prove a general uniqueness result for solutions of

An example of a separable nonlinear first-order ODE

- An ODE of the form $y^{\prime}(x)=g(y) f(x)$ is called separable and is most commonly solved by $\int \frac{d y}{g(y)}=\int f(x) d x$ provided $g(y) \neq 0$. More rigorously, one uses FTC.
- For instance, consider the logistic equation $N^{\prime}=k N(M-N)$ for modelling constrained population growth.
- If $0<N_{0}<M, \frac{d N}{N(M-N)}=k t+C$ and hence $\ln \left(\frac{N}{M-N}\right)=M(k t+C)$ for short times.
- Thus $N=\frac{M A e^{M k t}}{1+A e^{M k t}}$ potentially only for short times. However, the formula shows that the solution is defined for all $t \in \mathbb{R}$ if $A>0$ and as $t \rightarrow \infty N \rightarrow M$. One can prove a general uniqueness result for solutions of $y^{\prime}=g(y) f(x)$ where

An example of a separable nonlinear first-order ODE

- An ODE of the form $y^{\prime}(x)=g(y) f(x)$ is called separable and is most commonly solved by $\int \frac{d y}{g(y)}=\int f(x) d x$ provided $g(y) \neq 0$. More rigorously, one uses FTC.
- For instance, consider the logistic equation $N^{\prime}=k N(M-N)$ for modelling constrained population growth.
- If $0<N_{0}<M, \frac{d N}{N(M-N)}=k t+C$ and hence $\ln \left(\frac{N}{M-N}\right)=M(k t+C)$ for short times.
- Thus $N=\frac{M A e^{M k t}}{1+A e^{M k t}}$ potentially only for short times. However, the formula shows that the solution is defined for all $t \in \mathbb{R}$ if $A>0$ and as $t \rightarrow \infty N \rightarrow M$. One can prove a general uniqueness result for solutions of $y^{\prime}=g(y) f(x)$ where f is continuous, and

An example of a separable nonlinear first-order ODE

- An ODE of the form $y^{\prime}(x)=g(y) f(x)$ is called separable and is most commonly solved by $\int \frac{d y}{g(y)}=\int f(x) d x$ provided $g(y) \neq 0$. More rigorously, one uses FTC.
- For instance, consider the logistic equation $N^{\prime}=k N(M-N)$ for modelling constrained population growth.
- If $0<N_{0}<M, \frac{d N}{N(M-N)}=k t+C$ and hence $\ln \left(\frac{N}{M-N}\right)=M(k t+C)$ for short times.
- Thus $N=\frac{M A e^{M k t}}{1+A e^{M k t}}$ potentially only for short times. However, the formula shows that the solution is defined for all $t \in \mathbb{R}$ if $A>0$ and as $t \rightarrow \infty N \rightarrow M$. One can prove a general uniqueness result for solutions of $y^{\prime}=g(y) f(x)$ where f is continuous, and g is differentiable and

An example of a separable nonlinear first-order ODE

- An ODE of the form $y^{\prime}(x)=g(y) f(x)$ is called separable and is most commonly solved by $\int \frac{d y}{g(y)}=\int f(x) d x$ provided $g(y) \neq 0$. More rigorously, one uses FTC.
- For instance, consider the logistic equation $N^{\prime}=k N(M-N)$ for modelling constrained population growth.
- If $0<N_{0}<M, \frac{d N}{N(M-N)}=k t+C$ and hence $\ln \left(\frac{N}{M-N}\right)=M(k t+C)$ for short times.
- Thus $N=\frac{M A e^{M k t}}{1+A e^{M k t}}$ potentially only for short times. However, the formula shows that the solution is defined for all $t \in \mathbb{R}$ if $A>0$ and as $t \rightarrow \infty N \rightarrow M$. One can prove a general uniqueness result for solutions of $y^{\prime}=g(y) f(x)$ where f is continuous, and g is differentiable and its derivative is continuous.

An example of a separable nonlinear first-order ODE

- An ODE of the form $y^{\prime}(x)=g(y) f(x)$ is called separable and is most commonly solved by $\int \frac{d y}{g(y)}=\int f(x) d x$ provided $g(y) \neq 0$. More rigorously, one uses FTC.
- For instance, consider the logistic equation $N^{\prime}=k N(M-N)$ for modelling constrained population growth.
- If $0<N_{0}<M, \frac{d N}{N(M-N)}=k t+C$ and hence $\ln \left(\frac{N}{M-N}\right)=M(k t+C)$ for short times.
- Thus $N=\frac{M A e^{M k t}}{1+A e^{M k t}}$ potentially only for short times. However, the formula shows that the solution is defined for all $t \in \mathbb{R}$ if $A>0$ and as $t \rightarrow \infty N \rightarrow M$. One can prove a general uniqueness result for solutions of $y^{\prime}=g(y) f(x)$ where f is continuous, and g is differentiable and its derivative is continuous. Thus this solution

An example of a separable nonlinear first-order ODE

- An ODE of the form $y^{\prime}(x)=g(y) f(x)$ is called separable and is most commonly solved by $\int \frac{d y}{g(y)}=\int f(x) d x$ provided $g(y) \neq 0$. More rigorously, one uses FTC.
- For instance, consider the logistic equation $N^{\prime}=k N(M-N)$ for modelling constrained population growth.
- If $0<N_{0}<M, \frac{d N}{N(M-N)}=k t+C$ and hence $\ln \left(\frac{N}{M-N}\right)=M(k t+C)$ for short times.
- Thus $N=\frac{M A e^{M k t}}{1+A e^{M k t}}$ potentially only for short times. However, the formula shows that the solution is defined for all $t \in \mathbb{R}$ if $A>0$ and as $t \rightarrow \infty N \rightarrow M$. One can prove a general uniqueness result for solutions of $y^{\prime}=g(y) f(x)$ where f is continuous, and g is differentiable and its derivative is continuous. Thus this solution is the solution.

An example of a separable nonlinear first-order ODE

- An ODE of the form $y^{\prime}(x)=g(y) f(x)$ is called separable and is most commonly solved by $\int \frac{d y}{g(y)}=\int f(x) d x$ provided $g(y) \neq 0$. More rigorously, one uses FTC.
- For instance, consider the logistic equation $N^{\prime}=k N(M-N)$ for modelling constrained population growth.
- If $0<N_{0}<M, \frac{d N}{N(M-N)}=k t+C$ and hence $\ln \left(\frac{N}{M-N}\right)=M(k t+C)$ for short times.
- Thus $N=\frac{M A e^{M k t}}{1+A e^{M k t}}$ potentially only for short times. However, the formula shows that the solution is defined for all $t \in \mathbb{R}$ if $A>0$ and as $t \rightarrow \infty N \rightarrow M$. One can prove a general uniqueness result for solutions of $y^{\prime}=g(y) f(x)$ where f is continuous, and g is differentiable and its derivative is continuous. Thus this solution is the solution.
- One can create

An example of a separable nonlinear first-order ODE

- An ODE of the form $y^{\prime}(x)=g(y) f(x)$ is called separable and is most commonly solved by $\int \frac{d y}{g(y)}=\int f(x) d x$ provided $g(y) \neq 0$. More rigorously, one uses FTC.
- For instance, consider the logistic equation $N^{\prime}=k N(M-N)$ for modelling constrained population growth.
- If $0<N_{0}<M, \frac{d N}{N(M-N)}=k t+C$ and hence $\ln \left(\frac{N}{M-N}\right)=M(k t+C)$ for short times.
- Thus $N=\frac{M A e^{M k t}}{1+A e^{M k t}}$ potentially only for short times. However, the formula shows that the solution is defined for all $t \in \mathbb{R}$ if $A>0$ and as $t \rightarrow \infty N \rightarrow M$. One can prove a general uniqueness result for solutions of $y^{\prime}=g(y) f(x)$ where f is continuous, and g is differentiable and its derivative is continuous. Thus this solution is the solution.
- One can create realistic population models

An example of a separable nonlinear first-order ODE

- An ODE of the form $y^{\prime}(x)=g(y) f(x)$ is called separable and is most commonly solved by $\int \frac{d y}{g(y)}=\int f(x) d x$ provided $g(y) \neq 0$. More rigorously, one uses FTC.
- For instance, consider the logistic equation $N^{\prime}=k N(M-N)$ for modelling constrained population growth.
- If $0<N_{0}<M, \frac{d N}{N(M-N)}=k t+C$ and hence $\ln \left(\frac{N}{M-N}\right)=M(k t+C)$ for short times.
- Thus $N=\frac{M A e^{M k t}}{1+A e^{M k t}}$ potentially only for short times. However, the formula shows that the solution is defined for all $t \in \mathbb{R}$ if $A>0$ and as $t \rightarrow \infty N \rightarrow M$. One can prove a general uniqueness result for solutions of $y^{\prime}=g(y) f(x)$ where f is continuous, and g is differentiable and its derivative is continuous. Thus this solution is the solution.
- One can create realistic population models of predator-prey and

An example of a separable nonlinear first-order ODE

- An ODE of the form $y^{\prime}(x)=g(y) f(x)$ is called separable and is most commonly solved by $\int \frac{d y}{g(y)}=\int f(x) d x$ provided $g(y) \neq 0$. More rigorously, one uses FTC.
- For instance, consider the logistic equation $N^{\prime}=k N(M-N)$ for modelling constrained population growth.
- If $0<N_{0}<M, \frac{d N}{N(M-N)}=k t+C$ and hence $\ln \left(\frac{N}{M-N}\right)=M(k t+C)$ for short times.
- Thus $N=\frac{M A e^{M k t}}{1+A e^{M k t}}$ potentially only for short times. However, the formula shows that the solution is defined for all $t \in \mathbb{R}$ if $A>0$ and as $t \rightarrow \infty N \rightarrow M$. One can prove a general uniqueness result for solutions of $y^{\prime}=g(y) f(x)$ where f is continuous, and g is differentiable and its derivative is continuous. Thus this solution is the solution.
- One can create realistic population models of predator-prey and other systems using

An example of a separable nonlinear first-order ODE

- An ODE of the form $y^{\prime}(x)=g(y) f(x)$ is called separable and is most commonly solved by $\int \frac{d y}{g(y)}=\int f(x) d x$ provided $g(y) \neq 0$. More rigorously, one uses FTC.
- For instance, consider the logistic equation $N^{\prime}=k N(M-N)$ for modelling constrained population growth.
- If $0<N_{0}<M, \frac{d N}{N(M-N)}=k t+C$ and hence $\ln \left(\frac{N}{M-N}\right)=M(k t+C)$ for short times.
- Thus $N=\frac{M A e^{M k t}}{1+A e^{M k t}}$ potentially only for short times. However, the formula shows that the solution is defined for all $t \in \mathbb{R}$ if $A>0$ and as $t \rightarrow \infty N \rightarrow M$. One can prove a general uniqueness result for solutions of $y^{\prime}=g(y) f(x)$ where f is continuous, and g is differentiable and its derivative is continuous. Thus this solution is the solution.
- One can create realistic population models of predator-prey and other systems using the logistic equation.

An example of a separable nonlinear first-order ODE

- An ODE of the form $y^{\prime}(x)=g(y) f(x)$ is called separable and is most commonly solved by $\int \frac{d y}{g(y)}=\int f(x) d x$ provided $g(y) \neq 0$. More rigorously, one uses FTC.
- For instance, consider the logistic equation $N^{\prime}=k N(M-N)$ for modelling constrained population growth.
- If $0<N_{0}<M, \frac{d N}{N(M-N)}=k t+C$ and hence $\ln \left(\frac{N}{M-N}\right)=M(k t+C)$ for short times.
- Thus $N=\frac{M A e^{M k t}}{1+A e^{M k t}}$ potentially only for short times. However, the formula shows that the solution is defined for all $t \in \mathbb{R}$ if $A>0$ and as $t \rightarrow \infty N \rightarrow M$. One can prove a general uniqueness result for solutions of $y^{\prime}=g(y) f(x)$ where f is continuous, and g is differentiable and its derivative is continuous. Thus this solution is the solution.
- One can create realistic population models of predator-prey and other systems using the logistic equation. Surprisingly, the logistic function

An example of a separable nonlinear first-order ODE

- An ODE of the form $y^{\prime}(x)=g(y) f(x)$ is called separable and is most commonly solved by $\int \frac{d y}{g(y)}=\int f(x) d x$ provided $g(y) \neq 0$. More rigorously, one uses FTC.
- For instance, consider the logistic equation $N^{\prime}=k N(M-N)$ for modelling constrained population growth.
- If $0<N_{0}<M, \frac{d N}{N(M-N)}=k t+C$ and hence $\ln \left(\frac{N}{M-N}\right)=M(k t+C)$ for short times.
- Thus $N=\frac{M A e^{M k t}}{1+A e^{M k t}}$ potentially only for short times. However, the formula shows that the solution is defined for all $t \in \mathbb{R}$ if $A>0$ and as $t \rightarrow \infty N \rightarrow M$. One can prove a general uniqueness result for solutions of $y^{\prime}=g(y) f(x)$ where f is continuous, and g is differentiable and its derivative is continuous. Thus this solution is the solution.
- One can create realistic population models of predator-prey and other systems using the logistic equation. Surprisingly, the logistic function makes an appearance in

An example of a separable nonlinear first-order ODE

- An ODE of the form $y^{\prime}(x)=g(y) f(x)$ is called separable and is most commonly solved by $\int \frac{d y}{g(y)}=\int f(x) d x$ provided $g(y) \neq 0$. More rigorously, one uses FTC.
- For instance, consider the logistic equation $N^{\prime}=k N(M-N)$ for modelling constrained population growth.
- If $0<N_{0}<M, \frac{d N}{N(M-N)}=k t+C$ and hence $\ln \left(\frac{N}{M-N}\right)=M(k t+C)$ for short times.
- Thus $N=\frac{M A e^{M k t}}{1+A e^{M k t}}$ potentially only for short times. However, the formula shows that the solution is defined for all $t \in \mathbb{R}$ if $A>0$ and as $t \rightarrow \infty N \rightarrow M$. One can prove a general uniqueness result for solutions of $y^{\prime}=g(y) f(x)$ where f is continuous, and g is differentiable and its derivative is continuous. Thus this solution is the solution.
- One can create realistic population models of predator-prey and other systems using the logistic equation. Surprisingly, the logistic function makes an appearance in machine learning as well.

Equilibria (Not for exams)

Equilibria (Not for exams)

- In general,

Equilibria (Not for exams)

- In general, if $y^{\prime}=g(y)$ is an ODE

Equilibria (Not for exams)

- In general, if $y^{\prime}=g(y)$ is an ODE where $g: \mathbb{R} \rightarrow \mathbb{R}$ is say

Equilibria (Not for exams)

- In general, if $y^{\prime}=g(y)$ is an ODE where $g: \mathbb{R} \rightarrow \mathbb{R}$ is say infinitely differentiable,

Equilibria (Not for exams)

- In general, if $y^{\prime}=g(y)$ is an ODE where $g: \mathbb{R} \rightarrow \mathbb{R}$ is say infinitely differentiable, the roots of g,

Equilibria (Not for exams)

- In general, if $y^{\prime}=g(y)$ is an ODE where $g: \mathbb{R} \rightarrow \mathbb{R}$ is say infinitely differentiable, the roots of g, i.e., y_{0} such that $g\left(y_{0}\right)=0$

Equilibria (Not for exams)

- In general, if $y^{\prime}=g(y)$ is an ODE where $g: \mathbb{R} \rightarrow \mathbb{R}$ is say infinitely differentiable, the roots of g, i.e., y_{0} such that $g\left(y_{0}\right)=0$ are called equilibrium points.

Equilibria (Not for exams)

- In general, if $y^{\prime}=g(y)$ is an ODE where $g: \mathbb{R} \rightarrow \mathbb{R}$ is say infinitely differentiable, the roots of g, i.e., y_{0} such that $g\left(y_{0}\right)=0$ are called equilibrium points.
- Indeed,

Equilibria (Not for exams)

- In general, if $y^{\prime}=g(y)$ is an ODE where $g: \mathbb{R} \rightarrow \mathbb{R}$ is say infinitely differentiable, the roots of g, i.e., y_{0} such that $g\left(y_{0}\right)=0$ are called equilibrium points.
- Indeed, if $y(0)=y_{0}$ for

Equilibria (Not for exams)

- In general, if $y^{\prime}=g(y)$ is an ODE where $g: \mathbb{R} \rightarrow \mathbb{R}$ is say infinitely differentiable, the roots of g, i.e., y_{0} such that $g\left(y_{0}\right)=0$ are called equilibrium points.
- Indeed, if $y(0)=y_{0}$ for such a y_{0},

Equilibria (Not for exams)

- In general, if $y^{\prime}=g(y)$ is an ODE where $g: \mathbb{R} \rightarrow \mathbb{R}$ is say infinitely differentiable, the roots of g, i.e., y_{0} such that $g\left(y_{0}\right)=0$ are called equilibrium points.
- Indeed, if $y(0)=y_{0}$ for such a y_{0}, then $y(t)=y_{0}$ for

Equilibria (Not for exams)

- In general, if $y^{\prime}=g(y)$ is an ODE where $g: \mathbb{R} \rightarrow \mathbb{R}$ is say infinitely differentiable, the roots of g, i.e., y_{0} such that $g\left(y_{0}\right)=0$ are called equilibrium points.
- Indeed, if $y(0)=y_{0}$ for such a y_{0}, then $y(t)=y_{0}$ for all of time to come.
- In general, if $y^{\prime}=g(y)$ is an ODE where $g: \mathbb{R} \rightarrow \mathbb{R}$ is say infinitely differentiable, the roots of g, i.e., y_{0} such that $g\left(y_{0}\right)=0$ are called equilibrium points.
- Indeed, if $y(0)=y_{0}$ for such a y_{0}, then $y(t)=y_{0}$ for all of time to come.
- What happens if we

Equilibria (Not for exams)

- In general, if $y^{\prime}=g(y)$ is an ODE where $g: \mathbb{R} \rightarrow \mathbb{R}$ is say infinitely differentiable, the roots of g, i.e., y_{0} such that $g\left(y_{0}\right)=0$ are called equilibrium points.
- Indeed, if $y(0)=y_{0}$ for such a y_{0}, then $y(t)=y_{0}$ for all of time to come.
- What happens if we start from $y_{0}+\delta$ for a

Equilibria (Not for exams)

- In general, if $y^{\prime}=g(y)$ is an ODE where $g: \mathbb{R} \rightarrow \mathbb{R}$ is say infinitely differentiable, the roots of g, i.e., y_{0} such that $g\left(y_{0}\right)=0$ are called equilibrium points.
- Indeed, if $y(0)=y_{0}$ for such a y_{0}, then $y(t)=y_{0}$ for all of time to come.
- What happens if we start from $y_{0}+\delta$ for a small δ ? (

Equilibria (Not for exams)

- In general, if $y^{\prime}=g(y)$ is an ODE where $g: \mathbb{R} \rightarrow \mathbb{R}$ is say infinitely differentiable, the roots of g, i.e., y_{0} such that $g\left(y_{0}\right)=0$ are called equilibrium points.
- Indeed, if $y(0)=y_{0}$ for such a y_{0}, then $y(t)=y_{0}$ for all of time to come.
- What happens if we start from $y_{0}+\delta$ for a small δ ? (These sorts of questions
- In general, if $y^{\prime}=g(y)$ is an ODE where $g: \mathbb{R} \rightarrow \mathbb{R}$ is say infinitely differentiable, the roots of g, i.e., y_{0} such that $g\left(y_{0}\right)=0$ are called equilibrium points.
- Indeed, if $y(0)=y_{0}$ for such a y_{0}, then $y(t)=y_{0}$ for all of time to come.
- What happens if we start from $y_{0}+\delta$ for a small δ ? (These sorts of questions are important in Chaos theory.
- In general, if $y^{\prime}=g(y)$ is an ODE where $g: \mathbb{R} \rightarrow \mathbb{R}$ is say infinitely differentiable, the roots of g, i.e., y_{0} such that $g\left(y_{0}\right)=0$ are called equilibrium points.
- Indeed, if $y(0)=y_{0}$ for such a y_{0}, then $y(t)=y_{0}$ for all of time to come.
- What happens if we start from $y_{0}+\delta$ for a small δ ? (These sorts of questions are important in Chaos theory. See Jurassic Park for details.)
- In general, if $y^{\prime}=g(y)$ is an ODE where $g: \mathbb{R} \rightarrow \mathbb{R}$ is say infinitely differentiable, the roots of g, i.e., y_{0} such that $g\left(y_{0}\right)=0$ are called equilibrium points.
- Indeed, if $y(0)=y_{0}$ for such a y_{0}, then $y(t)=y_{0}$ for all of time to come.
- What happens if we start from $y_{0}+\delta$ for a small δ ? (These sorts of questions are important in Chaos theory. See Jurassic Park for details.)
- Naively,
- In general, if $y^{\prime}=g(y)$ is an ODE where $g: \mathbb{R} \rightarrow \mathbb{R}$ is say infinitely differentiable, the roots of g, i.e., y_{0} such that $g\left(y_{0}\right)=0$ are called equilibrium points.
- Indeed, if $y(0)=y_{0}$ for such a y_{0}, then $y(t)=y_{0}$ for all of time to come.
- What happens if we start from $y_{0}+\delta$ for a small δ ? (These sorts of questions are important in Chaos theory. See Jurassic Park for details.)
- Naively, $g\left(y_{0}+\Delta y\right) \approx 0+\Delta y g^{\prime}\left(y_{0}\right)$.
- In general, if $y^{\prime}=g(y)$ is an ODE where $g: \mathbb{R} \rightarrow \mathbb{R}$ is say infinitely differentiable, the roots of g, i.e., y_{0} such that $g\left(y_{0}\right)=0$ are called equilibrium points.
- Indeed, if $y(0)=y_{0}$ for such a y_{0}, then $y(t)=y_{0}$ for all of time to come.
- What happens if we start from $y_{0}+\delta$ for a small δ ? (These sorts of questions are important in Chaos theory. See Jurassic Park for details.)
- Naively, $g\left(y_{0}+\Delta y\right) \approx 0+\Delta y g^{\prime}\left(y_{0}\right)$. If $g^{\prime}\left(y_{0}\right) \neq 0$,
- In general, if $y^{\prime}=g(y)$ is an ODE where $g: \mathbb{R} \rightarrow \mathbb{R}$ is say infinitely differentiable, the roots of g, i.e., y_{0} such that $g\left(y_{0}\right)=0$ are called equilibrium points.
- Indeed, if $y(0)=y_{0}$ for such a y_{0}, then $y(t)=y_{0}$ for all of time to come.
- What happens if we start from $y_{0}+\delta$ for a small δ ? (These sorts of questions are important in Chaos theory. See Jurassic Park for details.)
- Naively, $g\left(y_{0}+\Delta y\right) \approx 0+\Delta y g^{\prime}\left(y_{0}\right)$. If $g^{\prime}\left(y_{0}\right) \neq 0$, then $g(y) \approx \Delta y g^{\prime}\left(y_{0}\right)$ and hence $y \approx y_{0}+\delta e^{g^{\prime}\left(y_{0}\right) t}$
- In general, if $y^{\prime}=g(y)$ is an ODE where $g: \mathbb{R} \rightarrow \mathbb{R}$ is say infinitely differentiable, the roots of g, i.e., y_{0} such that $g\left(y_{0}\right)=0$ are called equilibrium points.
- Indeed, if $y(0)=y_{0}$ for such a y_{0}, then $y(t)=y_{0}$ for all of time to come.
- What happens if we start from $y_{0}+\delta$ for a small δ ? (These sorts of questions are important in Chaos theory. See Jurassic Park for details.)
- Naively, $g\left(y_{0}+\Delta y\right) \approx 0+\Delta y g^{\prime}\left(y_{0}\right)$. If $g^{\prime}\left(y_{0}\right) \neq 0$, then $g(y) \approx \Delta y g^{\prime}\left(y_{0}\right)$ and hence $y \approx y_{0}+\delta e^{g^{\prime}\left(y_{0}\right) t}$ at least for short t.
- In general, if $y^{\prime}=g(y)$ is an ODE where $g: \mathbb{R} \rightarrow \mathbb{R}$ is say infinitely differentiable, the roots of g, i.e., y_{0} such that $g\left(y_{0}\right)=0$ are called equilibrium points.
- Indeed, if $y(0)=y_{0}$ for such a y_{0}, then $y(t)=y_{0}$ for all of time to come.
- What happens if we start from $y_{0}+\delta$ for a small δ ? (These sorts of questions are important in Chaos theory. See Jurassic Park for details.)
- Naively, $g\left(y_{0}+\Delta y\right) \approx 0+\Delta y g^{\prime}\left(y_{0}\right)$. If $g^{\prime}\left(y_{0}\right) \neq 0$, then $g(y) \approx \Delta y g^{\prime}\left(y_{0}\right)$ and hence $y \approx y_{0}+\delta e^{g^{\prime}\left(y_{0}\right) t}$ at least for short t. Thus if $g^{\prime}\left(y_{0}\right)<0$,

Equilibria (Not for exams)

- In general, if $y^{\prime}=g(y)$ is an ODE where $g: \mathbb{R} \rightarrow \mathbb{R}$ is say infinitely differentiable, the roots of g, i.e., y_{0} such that $g\left(y_{0}\right)=0$ are called equilibrium points.
- Indeed, if $y(0)=y_{0}$ for such a y_{0}, then $y(t)=y_{0}$ for all of time to come.
- What happens if we start from $y_{0}+\delta$ for a small δ ? (These sorts of questions are important in Chaos theory. See Jurassic Park for details.)
- Naively, $g\left(y_{0}+\Delta y\right) \approx 0+\Delta y g^{\prime}\left(y_{0}\right)$. If $g^{\prime}\left(y_{0}\right) \neq 0$, then $g(y) \approx \Delta y g^{\prime}\left(y_{0}\right)$ and hence $y \approx y_{0}+\delta e^{g^{\prime}\left(y_{0}\right) t}$ at least for short t. Thus if $g^{\prime}\left(y_{0}\right)<0, y$ "returns" back to equilibrium

Equilibria (Not for exams)

- In general, if $y^{\prime}=g(y)$ is an ODE where $g: \mathbb{R} \rightarrow \mathbb{R}$ is say infinitely differentiable, the roots of g, i.e., y_{0} such that $g\left(y_{0}\right)=0$ are called equilibrium points.
- Indeed, if $y(0)=y_{0}$ for such a y_{0}, then $y(t)=y_{0}$ for all of time to come.
- What happens if we start from $y_{0}+\delta$ for a small δ ? (These sorts of questions are important in Chaos theory. See Jurassic Park for details.)
- Naively, $g\left(y_{0}+\Delta y\right) \approx 0+\Delta y g^{\prime}\left(y_{0}\right)$. If $g^{\prime}\left(y_{0}\right) \neq 0$, then $g(y) \approx \Delta y g^{\prime}\left(y_{0}\right)$ and hence $y \approx y_{0}+\delta e^{g^{\prime}\left(y_{0}\right) t}$ at least for short t. Thus if $g^{\prime}\left(y_{0}\right)<0, y$ "returns" back to equilibrium and flies away to infinity otherwise.

Equilibria (Not for exams)

- In general, if $y^{\prime}=g(y)$ is an ODE where $g: \mathbb{R} \rightarrow \mathbb{R}$ is say infinitely differentiable, the roots of g, i.e., y_{0} such that $g\left(y_{0}\right)=0$ are called equilibrium points.
- Indeed, if $y(0)=y_{0}$ for such a y_{0}, then $y(t)=y_{0}$ for all of time to come.
- What happens if we start from $y_{0}+\delta$ for a small δ ? (These sorts of questions are important in Chaos theory. See Jurassic Park for details.)
- Naively, $g\left(y_{0}+\Delta y\right) \approx 0+\Delta y g^{\prime}\left(y_{0}\right)$. If $g^{\prime}\left(y_{0}\right) \neq 0$, then $g(y) \approx \Delta y g^{\prime}\left(y_{0}\right)$ and hence $y \approx y_{0}+\delta e^{g^{\prime}\left(y_{0}\right) t}$ at least for short t. Thus if $g^{\prime}\left(y_{0}\right)<0, y$ "returns" back to equilibrium and flies away to infinity otherwise. The former is called stable equilbrium

Equilibria (Not for exams)

- In general, if $y^{\prime}=g(y)$ is an ODE where $g: \mathbb{R} \rightarrow \mathbb{R}$ is say infinitely differentiable, the roots of g, i.e., y_{0} such that $g\left(y_{0}\right)=0$ are called equilibrium points.
- Indeed, if $y(0)=y_{0}$ for such a y_{0}, then $y(t)=y_{0}$ for all of time to come.
- What happens if we start from $y_{0}+\delta$ for a small δ ? (These sorts of questions are important in Chaos theory. See Jurassic Park for details.)
- Naively, $g\left(y_{0}+\Delta y\right) \approx 0+\Delta y g^{\prime}\left(y_{0}\right)$. If $g^{\prime}\left(y_{0}\right) \neq 0$, then $g(y) \approx \Delta y g^{\prime}\left(y_{0}\right)$ and hence $y \approx y_{0}+\delta e^{g^{\prime}\left(y_{0}\right) t}$ at least for short t. Thus if $g^{\prime}\left(y_{0}\right)<0, y$ "returns" back to equilibrium and flies away to infinity otherwise. The former is called stable equilbrium and the latter unstable equilibrium.

Equilibria (Not for exams)

- In general, if $y^{\prime}=g(y)$ is an ODE where $g: \mathbb{R} \rightarrow \mathbb{R}$ is say infinitely differentiable, the roots of g, i.e., y_{0} such that $g\left(y_{0}\right)=0$ are called equilibrium points.
- Indeed, if $y(0)=y_{0}$ for such a y_{0}, then $y(t)=y_{0}$ for all of time to come.
- What happens if we start from $y_{0}+\delta$ for a small δ ? (These sorts of questions are important in Chaos theory. See Jurassic Park for details.)
- Naively, $g\left(y_{0}+\Delta y\right) \approx 0+\Delta y g^{\prime}\left(y_{0}\right)$. If $g^{\prime}\left(y_{0}\right) \neq 0$, then $g(y) \approx \Delta y g^{\prime}\left(y_{0}\right)$ and hence $y \approx y_{0}+\delta e^{g^{\prime}\left(y_{0}\right) t}$ at least for short t. Thus if $g^{\prime}\left(y_{0}\right)<0, y$ "returns" back to equilibrium and flies away to infinity otherwise. The former is called stable equilbrium and the latter unstable equilibrium.
- This picture

Equilibria (Not for exams)

- In general, if $y^{\prime}=g(y)$ is an ODE where $g: \mathbb{R} \rightarrow \mathbb{R}$ is say infinitely differentiable, the roots of g, i.e., y_{0} such that $g\left(y_{0}\right)=0$ are called equilibrium points.
- Indeed, if $y(0)=y_{0}$ for such a y_{0}, then $y(t)=y_{0}$ for all of time to come.
- What happens if we start from $y_{0}+\delta$ for a small δ ? (These sorts of questions are important in Chaos theory. See Jurassic Park for details.)
- Naively, $g\left(y_{0}+\Delta y\right) \approx 0+\Delta y g^{\prime}\left(y_{0}\right)$. If $g^{\prime}\left(y_{0}\right) \neq 0$, then $g(y) \approx \Delta y g^{\prime}\left(y_{0}\right)$ and hence $y \approx y_{0}+\delta e^{g^{\prime}\left(y_{0}\right) t}$ at least for short t. Thus if $g^{\prime}\left(y_{0}\right)<0, y$ "returns" back to equilibrium and flies away to infinity otherwise. The former is called stable equilbrium and the latter unstable equilibrium.
- This picture can be generalised to $\vec{y}^{\prime}=\vec{g}(\vec{y})$ too

Equilibria (Not for exams)

- In general, if $y^{\prime}=g(y)$ is an ODE where $g: \mathbb{R} \rightarrow \mathbb{R}$ is say infinitely differentiable, the roots of g, i.e., y_{0} such that $g\left(y_{0}\right)=0$ are called equilibrium points.
- Indeed, if $y(0)=y_{0}$ for such a y_{0}, then $y(t)=y_{0}$ for all of time to come.
- What happens if we start from $y_{0}+\delta$ for a small δ ? (These sorts of questions are important in Chaos theory. See Jurassic Park for details.)
- Naively, $g\left(y_{0}+\Delta y\right) \approx 0+\Delta y g^{\prime}\left(y_{0}\right)$. If $g^{\prime}\left(y_{0}\right) \neq 0$, then $g(y) \approx \Delta y g^{\prime}\left(y_{0}\right)$ and hence $y \approx y_{0}+\delta e^{g^{\prime}\left(y_{0}\right) t}$ at least for short t. Thus if $g^{\prime}\left(y_{0}\right)<0, y$ "returns" back to equilibrium and flies away to infinity otherwise. The former is called stable equilbrium and the latter unstable equilibrium.
- This picture can be generalised to $\vec{y}^{\prime}=\vec{g}(\vec{y})$ too but it is more complicated

Equilibria (Not for exams)

- In general, if $y^{\prime}=g(y)$ is an ODE where $g: \mathbb{R} \rightarrow \mathbb{R}$ is say infinitely differentiable, the roots of g, i.e., y_{0} such that $g\left(y_{0}\right)=0$ are called equilibrium points.
- Indeed, if $y(0)=y_{0}$ for such a y_{0}, then $y(t)=y_{0}$ for all of time to come.
- What happens if we start from $y_{0}+\delta$ for a small δ ? (These sorts of questions are important in Chaos theory. See Jurassic Park for details.)
- Naively, $g\left(y_{0}+\Delta y\right) \approx 0+\Delta y g^{\prime}\left(y_{0}\right)$. If $g^{\prime}\left(y_{0}\right) \neq 0$, then $g(y) \approx \Delta y g^{\prime}\left(y_{0}\right)$ and hence $y \approx y_{0}+\delta e^{g^{\prime}\left(y_{0}\right) t}$ at least for short t. Thus if $g^{\prime}\left(y_{0}\right)<0, y$ "returns" back to equilibrium and flies away to infinity otherwise. The former is called stable equilbrium and the latter unstable equilibrium.
- This picture can be generalised to $\vec{y}^{\prime}=\vec{g}(\vec{y})$ too but it is more complicated and involves computing eigenvalues of

Equilibria (Not for exams)

- In general, if $y^{\prime}=g(y)$ is an ODE where $g: \mathbb{R} \rightarrow \mathbb{R}$ is say infinitely differentiable, the roots of g, i.e., y_{0} such that $g\left(y_{0}\right)=0$ are called equilibrium points.
- Indeed, if $y(0)=y_{0}$ for such a y_{0}, then $y(t)=y_{0}$ for all of time to come.
- What happens if we start from $y_{0}+\delta$ for a small δ ? (These sorts of questions are important in Chaos theory. See Jurassic Park for details.)
- Naively, $g\left(y_{0}+\Delta y\right) \approx 0+\Delta y g^{\prime}\left(y_{0}\right)$. If $g^{\prime}\left(y_{0}\right) \neq 0$, then $g(y) \approx \Delta y g^{\prime}\left(y_{0}\right)$ and hence $y \approx y_{0}+\delta e^{g^{\prime}\left(y_{0}\right) t}$ at least for short t. Thus if $g^{\prime}\left(y_{0}\right)<0, y$ "returns" back to equilibrium and flies away to infinity otherwise. The former is called stable equilbrium and the latter unstable equilibrium.
- This picture can be generalised to $\vec{y}^{\prime}=\vec{g}(\vec{y})$ too but it is more complicated and involves computing eigenvalues of a certain "derivative matrix".

Equilibria (Not for exams)

- In general, if $y^{\prime}=g(y)$ is an ODE where $g: \mathbb{R} \rightarrow \mathbb{R}$ is say infinitely differentiable, the roots of g, i.e., y_{0} such that $g\left(y_{0}\right)=0$ are called equilibrium points.
- Indeed, if $y(0)=y_{0}$ for such a y_{0}, then $y(t)=y_{0}$ for all of time to come.
- What happens if we start from $y_{0}+\delta$ for a small δ ? (These sorts of questions are important in Chaos theory. See Jurassic Park for details.)
- Naively, $g\left(y_{0}+\Delta y\right) \approx 0+\Delta y g^{\prime}\left(y_{0}\right)$. If $g^{\prime}\left(y_{0}\right) \neq 0$, then $g(y) \approx \Delta y g^{\prime}\left(y_{0}\right)$ and hence $y \approx y_{0}+\delta e^{g^{\prime}\left(y_{0}\right) t}$ at least for short t. Thus if $g^{\prime}\left(y_{0}\right)<0, y$ "returns" back to equilibrium and flies away to infinity otherwise. The former is called stable equilbrium and the latter unstable equilibrium.
- This picture can be generalised to $\vec{y}^{\prime}=\vec{g}(\vec{y})$ too but it is more complicated and involves computing eigenvalues of a certain "derivative matrix". The rigorous statement of such

Equilibria (Not for exams)

- In general, if $y^{\prime}=g(y)$ is an ODE where $g: \mathbb{R} \rightarrow \mathbb{R}$ is say infinitely differentiable, the roots of g, i.e., y_{0} such that $g\left(y_{0}\right)=0$ are called equilibrium points.
- Indeed, if $y(0)=y_{0}$ for such a y_{0}, then $y(t)=y_{0}$ for all of time to come.
- What happens if we start from $y_{0}+\delta$ for a small δ ? (These sorts of questions are important in Chaos theory. See Jurassic Park for details.)
- Naively, $g\left(y_{0}+\Delta y\right) \approx 0+\Delta y g^{\prime}\left(y_{0}\right)$. If $g^{\prime}\left(y_{0}\right) \neq 0$, then $g(y) \approx \Delta y g^{\prime}\left(y_{0}\right)$ and hence $y \approx y_{0}+\delta e^{g^{\prime}\left(y_{0}\right) t}$ at least for short t. Thus if $g^{\prime}\left(y_{0}\right)<0, y$ "returns" back to equilibrium and flies away to infinity otherwise. The former is called stable equilbrium and the latter unstable equilibrium.
- This picture can be generalised to $\vec{y}^{\prime}=\vec{g}(\vec{y})$ too but it is more complicated and involves computing eigenvalues of a certain "derivative matrix". The rigorous statement of such a theorem is due to Hartman and Grobman.

