Lecture 19 - UM 102 (Spring 2021)

Vamsi Pritham Pingali

IISc

Recap

Solved second-order

• Solved second-order linear homogeneous

• Solved second-order linear homogeneous ODE with constant-coefficients.

э

- Solved second-order linear homogeneous ODE with constant-coefficients.
- Solved first-order

э

- Solved second-order linear homogeneous ODE with constant-coefficients.
- Solved first-order linear ODE.

- Solved second-order linear homogeneous ODE with constant-coefficients.
- Solved first-order linear ODE.
- Made some remarks about

- Solved second-order linear homogeneous ODE with constant-coefficients.
- Solved first-order linear ODE.
- Made some remarks about nonlinear separable ODE.

- Solved second-order linear homogeneous ODE with constant-coefficients.
- Solved first-order linear ODE.
- Made some remarks about nonlinear separable ODE.
- Defined equilibria.

3/10

• If
$$y' = g(y)$$
,

• If y' = g(y), one can draw tiny lines

• If y' = g(y), one can draw tiny lines indicating the slope of

If y' = g(y), one can draw tiny lines indicating the slope of a potential solution at

If y' = g(y), one can draw tiny lines indicating the slope of a potential solution at every point (x, y) in ℝ².

If y' = g(y), one can draw tiny lines indicating the slope of a potential solution at every point (x, y) in ℝ². These are called phase diagrams. (

If y' = g(y), one can draw tiny lines indicating the slope of a potential solution at every point (x, y) in ℝ². These are called phase diagrams. (Note that one can do the same even for y' = F(x, y).)

If y' = g(y), one can draw tiny lines indicating the slope of a potential solution at every point (x, y) in ℝ². These are called phase diagrams. (Note that one can do the same even for y' = F(x, y).)

• If
$$y(0) = y_0$$
,

- If y' = g(y), one can draw tiny lines indicating the slope of a potential solution at every point (x, y) in ℝ². These are called phase diagrams. (Note that one can do the same even for y' = F(x, y).)
- If $y(0) = y_0$, one can "flow" along

- If y' = g(y), one can draw tiny lines indicating the slope of a potential solution at every point (x, y) in ℝ². These are called phase diagrams. (Note that one can do the same even for y' = F(x, y).)
- If $y(0) = y_0$, one can "flow" along the tiny line at $(0, y_0)$

- If y' = g(y), one can draw tiny lines indicating the slope of a potential solution at every point (x, y) in ℝ². These are called phase diagrams. (Note that one can do the same even for y' = F(x, y).)
- If y(0) = y₀, one can "flow" along the tiny line at (0, y₀) for a small time δ,

- If y' = g(y), one can draw tiny lines indicating the slope of a potential solution at every point (x, y) in ℝ². These are called phase diagrams. (Note that one can do the same even for y' = F(x, y).)
- If y(0) = y₀, one can "flow" along the tiny line at (0, y₀) for a small time δ, and then look at the slope at (δ, y')

- If y' = g(y), one can draw tiny lines indicating the slope of a potential solution at every point (x, y) in ℝ². These are called phase diagrams. (Note that one can do the same even for y' = F(x, y).)
- If y(0) = y₀, one can "flow" along the tiny line at (0, y₀) for a small time δ, and then look at the slope at (δ, y') and so on.

- If y' = g(y), one can draw tiny lines indicating the slope of a potential solution at every point (x, y) in ℝ². These are called phase diagrams. (Note that one can do the same even for y' = F(x, y).)
- If y(0) = y₀, one can "flow" along the tiny line at (0, y₀) for a small time δ, and then look at the slope at (δ, y') and so on. These curves are called

- If y' = g(y), one can draw tiny lines indicating the slope of a potential solution at every point (x, y) in ℝ². These are called phase diagrams. (Note that one can do the same even for y' = F(x, y).)
- If y(0) = y₀, one can "flow" along the tiny line at (0, y₀) for a small time δ, and then look at the slope at (δ, y') and so on. These curves are called trajectories of the

- If y' = g(y), one can draw tiny lines indicating the slope of a potential solution at every point (x, y) in ℝ². These are called phase diagrams. (Note that one can do the same even for y' = F(x, y).)
- If y(0) = y₀, one can "flow" along the tiny line at (0, y₀) for a small time δ, and then look at the slope at (δ, y') and so on. These curves are called trajectories of the "vector field" associated to the ODE.

- If y' = g(y), one can draw tiny lines indicating the slope of a potential solution at every point (x, y) in ℝ². These are called phase diagrams. (Note that one can do the same even for y' = F(x, y).)
- If y(0) = y₀, one can "flow" along the tiny line at (0, y₀) for a small time δ, and then look at the slope at (δ, y') and so on. These curves are called trajectories of the "vector field" associated to the ODE.
- A qualitative picture of

- If y' = g(y), one can draw tiny lines indicating the slope of a potential solution at every point (x, y) in ℝ². These are called phase diagrams. (Note that one can do the same even for y' = F(x, y).)
- If y(0) = y₀, one can "flow" along the tiny line at (0, y₀) for a small time δ, and then look at the slope at (δ, y') and so on. These curves are called trajectories of the "vector field" associated to the ODE.
- A qualitative picture of the solution is gleaned from

- If y' = g(y), one can draw tiny lines indicating the slope of a potential solution at every point (x, y) in ℝ². These are called phase diagrams. (Note that one can do the same even for y' = F(x, y).)
- If y(0) = y₀, one can "flow" along the tiny line at (0, y₀) for a small time δ, and then look at the slope at (δ, y') and so on. These curves are called trajectories of the "vector field" associated to the ODE.
- A qualitative picture of the solution is gleaned from these phase diagrams and trajectories.

3/10

- If y' = g(y), one can draw tiny lines indicating the slope of a potential solution at every point (x, y) in ℝ². These are called phase diagrams. (Note that one can do the same even for y' = F(x, y).)
- If y(0) = y₀, one can "flow" along the tiny line at (0, y₀) for a small time δ, and then look at the slope at (δ, y') and so on. These curves are called trajectories of the "vector field" associated to the ODE.
- A qualitative picture of the solution is gleaned from these phase diagrams and trajectories.
- For instance,

- If y' = g(y), one can draw tiny lines indicating the slope of a potential solution at every point (x, y) in ℝ². These are called phase diagrams. (Note that one can do the same even for y' = F(x, y).)
- If y(0) = y₀, one can "flow" along the tiny line at (0, y₀) for a small time δ, and then look at the slope at (δ, y') and so on. These curves are called trajectories of the "vector field" associated to the ODE.
- A qualitative picture of the solution is gleaned from these phase diagrams and trajectories.
- For instance, one can analyse $x' = ax(1-x) h(1 + \sin(2\pi t))$ that

- If y' = g(y), one can draw tiny lines indicating the slope of a potential solution at every point (x, y) in ℝ². These are called phase diagrams. (Note that one can do the same even for y' = F(x, y).)
- If y(0) = y₀, one can "flow" along the tiny line at (0, y₀) for a small time δ, and then look at the slope at (δ, y') and so on. These curves are called trajectories of the "vector field" associated to the ODE.
- A qualitative picture of the solution is gleaned from these phase diagrams and trajectories.
- For instance, one can analyse $x' = ax(1-x) h(1 + \sin(2\pi t))$ that represents the

population of fish

- If y' = g(y), one can draw tiny lines indicating the slope of a potential solution at every point (x, y) in ℝ². These are called phase diagrams. (Note that one can do the same even for y' = F(x, y).)
- If y(0) = y₀, one can "flow" along the tiny line at (0, y₀) for a small time δ, and then look at the slope at (δ, y') and so on. These curves are called trajectories of the "vector field" associated to the ODE.
- A qualitative picture of the solution is gleaned from these phase diagrams and trajectories.
- For instance, one can analyse $x' = ax(1-x) h(1 + \sin(2\pi t))$ that represents the

population of fish with periodic harvesting.

- If y' = g(y), one can draw tiny lines indicating the slope of a potential solution at every point (x, y) in ℝ². These are called phase diagrams. (Note that one can do the same even for y' = F(x, y).)
- If y(0) = y₀, one can "flow" along the tiny line at (0, y₀) for a small time δ, and then look at the slope at (δ, y') and so on. These curves are called trajectories of the "vector field" associated to the ODE.
- A qualitative picture of the solution is gleaned from these phase diagrams and trajectories.
- For instance, one can analyse $x' = ax(1-x) - h(1 + sin(2\pi t))$ that represents the

population of fish with periodic harvesting.

Euler's method (Not for exams)
• Suppose we want to solve

• Suppose we want to solve y' = g(y)f(x) with $y(0) = y_0$

3 × 4 3 ×

• Suppose we want to solve y' = g(y)f(x) with $y(0) = y_0$ numerically. (

3 D (3 D)

Suppose we want to solve y' = g(y)f(x) with y(0) = y₀ numerically. (or more generally, y' = F(x, y)).

- Suppose we want to solve y' = g(y)f(x) with y(0) = y₀ numerically. (or more generally, y' = F(x, y)).
- Using the intuition from

- Suppose we want to solve y' = g(y)f(x) with y(0) = y₀ numerically. (or more generally, y' = F(x, y)).
- Using the intuition from phase diagrams, we arrive at

4/10

- Suppose we want to solve y' = g(y)f(x) with y(0) = y₀ numerically. (or more generally, y' = F(x, y)).
- Using the intuition from phase diagrams, we arrive at Euler's iterative method:

- Suppose we want to solve y' = g(y)f(x) with y(0) = y₀ numerically. (or more generally, y' = F(x, y)).
- Using the intuition from phase diagrams, we arrive at Euler's iterative method: $y_{n+1} = y_n + F(x_n, y_n)h$ where

- Suppose we want to solve y' = g(y)f(x) with y(0) = y₀ numerically. (or more generally, y' = F(x, y)).
- Using the intuition from phase diagrams, we arrive at Euler's iterative method: $y_{n+1} = y_n + F(x_n, y_n)h$ where h is the step-size.

- Suppose we want to solve y' = g(y)f(x) with y(0) = y₀ numerically. (or more generally, y' = F(x, y)).
- Using the intuition from phase diagrams, we arrive at Euler's iterative method: $y_{n+1} = y_n + F(x_n, y_n)h$ where h is the step-size. More rigorously,
 - $y(x+h) = y(x) + \int_x^{x+h} F(x(t), y(t)) dt.$

- Suppose we want to solve y' = g(y)f(x) with y(0) = y₀ numerically. (or more generally, y' = F(x, y)).
- Using the intuition from phase diagrams, we arrive at Euler's iterative method: $y_{n+1} = y_n + F(x_n, y_n)h$ where h is the step-size. More rigorously,

 $y(x+h) = y(x) + \int_{x}^{x+h} F(x(t), y(t)) dt$. This formulation of

- Suppose we want to solve y' = g(y)f(x) with y(0) = y₀ numerically. (or more generally, y' = F(x, y)).
- Using the intuition from phase diagrams, we arrive at Euler's iterative method: $y_{n+1} = y_n + F(x_n, y_n)h$ where h is the step-size. More rigorously, $y(x + h) = y(x) + \int_x^{x+h} F(x(t), y(t))dt$. This formulation of an ODE

- Suppose we want to solve y' = g(y)f(x) with y(0) = y₀ numerically. (or more generally, y' = F(x, y)).
- Using the intuition from phase diagrams, we arrive at Euler's iterative method: $y_{n+1} = y_n + F(x_n, y_n)h$ where h is the step-size. More rigorously, $y(x + h) = y(x) + \int_x^{x+h} F(x(t), y(t))dt$. This formulation of an ODE as an integration

an ODE as an integral equation

- Suppose we want to solve y' = g(y)f(x) with y(0) = y₀ numerically. (or more generally, y' = F(x, y)).
- Using the intuition from phase diagrams, we arrive at Euler's iterative method: y_{n+1} = y_n + F(x_n, y_n)h where h is the step-size. More rigorously, y(x + h) = y(x) + ∫_x^{x+h} F(x(t), y(t))dt. This formulation of

an ODE as an integral equation is useful for

- Suppose we want to solve y' = g(y)f(x) with y(0) = y₀ numerically. (or more generally, y' = F(x, y)).
- Using the intuition from phase diagrams, we arrive at Euler's iterative method: y_{n+1} = y_n + F(x_n, y_n)h where h is the step-size. More rigorously, y(x + h) = y(x) + ∫_x^{x+h} F(x(t), y(t))dt. This formulation of an ODE as an integral equation is useful for computational and theoretical purposes

- Suppose we want to solve y' = g(y)f(x) with y(0) = y₀ numerically. (or more generally, y' = F(x, y)).
- Using the intuition from phase diagrams, we arrive at Euler's iterative method: $y_{n+1} = y_n + F(x_n, y_n)h$ where h is the step-size. More rigorously, $y(x + h) = y(x) + \int_x^{x+h} F(x(t), y(t))dt$. This formulation of an ODE as an integral equation is useful for computational and theoretical purposes (i.e. to prove existence and uniqueness for instance).

- Suppose we want to solve y' = g(y)f(x) with y(0) = y₀ numerically. (or more generally, y' = F(x, y)).
- Using the intuition from phase diagrams, we arrive at Euler's iterative method: $y_{n+1} = y_n + F(x_n, y_n)h$ where h is the step-size. More rigorously, $y(x + h) = y(x) + \int_{-\infty}^{x+h} F(y(t), y(t))dt$. This formulation of

 $y(x + h) = y(x) + \int_{x}^{x+h} F(x(t), y(t))dt$. This formulation of an ODE as an integral equation is useful for computational and theoretical purposes (i.e. to prove existence and uniqueness for instance). Watch Hidden Figures for instance!

- Suppose we want to solve y' = g(y)f(x) with y(0) = y₀ numerically. (or more generally, y' = F(x, y)).
- Using the intuition from phase diagrams, we arrive at Euler's iterative method: $y_{n+1} = y_n + F(x_n, y_n)h$ where h is the step-size. More rigorously, $y(x + h) = y(x) + \int_x^{x+h} F(x(t), y(t))dt$. This formulation of an ODE as an integral equation is useful for computational and theoretical purposes (i.e. to prove existence and uniqueness for instance). Watch Hidden Figures for instance!
- This method is unfortunately

- Suppose we want to solve y' = g(y)f(x) with y(0) = y₀ numerically. (or more generally, y' = F(x, y)).
- Using the intuition from phase diagrams, we arrive at Euler's iterative method: y_{n+1} = y_n + F(x_n, y_n)h where h is the step-size. More rigorously, y(x + h) = y(x) + ∫_x^{x+h} F(x(t), y(t))dt. This formulation of an ODE as an integral equation is useful for computational
 - and theoretical purposes (i.e. to prove existence and uniqueness for instance). Watch Hidden Figures for instance!
- This method is unfortunately numerically unstable often, i.e.,

- Suppose we want to solve y' = g(y)f(x) with y(0) = y₀ numerically. (or more generally, y' = F(x, y)).
- Using the intuition from phase diagrams, we arrive at Euler's iterative method: y_{n+1} = y_n + F(x_n, y_n)h where h is the step-size. More rigorously, y(x + h) = y(x) + ∫_x^{x+h} F(x(t), y(t))dt. This formulation of an ODE as an integral equation is useful for computational and theoretical purposes (i.e. to prove existence and
 - uniqueness for instance). Watch Hidden Figures for instance!
- This method is unfortunately numerically unstable often, i.e., the errors keep building up.

- Suppose we want to solve y' = g(y)f(x) with y(0) = y₀ numerically. (or more generally, y' = F(x, y)).
- Using the intuition from phase diagrams, we arrive at Euler's iterative method: y_{n+1} = y_n + F(x_n, y_n)h where h is the step-size. More rigorously, y(x + h) = y(x) + ∫_x^{x+h} F(x(t), y(t))dt. This formulation of an ODE as an integral equation is useful for computational
 - and theoretical purposes (i.e. to prove existence and uniqueness for instance). Watch Hidden Figures for instance!
- This method is unfortunately numerically unstable often, i.e., the errors keep building up. There are better methods

- Suppose we want to solve y' = g(y)f(x) with y(0) = y₀ numerically. (or more generally, y' = F(x, y)).
- Using the intuition from phase diagrams, we arrive at Euler's iterative method: y_{n+1} = y_n + F(x_n, y_n)h where h is the step-size. More rigorously, y(x + h) = y(x) + ∫_x^{x+h} F(x(t), y(t))dt. This formulation of an ODE as an integral equation is useful for computational
 - and theoretical purposes (i.e. to prove existence and uniqueness for instance). Watch Hidden Figures for instance!
- This method is unfortunately numerically unstable often, i.e., the errors keep building up. There are better methods like the Runge-Kutta methods (

- Suppose we want to solve y' = g(y)f(x) with y(0) = y₀ numerically. (or more generally, y' = F(x, y)).
- Using the intuition from phase diagrams, we arrive at Euler's iterative method: y_{n+1} = y_n + F(x_n, y_n)h where h is the step-size. More rigorously, y(x + h) = y(x) + ∫_x^{x+h} F(x(t), y(t))dt. This formulation of an ODE as an integral equation is useful for computational
 - and theoretical purposes (i.e. to prove existence and uniqueness for instance). Watch Hidden Figures for instance!
- This method is unfortunately numerically unstable often, i.e., the errors keep building up. There are better methods like the Runge-Kutta methods (that replace

- Suppose we want to solve y' = g(y)f(x) with y(0) = y₀ numerically. (or more generally, y' = F(x, y)).
- Using the intuition from phase diagrams, we arrive at Euler's iterative method: y_{n+1} = y_n + F(x_n, y_n)h where h is the step-size. More rigorously, y(x + h) = y(x) + ∫_x^{x+h} F(x(t), y(t))dt. This formulation of an ODE as an integral equation is useful for computational
 - and theoretical purposes (i.e. to prove existence and uniqueness for instance). Watch Hidden Figures for instance!
- This method is unfortunately numerically unstable often, i.e., the errors keep building up. There are better methods like the Runge-Kutta methods (that replace the slope with a

- Suppose we want to solve y' = g(y)f(x) with y(0) = y₀ numerically. (or more generally, y' = F(x, y)).
- Using the intuition from phase diagrams, we arrive at Euler's iterative method: y_{n+1} = y_n + F(x_n, y_n)h where h is the step-size. More rigorously, y(x + h) = y(x) + ∫_x^{x+h} F(x(t), y(t))dt. This formulation of an ODE as an integral equation is useful for computational
 - and theoretical purposes (i.e. to prove existence and uniqueness for instance). Watch Hidden Figures for instance!
- This method is unfortunately numerically unstable often, i.e., the errors keep building up. There are better methods like the Runge-Kutta methods (that replace the slope with a weighted sum of slopes)

- Suppose we want to solve y' = g(y)f(x) with y(0) = y₀ numerically. (or more generally, y' = F(x, y)).
- Using the intuition from phase diagrams, we arrive at Euler's iterative method: $y_{n+1} = y_n + F(x_n, y_n)h$ where h is the step-size. More rigorously, $y(x + h) = y(x) + \int_x^{x+h} F(x(t), y(t))dt$. This formulation of
 - an ODE as an integral equation is useful for computational and theoretical purposes (i.e. to prove existence and uniqueness for instance). Watch Hidden Figures for instance!
- This method is unfortunately numerically unstable often, i.e., the errors keep building up. There are better methods like the Runge-Kutta methods (that replace the slope with a weighted sum of slopes) that yield much better error estimates.

• Now we attempt to solve

• Now we attempt to solve y'' + Py' + Qy = R(x) where

• Now we attempt to solve y'' + Py' + Qy = R(x) where $P, Q \in \mathbb{R}$ and

• Now we attempt to solve y'' + Py' + Qy = R(x) where $P, Q \in \mathbb{R}$ and R(x) is a continuous function.

- Now we attempt to solve y'' + Py' + Qy = R(x) where $P, Q \in \mathbb{R}$ and R(x) is a continuous function.
- As earlier,

- Now we attempt to solve y'' + Py' + Qy = R(x) where $P, Q \in \mathbb{R}$ and R(x) is a continuous function.
- As earlier, if y_1 is a *particular* solution and

- Now we attempt to solve y'' + Py' + Qy = R(x) where $P, Q \in \mathbb{R}$ and R(x) is a continuous function.
- As earlier, if y₁ is a *particular* solution and y₂ is any other solution,

- Now we attempt to solve y'' + Py' + Qy = R(x) where $P, Q \in \mathbb{R}$ and R(x) is a continuous function.
- As earlier, if y_1 is a *particular* solution and y_2 is any other solution, then $y_1 y_2$ solves

- Now we attempt to solve y'' + Py' + Qy = R(x) where $P, Q \in \mathbb{R}$ and R(x) is a continuous function.
- As earlier, if y_1 is a *particular* solution and y_2 is any other solution, then $y_1 y_2$ solves the corresponding homogeneous equation.
- Now we attempt to solve y'' + Py' + Qy = R(x) where $P, Q \in \mathbb{R}$ and R(x) is a continuous function.
- As earlier, if y_1 is a *particular* solution and y_2 is any other solution, then $y_1 y_2$ solves the corresponding homogeneous equation.
- We already proved that

- Now we attempt to solve y'' + Py' + Qy = R(x) where $P, Q \in \mathbb{R}$ and R(x) is a continuous function.
- As earlier, if y_1 is a *particular* solution and y_2 is any other solution, then $y_1 y_2$ solves the corresponding homogeneous equation.
- We already proved that the solutions of

- Now we attempt to solve y'' + Py' + Qy = R(x) where $P, Q \in \mathbb{R}$ and R(x) is a continuous function.
- As earlier, if y_1 is a *particular* solution and y_2 is any other solution, then $y_1 y_2$ solves the corresponding homogeneous equation.
- We already proved that the solutions of the homogeneous equation

- Now we attempt to solve y'' + Py' + Qy = R(x) where $P, Q \in \mathbb{R}$ and R(x) is a continuous function.
- As earlier, if y_1 is a *particular* solution and y_2 is any other solution, then $y_1 y_2$ solves the corresponding homogeneous equation.
- We already proved that the solutions of the homogeneous equation form a real two-dimensional vector space

- Now we attempt to solve y'' + Py' + Qy = R(x) where $P, Q \in \mathbb{R}$ and R(x) is a continuous function.
- As earlier, if y_1 is a *particular* solution and y_2 is any other solution, then $y_1 y_2$ solves the corresponding homogeneous equation.
- We already proved that the solutions of the homogeneous equation form a real two-dimensional vector space spanned by two functions $u_1(x)$, $u_2(x)$.

- Now we attempt to solve y'' + Py' + Qy = R(x) where $P, Q \in \mathbb{R}$ and R(x) is a continuous function.
- As earlier, if y_1 is a *particular* solution and y_2 is any other solution, then $y_1 y_2$ solves the corresponding homogeneous equation.
- We already proved that the solutions of the homogeneous equation form a real two-dimensional vector space spanned by two functions u₁(x), u₂(x).
- Thus the general solution

- Now we attempt to solve y'' + Py' + Qy = R(x) where $P, Q \in \mathbb{R}$ and R(x) is a continuous function.
- As earlier, if y_1 is a *particular* solution and y_2 is any other solution, then $y_1 y_2$ solves the corresponding homogeneous equation.
- We already proved that the solutions of the homogeneous equation form a real two-dimensional vector space spanned by two functions $u_1(x)$, $u_2(x)$.
- Thus the general solution is $y_1 + c_1 u_1(x) + c_2 u_2(x)$.

- Now we attempt to solve y'' + Py' + Qy = R(x) where $P, Q \in \mathbb{R}$ and R(x) is a continuous function.
- As earlier, if y_1 is a *particular* solution and y_2 is any other solution, then $y_1 y_2$ solves the corresponding homogeneous equation.
- We already proved that the solutions of the homogeneous equation form a real two-dimensional vector space spanned by two functions u₁(x), u₂(x).
- Thus the general solution is $y_1 + c_1u_1(x) + c_2u_2(x)$. Hence, we "just"

- Now we attempt to solve y'' + Py' + Qy = R(x) where $P, Q \in \mathbb{R}$ and R(x) is a continuous function.
- As earlier, if y_1 is a *particular* solution and y_2 is any other solution, then $y_1 y_2$ solves the corresponding homogeneous equation.
- We already proved that the solutions of the homogeneous equation form a real two-dimensional vector space spanned by two functions u₁(x), u₂(x).
- Thus the general solution is $y_1 + c_1u_1(x) + c_2u_2(x)$. Hence, we "just" need to find *one*

- Now we attempt to solve y'' + Py' + Qy = R(x) where $P, Q \in \mathbb{R}$ and R(x) is a continuous function.
- As earlier, if y_1 is a *particular* solution and y_2 is any other solution, then $y_1 y_2$ solves the corresponding homogeneous equation.
- We already proved that the solutions of the homogeneous equation form a real two-dimensional vector space spanned by two functions u₁(x), u₂(x).
- Thus the general solution is $y_1 + c_1u_1(x) + c_2u_2(x)$. Hence, we "just" need to find *one*solution of

- Now we attempt to solve y'' + Py' + Qy = R(x) where $P, Q \in \mathbb{R}$ and R(x) is a continuous function.
- As earlier, if y_1 is a *particular* solution and y_2 is any other solution, then $y_1 y_2$ solves the corresponding homogeneous equation.
- We already proved that the solutions of the homogeneous equation form a real two-dimensional vector space spanned by two functions u₁(x), u₂(x).
- Thus the general solution is $y_1 + c_1u_1(x) + c_2u_2(x)$. Hence, we "just" need to find *one*solution of the inhomogeneous equation.

- Now we attempt to solve y'' + Py' + Qy = R(x) where $P, Q \in \mathbb{R}$ and R(x) is a continuous function.
- As earlier, if y_1 is a *particular* solution and y_2 is any other solution, then $y_1 y_2$ solves the corresponding homogeneous equation.
- We already proved that the solutions of the homogeneous equation form a real two-dimensional vector space spanned by two functions u₁(x), u₂(x).
- Thus the general solution is $y_1 + c_1u_1(x) + c_2u_2(x)$. Hence, we "just" need to find *one*solution of the inhomogeneous equation. There is a way

- Now we attempt to solve y'' + Py' + Qy = R(x) where $P, Q \in \mathbb{R}$ and R(x) is a continuous function.
- As earlier, if y_1 is a *particular* solution and y_2 is any other solution, then $y_1 y_2$ solves the corresponding homogeneous equation.
- We already proved that the solutions of the homogeneous equation form a real two-dimensional vector space spanned by two functions u₁(x), u₂(x).
- Thus the general solution is $y_1 + c_1u_1(x) + c_2u_2(x)$. Hence, we "just" need to find *one*solution of the inhomogeneous equation. There is a way to do this using

- Now we attempt to solve y'' + Py' + Qy = R(x) where $P, Q \in \mathbb{R}$ and R(x) is a continuous function.
- As earlier, if y_1 is a *particular* solution and y_2 is any other solution, then $y_1 y_2$ solves the corresponding homogeneous equation.
- We already proved that the solutions of the homogeneous equation form a real two-dimensional vector space spanned by two functions u₁(x), u₂(x).
- Thus the general solution is $y_1 + c_1u_1(x) + c_2u_2(x)$. Hence, we "just" need to find *one*solution of the inhomogeneous equation. There is a way to do this using the homogeneous equation itself.

æ

• Clearly $y = a_1u_1 + a_2u_2$ where a_1, a_2 are constants

э

• Clearly $y = a_1u_1 + a_2u_2$ where a_1, a_2 are constants does *not* solve the inhomogeneous equation.

• Clearly $y = a_1u_1 + a_2u_2$ where a_1, a_2 are constants does not solve the inhomogeneous equation. What if we

Clearly y = a₁u₁ + a₂u₂ where a₁, a₂ are constants does not solve the inhomogeneous equation. What if we let them vary with x? (

• Let's try
$$y = a_1(x)u_1(x) + a_2(x)u_2(x)$$
.

• Let's try
$$y = a_1(x)u_1(x) + a_2(x)u_2(x)$$
. $y' = \sum_i a_i u'_i + a'_i u_i$.

- Clearly y = a₁u₁ + a₂u₂ where a₁, a₂ are constants does not solve the inhomogeneous equation. What if we let them vary with x? (Method of variation of parameters.)
- Let's try $y = a_1(x)u_1(x) + a_2(x)u_2(x)$. $y' = \sum_i a_i u'_i + a'_i u_i$. $y'' = \sum_i (a'_i u_i)' + a'_i u'_i + a_i u''_i$.

• Let's try
$$y = a_1(x)u_1(x) + a_2(x)u_2(x)$$
. $y' = \sum_i a_i u'_i + a'_i u_i$.
 $y'' = \sum_i (a'_i u_i)' + a'_i u'_i + a_i u''_i$. Thus
 $y'' + Py' + Qy = \sum_i (a'_i u_i)' + a'_i u'_i + Pa'_i u_i = R$.

Clearly y = a₁u₁ + a₂u₂ where a₁, a₂ are constants does not solve the inhomogeneous equation. What if we let them vary with x? (Method of variation of parameters.)

• Let's try
$$y = a_1(x)u_1(x) + a_2(x)u_2(x)$$
. $y' = \sum_i a_i u'_i + a'_i u_i$.
 $y'' = \sum_i (a'_i u_i)' + a'_i u'_i + a_i u''_i$. Thus
 $y'' + Py' + Qy = \sum_i (a'_i u_i)' + a'_i u'_i + Pa'_i u_i = R$.

This is just

Clearly y = a₁u₁ + a₂u₂ where a₁, a₂ are constants does not solve the inhomogeneous equation. What if we let them vary with x? (Method of variation of parameters.)

• Let's try
$$y = a_1(x)u_1(x) + a_2(x)u_2(x)$$
. $y' = \sum_i a_i u'_i + a'_i u_i$.
 $y'' = \sum_i (a'_i u_i)' + a'_i u'_i + a_i u''_i$. Thus
 $y'' + Py' + Qy = \sum_i (a'_i u_i)' + a'_i u'_i + Pa'_i u_i = R$.

• This is just one equation with

Clearly y = a₁u₁ + a₂u₂ where a₁, a₂ are constants does not solve the inhomogeneous equation. What if we let them vary with x? (Method of variation of parameters.)

• Let's try
$$y = a_1(x)u_1(x) + a_2(x)u_2(x)$$
. $y' = \sum_i a_i u'_i + a'_i u_i$.
 $y'' = \sum_i (a'_i u_i)' + a'_i u'_i + a_i u''_i$. Thus
 $y'' + Py' + Qy = \sum_i (a'_i u_i)' + a'_i u'_i + Pa'_i u_i = R$.

• This is just one equation with two knowns $a_1(x), a_2(x)$.

Clearly y = a₁u₁ + a₂u₂ where a₁, a₂ are constants does not solve the inhomogeneous equation. What if we let them vary with x? (Method of variation of parameters.)

• Let's try
$$y = a_1(x)u_1(x) + a_2(x)u_2(x)$$
. $y' = \sum_i a_i u'_i + a'_i u_i$.
 $y'' = \sum_i (a'_i u_i)' + a'_i u'_i + a_i u''_i$. Thus
 $y'' + Py' + Qy = \sum_i (a'_i u_i)' + a'_i u'_i + Pa'_i u_i = R$.

This is just one equation with two knowns a₁(x), a₂(x). The trick is to

Clearly y = a₁u₁ + a₂u₂ where a₁, a₂ are constants does not solve the inhomogeneous equation. What if we let them vary with x? (Method of variation of parameters.)

• Let's try
$$y = a_1(x)u_1(x) + a_2(x)u_2(x)$$
. $y' = \sum_i a_i u'_i + a'_i u_i$.
 $y'' = \sum_i (a'_i u_i)' + a'_i u'_i + a_i u''_i$. Thus
 $y'' + Py' + Qy = \sum_i (a'_i u_i)' + a'_i u'_i + Pa'_i u_i = R$.

• This is just one equation with two knowns $a_1(x), a_2(x)$. The trick is to set $a'_1u_1 + a'_2u_2 = 0$ and

Clearly y = a₁u₁ + a₂u₂ where a₁, a₂ are constants does not solve the inhomogeneous equation. What if we let them vary with x? (Method of variation of parameters.)

• Let's try
$$y = a_1(x)u_1(x) + a_2(x)u_2(x)$$
. $y' = \sum_i a_i u'_i + a'_i u_i$.
 $y'' = \sum_i (a'_i u_i)' + a'_i u'_i + a_i u''_i$. Thus
 $y'' + Py' + Qy = \sum_i (a'_i u_i)' + a'_i u'_i + Pa'_i u_i = R$.

• This is just one equation with two knowns $a_1(x), a_2(x)$. The trick is to set $a'_1u_1 + a'_2u_2 = 0$ and $a'_1u'_1 + a'_2u'_2 = R$.

• Let's try
$$y = a_1(x)u_1(x) + a_2(x)u_2(x)$$
. $y' = \sum_i a_i u'_i + a'_i u_i$.
 $y'' = \sum_i (a'_i u_i)' + a'_i u'_i + a_i u''_i$. Thus
 $y'' + Py' + Qy = \sum_i (a'_i u_i)' + a'_i u'_i + Pa'_i u_i = R$.

- This is just one equation with two knowns $a_1(x)$, $a_2(x)$. The trick is to set $a'_1u_1 + a'_2u_2 = 0$ and $a'_1u'_1 + a'_2u'_2 = R$.
- So we have

Clearly y = a₁u₁ + a₂u₂ where a₁, a₂ are constants does not solve the inhomogeneous equation. What if we let them vary with x? (Method of variation of parameters.)

• Let's try
$$y = a_1(x)u_1(x) + a_2(x)u_2(x)$$
. $y' = \sum_i a_i u'_i + a'_i u_i$.
 $y'' = \sum_i (a'_i u_i)' + a'_i u'_i + a_i u''_i$. Thus
 $y'' + Py' + Qy = \sum_i (a'_i u_i)' + a'_i u'_i + Pa'_i u_i = R$.

Clearly y = a₁u₁ + a₂u₂ where a₁, a₂ are constants does not solve the inhomogeneous equation. What if we let them vary with x? (Method of variation of parameters.)

• Let's try
$$y = a_1(x)u_1(x) + a_2(x)u_2(x)$$
. $y' = \sum_i a_i u'_i + a'_i u_i$.
 $y'' = \sum_i (a'_i u_i)' + a'_i u'_i + a_i u''_i$. Thus
 $y'' + Py' + Qy = \sum_i (a'_i u_i)' + a'_i u'_i + Pa'_i u_i = R$.

Clearly y = a₁u₁ + a₂u₂ where a₁, a₂ are constants does not solve the inhomogeneous equation. What if we let them vary with x? (Method of variation of parameters.)

• Let's try
$$y = a_1(x)u_1(x) + a_2(x)u_2(x)$$
. $y' = \sum_i a_i u'_i + a'_i u_i$.
 $y'' = \sum_i (a'_i u_i)' + a'_i u'_i + a_i u''_i$. Thus
 $y'' + Py' + Qy = \sum_i (a'_i u_i)' + a'_i u'_i + Pa'_i u_i = R$.

• Since u_1, u_2 are

• Let's try
$$y = a_1(x)u_1(x) + a_2(x)u_2(x)$$
. $y' = \sum_i a_i u'_i + a'_i u_i$.
 $y'' = \sum_i (a'_i u_i)' + a'_i u'_i + a_i u''_i$. Thus
 $y'' + Py' + Qy = \sum_i (a'_i u_i)' + a'_i u'_i + Pa'_i u_i = R$.

- Since u_1, u_2 are linearly independent

• Let's try
$$y = a_1(x)u_1(x) + a_2(x)u_2(x)$$
. $y' = \sum_i a_i u'_i + a'_i u_i$.
 $y'' = \sum_i (a'_i u_i)' + a'_i u'_i + a_i u''_i$. Thus
 $y'' + Py' + Qy = \sum_i (a'_i u_i)' + a'_i u'_i + Pa'_i u_i = R$.

- Since u_1, u_2 are linearly independent det $(A) \neq 0$ (?!)
Clearly y = a₁u₁ + a₂u₂ where a₁, a₂ are constants does not solve the inhomogeneous equation. What if we let them vary with x? (Method of variation of parameters.)

• Let's try
$$y = a_1(x)u_1(x) + a_2(x)u_2(x)$$
. $y' = \sum_i a_i u'_i + a'_i u_i$.
 $y'' = \sum_i (a'_i u_i)' + a'_i u'_i + a_i u''_i$. Thus
 $y'' + Py' + Qy = \sum_i (a'_i u_i)' + a'_i u'_i + Pa'_i u_i = R$.

• This is just one equation with two knowns $a_1(x)$, $a_2(x)$. The trick is to set $a'_1u_1 + a'_2u_2 = 0$ and $a'_1u'_1 + a'_2u'_2 = R$.

• So we have
$$A\begin{bmatrix} a'_1\\ a'_2\end{bmatrix} = \begin{bmatrix} 0\\ R\end{bmatrix}$$
 where $A = \begin{bmatrix} u_1 & u_2\\ u'_1 & u'_2\end{bmatrix}$.

Since u₁, u₂ are linearly independent det(A) ≠ 0 (?!) This determinant is denoted as

Clearly y = a₁u₁ + a₂u₂ where a₁, a₂ are constants does not solve the inhomogeneous equation. What if we let them vary with x? (Method of variation of parameters.)

• Let's try
$$y = a_1(x)u_1(x) + a_2(x)u_2(x)$$
. $y' = \sum_i a_i u'_i + a'_i u_i$.
 $y'' = \sum_i (a'_i u_i)' + a'_i u'_i + a_i u''_i$. Thus
 $y'' + Py' + Qy = \sum_i (a'_i u_i)' + a'_i u'_i + Pa'_i u_i = R$.

• This is just one equation with two knowns $a_1(x)$, $a_2(x)$. The trick is to set $a'_1u_1 + a'_2u_2 = 0$ and $a'_1u'_1 + a'_2u'_2 = R$.

• So we have
$$A \begin{bmatrix} a'_1 \\ a'_2 \end{bmatrix} = \begin{bmatrix} 0 \\ R \end{bmatrix}$$
 where $A = \begin{bmatrix} u_1 & u_2 \\ u'_1 & u'_2 \end{bmatrix}$.

Since u₁, u₂ are linearly independent det(A) ≠ 0 (?!) This determinant is denoted as W(x) = u₁u'₂ - u₂u'₁ and is called

Clearly y = a₁u₁ + a₂u₂ where a₁, a₂ are constants does not solve the inhomogeneous equation. What if we let them vary with x? (Method of variation of parameters.)

• Let's try
$$y = a_1(x)u_1(x) + a_2(x)u_2(x)$$
. $y' = \sum_i a_i u'_i + a'_i u_i$.
 $y'' = \sum_i (a'_i u_i)' + a'_i u'_i + a_i u''_i$. Thus
 $y'' + Py' + Qy = \sum_i (a'_i u_i)' + a'_i u'_i + Pa'_i u_i = R$.

• This is just one equation with two knowns $a_1(x)$, $a_2(x)$. The trick is to set $a'_1u_1 + a'_2u_2 = 0$ and $a'_1u'_1 + a'_2u'_2 = R$.

• So we have
$$A \begin{bmatrix} a'_1 \\ a'_2 \end{bmatrix} = \begin{bmatrix} 0 \\ R \end{bmatrix}$$
 where $A = \begin{bmatrix} u_1 & u_2 \\ u'_1 & u'_2 \end{bmatrix}$.

• Since u_1, u_2 are linearly independent det $(A) \neq 0$ (?!) This determinant is denoted as $W(x) = u_1u'_2 - u_2u'_1$ and is called the Wronskian of u_1, u_2 (

Clearly y = a₁u₁ + a₂u₂ where a₁, a₂ are constants does not solve the inhomogeneous equation. What if we let them vary with x? (Method of variation of parameters.)

• Let's try
$$y = a_1(x)u_1(x) + a_2(x)u_2(x)$$
. $y' = \sum_i a_i u'_i + a'_i u_i$.
 $y'' = \sum_i (a'_i u_i)' + a'_i u'_i + a_i u''_i$. Thus
 $y'' + Py' + Qy = \sum_i (a'_i u_i)' + a'_i u'_i + Pa'_i u_i = R$.

• This is just one equation with two knowns $a_1(x)$, $a_2(x)$. The trick is to set $a'_1u_1 + a'_2u_2 = 0$ and $a'_1u'_1 + a'_2u'_2 = R$.

• So we have
$$A \begin{bmatrix} a'_1 \\ a'_2 \end{bmatrix} = \begin{bmatrix} 0 \\ R \end{bmatrix}$$
 where $A = \begin{bmatrix} u_1 & u_2 \\ u'_1 & u'_2 \end{bmatrix}$.

Since u₁, u₂ are linearly independent det(A) ≠ 0 (?!) This determinant is denoted as W(x) = u₁u'₂ - u₂u'₁ and is called the Wronskian of u₁, u₂ (after a crazy Polish chap).

Clearly y = a₁u₁ + a₂u₂ where a₁, a₂ are constants does not solve the inhomogeneous equation. What if we let them vary with x? (Method of variation of parameters.)

• Let's try
$$y = a_1(x)u_1(x) + a_2(x)u_2(x)$$
. $y' = \sum_i a_i u'_i + a'_i u_i$.
 $y'' = \sum_i (a'_i u_i)' + a'_i u'_i + a_i u''_i$. Thus
 $y'' + Py' + Qy = \sum_i (a'_i u_i)' + a'_i u'_i + Pa'_i u_i = R$.

• This is just one equation with two knowns $a_1(x)$, $a_2(x)$. The trick is to set $a'_1u_1 + a'_2u_2 = 0$ and $a'_1u'_1 + a'_2u'_2 = R$.

• So we have
$$A\begin{bmatrix} a_1'\\ a_2'\end{bmatrix} = \begin{bmatrix} 0\\ R\end{bmatrix}$$
 where $A = \begin{bmatrix} u_1 & u_2\\ u_1' & u_2'\end{bmatrix}$.

• Since u_1, u_2 are linearly independent det $(A) \neq 0$ (?!) This determinant is denoted as $W(x) = u_1u'_2 - u_2u'_1$ and is called the Wronskian of u_1, u_2 (after a crazy Polish chap).

• Thus
$$a'_1 = rac{-u_2 R(x)}{W(x)}$$
 and

Clearly y = a₁u₁ + a₂u₂ where a₁, a₂ are constants does not solve the inhomogeneous equation. What if we let them vary with x? (Method of variation of parameters.)

• Let's try
$$y = a_1(x)u_1(x) + a_2(x)u_2(x)$$
. $y' = \sum_i a_i u'_i + a'_i u_i$.
 $y'' = \sum_i (a'_i u_i)' + a'_i u'_i + a_i u''_i$. Thus
 $y'' + Py' + Qy = \sum_i (a'_i u_i)' + a'_i u'_i + Pa'_i u_i = R$.

• This is just one equation with two knowns $a_1(x)$, $a_2(x)$. The trick is to set $a'_1u_1 + a'_2u_2 = 0$ and $a'_1u'_1 + a'_2u'_2 = R$.

• So we have
$$A\begin{bmatrix} a_1'\\ a_2'\end{bmatrix} = \begin{bmatrix} 0\\ R\end{bmatrix}$$
 where $A = \begin{bmatrix} u_1 & u_2\\ u_1' & u_2'\end{bmatrix}$.

• Since u_1, u_2 are linearly independent det $(A) \neq 0$ (?!) This determinant is denoted as $W(x) = u_1u'_2 - u_2u'_1$ and is called the Wronskian of u_1, u_2 (after a crazy Polish chap).

• Thus
$$a'_1 = \frac{-u_2 R(x)}{W(x)}$$
 and $a'_2 = \frac{u_1 R(x)}{W(x)}$.

Clearly y = a₁u₁ + a₂u₂ where a₁, a₂ are constants does not solve the inhomogeneous equation. What if we let them vary with x? (Method of variation of parameters.)

• Let's try
$$y = a_1(x)u_1(x) + a_2(x)u_2(x)$$
. $y' = \sum_i a_i u'_i + a'_i u_i$.
 $y'' = \sum_i (a'_i u_i)' + a'_i u'_i + a_i u''_i$. Thus
 $y'' + Py' + Qy = \sum_i (a'_i u_i)' + a'_i u'_i + Pa'_i u_i = R$.

• This is just one equation with two knowns $a_1(x)$, $a_2(x)$. The trick is to set $a'_1u_1 + a'_2u_2 = 0$ and $a'_1u'_1 + a'_2u'_2 = R$.

• So we have
$$A \begin{bmatrix} a'_1 \\ a'_2 \end{bmatrix} = \begin{bmatrix} 0 \\ R \end{bmatrix}$$
 where $A = \begin{bmatrix} u_1 & u_2 \\ u'_1 & u'_2 \end{bmatrix}$.

• Since u_1, u_2 are linearly independent det $(A) \neq 0$ (?!) This determinant is denoted as $W(x) = u_1u'_2 - u_2u'_1$ and is called the Wronskian of u_1, u_2 (after a crazy Polish chap).

• Thus
$$a'_1 = \frac{-u_2 R(x)}{W(x)}$$
 and $a'_2 = \frac{u_1 R(x)}{W(x)}$. Integrating these,

Clearly y = a₁u₁ + a₂u₂ where a₁, a₂ are constants does not solve the inhomogeneous equation. What if we let them vary with x? (Method of variation of parameters.)

• Let's try
$$y = a_1(x)u_1(x) + a_2(x)u_2(x)$$
. $y' = \sum_i a_i u'_i + a'_i u_i$.
 $y'' = \sum_i (a'_i u_i)' + a'_i u'_i + a_i u''_i$. Thus
 $y'' + Py' + Qy = \sum_i (a'_i u_i)' + a'_i u'_i + Pa'_i u_i = R$.

• This is just one equation with two knowns $a_1(x), a_2(x)$. The trick is to set $a'_1u_1 + a'_2u_2 = 0$ and $a'_1u'_1 + a'_2u'_2 = R$.

• So we have
$$A \begin{bmatrix} a'_1 \\ a'_2 \end{bmatrix} = \begin{bmatrix} 0 \\ R \end{bmatrix}$$
 where $A = \begin{bmatrix} u_1 & u_2 \\ u'_1 & u'_2 \end{bmatrix}$.

- Since u_1, u_2 are linearly independent det $(A) \neq 0$ (?!) This determinant is denoted as $W(x) = u_1u'_2 u_2u'_1$ and is called the Wronskian of u_1, u_2 (after a crazy Polish chap).
- Thus $a'_1 = \frac{-u_2 R(x)}{W(x)}$ and $a'_2 = \frac{u_1 R(x)}{W(x)}$. Integrating these, we get the desired particular solution.

포사 포

• Solve
$$y'' + y = \tan(x)$$
 on $(\frac{-\pi}{2}, \frac{\pi}{2})$.

포사 포

- Solve $y'' + y = \tan(x)$ on $(\frac{-\pi}{2}, \frac{\pi}{2})$.
- First we solve

æ

토 🕨 🗶 토 🕨

- Solve $y'' + y = \tan(x)$ on $(\frac{-\pi}{2}, \frac{\pi}{2})$.
- First we solve y'' + y = 0. In this case

∃ ► < ∃ ►</p>

э

- Solve $y'' + y = \tan(x)$ on $(\frac{-\pi}{2}, \frac{\pi}{2})$.
- First we solve y'' + y = 0. In this case our methods easily produce

- Solve $y'' + y = \tan(x)$ on $(\frac{-\pi}{2}, \frac{\pi}{2})$.
- First we solve y" + y = 0. In this case our methods easily produce y = c₁ cos(x) + c₂ sin(x).

- Solve $y'' + y = \tan(x)$ on $(\frac{-\pi}{2}, \frac{\pi}{2})$.
- First we solve y" + y = 0. In this case our methods easily produce y = c₁ cos(x) + c₂ sin(x).
- Now we attempt

- Solve $y'' + y = \tan(x)$ on $(\frac{-\pi}{2}, \frac{\pi}{2})$.
- First we solve y" + y = 0. In this case our methods easily produce y = c₁ cos(x) + c₂ sin(x).
- Now we attempt variation of parameters:

- Solve $y'' + y = \tan(x)$ on $(\frac{-\pi}{2}, \frac{\pi}{2})$.
- First we solve y" + y = 0. In this case our methods easily produce y = c₁ cos(x) + c₂ sin(x).
- Now we attempt variation of parameters: $y_1 = a_1(x)\cos(x) + a_2(x)\sin(x).$

- Solve $y'' + y = \tan(x)$ on $(\frac{-\pi}{2}, \frac{\pi}{2})$.
- First we solve y" + y = 0. In this case our methods easily produce y = c₁ cos(x) + c₂ sin(x).
- Now we attempt variation of parameters:
 y₁ = a₁(x) cos(x) + a₂(x) sin(x). The Wronskian of cos(x), sin(x) is

- Solve $y'' + y = \tan(x)$ on $(\frac{-\pi}{2}, \frac{\pi}{2})$.
- First we solve y" + y = 0. In this case our methods easily produce y = c₁ cos(x) + c₂ sin(x).
- Now we attempt variation of parameters:
 y₁ = a₁(x) cos(x) + a₂(x) sin(x). The Wronskian of cos(x), sin(x) is W(x) = cos²(x) + sin²(x) = 1.

- Solve $y'' + y = \tan(x)$ on $(\frac{-\pi}{2}, \frac{\pi}{2})$.
- First we solve y" + y = 0. In this case our methods easily produce y = c₁ cos(x) + c₂ sin(x).
- Now we attempt variation of parameters:
 y₁ = a₁(x) cos(x) + a₂(x) sin(x). The Wronskian of cos(x), sin(x) is W(x) = cos²(x) + sin²(x) = 1.
- Hence $a'_1 = -\sin(x)\tan(x)$ and $a'_2 = \cos(x)\tan(x) = \sin(x)$.

- Solve $y'' + y = \tan(x)$ on $(\frac{-\pi}{2}, \frac{\pi}{2})$.
- First we solve y" + y = 0. In this case our methods easily produce y = c₁ cos(x) + c₂ sin(x).
- Now we attempt variation of parameters:
 y₁ = a₁(x) cos(x) + a₂(x) sin(x). The Wronskian of cos(x), sin(x) is W(x) = cos²(x) + sin²(x) = 1.
- Hence $a'_1 = -\sin(x)\tan(x)$ and $a'_2 = \cos(x)\tan(x) = \sin(x)$. Thus $a_2 = -\cos(x)$ and

- Solve $y'' + y = \tan(x)$ on $(\frac{-\pi}{2}, \frac{\pi}{2})$.
- First we solve y" + y = 0. In this case our methods easily produce y = c₁ cos(x) + c₂ sin(x).
- Now we attempt variation of parameters:
 y₁ = a₁(x) cos(x) + a₂(x) sin(x). The Wronskian of cos(x), sin(x) is W(x) = cos²(x) + sin²(x) = 1.
- Hence $a'_1 = -\sin(x)\tan(x)$ and $a'_2 = \cos(x)\tan(x) = \sin(x)$. Thus $a_2 = -\cos(x)$ and $a_1 = \int (-\sec(x) + \cos(x)) = \sin(x) - \ln|\sec(x) + \tan(x)|$.

- Solve $y'' + y = \tan(x)$ on $(\frac{-\pi}{2}, \frac{\pi}{2})$.
- First we solve y" + y = 0. In this case our methods easily produce y = c₁ cos(x) + c₂ sin(x).
- Now we attempt variation of parameters:
 y₁ = a₁(x) cos(x) + a₂(x) sin(x). The Wronskian of cos(x), sin(x) is W(x) = cos²(x) + sin²(x) = 1.
- Hence $a'_1 = -\sin(x)\tan(x)$ and $a'_2 = \cos(x)\tan(x) = \sin(x)$. Thus $a_2 = -\cos(x)$ and $a_1 = \int (-\sec(x) + \cos(x)) = \sin(x) - \ln|\sec(x) + \tan(x)|$.
- Therefore

э

- Solve $y'' + y = \tan(x)$ on $(\frac{-\pi}{2}, \frac{\pi}{2})$.
- First we solve y" + y = 0. In this case our methods easily produce y = c₁ cos(x) + c₂ sin(x).
- Now we attempt variation of parameters:
 y₁ = a₁(x) cos(x) + a₂(x) sin(x). The Wronskian of cos(x), sin(x) is W(x) = cos²(x) + sin²(x) = 1.
- Hence $a'_1 = -\sin(x)\tan(x)$ and $a'_2 = \cos(x)\tan(x) = \sin(x)$. Thus $a_2 = -\cos(x)$ and $a_1 = \int (-\sec(x) + \cos(x)) = \sin(x) - \ln|\sec(x) + \tan(x)|$.
- Therefore the general solution is

- Solve $y'' + y = \tan(x)$ on $(\frac{-\pi}{2}, \frac{\pi}{2})$.
- First we solve y" + y = 0. In this case our methods easily produce y = c₁ cos(x) + c₂ sin(x).
- Now we attempt variation of parameters:
 y₁ = a₁(x) cos(x) + a₂(x) sin(x). The Wronskian of cos(x), sin(x) is W(x) = cos²(x) + sin²(x) = 1.
- Hence $a'_1 = -\sin(x)\tan(x)$ and $a'_2 = \cos(x)\tan(x) = \sin(x)$. Thus $a_2 = -\cos(x)$ and $a_1 = \int (-\sec(x) + \cos(x)) = \sin(x) - \ln|\sec(x) + \tan(x)|$.
- Therefore the general solution is $y = c_1 \cos(x) + c_2 \sin(x) - \cos(x) \ln |\sec(x) + \tan(x)|.$

• • = • • = •

• The above procedure

• The above procedure is painful to implement

• The above procedure is painful to implement in general.

• The above procedure is painful to implement in general. Suppose *R* is

• The above procedure is painful to implement in general. Suppose *R* is a polynomial of

• The above procedure is painful to implement in general. Suppose *R* is a polynomial of degree *n*

• The above procedure is painful to implement in general. Suppose R is a polynomial of degree n and $Q \neq 0$.

- The above procedure is painful to implement in general. Suppose R is a polynomial of degree n and $Q \neq 0$.
- We can try

- The above procedure is painful to implement in general. Suppose R is a polynomial of degree n and $Q \neq 0$.
- We can try $y_1 = \sum_{k=0}^n a_k x^k$.

- The above procedure is painful to implement in general. Suppose R is a polynomial of degree n and $Q \neq 0$.
- We can try $y_1 = \sum_{k=0}^n a_k x^k$.
- For instance,
- The above procedure is painful to implement in general. Suppose R is a polynomial of degree n and $Q \neq 0$.
- We can try $y_1 = \sum_{k=0}^n a_k x^k$.
- For instance, solve $y'' + y = x^3$.

- The above procedure is painful to implement in general. Suppose R is a polynomial of degree n and $Q \neq 0$.
- We can try $y_1 = \sum_{k=0}^n a_k x^k$.
- For instance, solve $y'' + y = x^3$. Let's try

- The above procedure is painful to implement in general. Suppose R is a polynomial of degree n and $Q \neq 0$.
- We can try $y_1 = \sum_{k=0}^n a_k x^k$.
- For instance, solve $y'' + y = x^3$. Let's try $y_1 = Ax^3 + Bx^2 + Cx + D$.

- The above procedure is painful to implement in general. Suppose R is a polynomial of degree n and $Q \neq 0$.
- We can try $y_1 = \sum_{k=0}^n a_k x^k$.
- For instance, solve $y'' + y = x^3$. Let's try $y_1 = Ax^3 + Bx^2 + Cx + D$. Then A = 1, B = 0, C = -6, D = 0.

- The above procedure is painful to implement in general. Suppose R is a polynomial of degree n and $Q \neq 0$.
- We can try $y_1 = \sum_{k=0}^n a_k x^k$.
- For instance, solve $y'' + y = x^3$. Let's try $y_1 = Ax^3 + Bx^2 + Cx + D$. Then A = 1, B = 0, C = -6, D = 0. Thus $y_1 = x^3 - 6x$ is

- The above procedure is painful to implement in general. Suppose R is a polynomial of degree n and $Q \neq 0$.
- We can try $y_1 = \sum_{k=0}^n a_k x^k$.
- For instance, solve $y'' + y = x^3$. Let's try $y_1 = Ax^3 + Bx^2 + Cx + D$. Then A = 1, B = 0, C = -6, D = 0. Thus $y_1 = x^3 - 6x$ is a particular solution.

8/10

- The above procedure is painful to implement in general. Suppose R is a polynomial of degree n and $Q \neq 0$.
- We can try $y_1 = \sum_{k=0}^n a_k x^k$.
- For instance, solve $y'' + y = x^3$. Let's try $y_1 = Ax^3 + Bx^2 + Cx + D$. Then A = 1, B = 0, C = -6, D = 0. Thus $y_1 = x^3 - 6x$ is a particular solution. The general solution is

- The above procedure is painful to implement in general. Suppose R is a polynomial of degree n and $Q \neq 0$.
- We can try $y_1 = \sum_{k=0}^n a_k x^k$.
- For instance, solve $y'' + y = x^3$. Let's try $y_1 = Ax^3 + Bx^2 + Cx + D$. Then A = 1, B = 0, C = -6, D = 0. Thus $y_1 = x^3 - 6x$ is a particular solution. The general solution is $y = x^3 - 6x + c_1 \cos(x) + c_2 \sin(x)$.

- The above procedure is painful to implement in general. Suppose R is a polynomial of degree n and $Q \neq 0$.
- We can try $y_1 = \sum_{k=0}^n a_k x^k$.
- For instance, solve $y'' + y = x^3$. Let's try $y_1 = Ax^3 + Bx^2 + Cx + D$. Then A = 1, B = 0, C = -6, D = 0. Thus $y_1 = x^3 - 6x$ is a particular solution. The general solution is $y = x^3 - 6x + c_1 \cos(x) + c_2 \sin(x)$.
- On the other hand,

- The above procedure is painful to implement in general. Suppose R is a polynomial of degree n and $Q \neq 0$.
- We can try $y_1 = \sum_{k=0}^n a_k x^k$.
- For instance, solve $y'' + y = x^3$. Let's try $y_1 = Ax^3 + Bx^2 + Cx + D$. Then A = 1, B = 0, C = -6, D = 0. Thus $y_1 = x^3 - 6x$ is a particular solution. The general solution is $y = x^3 - 6x + c_1 \cos(x) + c_2 \sin(x)$.
- On the other hand, variation of parameters leads

- The above procedure is painful to implement in general. Suppose R is a polynomial of degree n and $Q \neq 0$.
- We can try $y_1 = \sum_{k=0}^n a_k x^k$.
- For instance, solve $y'' + y = x^3$. Let's try $y_1 = Ax^3 + Bx^2 + Cx + D$. Then A = 1, B = 0, C = -6, D = 0. Thus $y_1 = x^3 - 6x$ is a particular solution. The general solution is $y = x^3 - 6x + c_1 \cos(x) + c_2 \sin(x)$.
- On the other hand, variation of parameters leads to annoying integrals like

- The above procedure is painful to implement in general. Suppose R is a polynomial of degree n and $Q \neq 0$.
- We can try $y_1 = \sum_{k=0}^n a_k x^k$.
- For instance, solve $y'' + y = x^3$. Let's try $y_1 = Ax^3 + Bx^2 + Cx + D$. Then A = 1, B = 0, C = -6, D = 0. Thus $y_1 = x^3 - 6x$ is a particular solution. The general solution is $y = x^3 - 6x + c_1 \cos(x) + c_2 \sin(x)$.
- On the other hand, variation of parameters leads to annoying integrals like ∫ x³ cos(x).

æ

• Suppose
$$R = p(x)e^{mx}$$
 where

æ

• Suppose $R = p(x)e^{mx}$ where $m \in \mathbb{R}$ and

듣게 세르게

• Suppose $R = p(x)e^{mx}$ where $m \in \mathbb{R}$ and p(x) is a polynomial

문에 세문에

• Suppose $R = p(x)e^{mx}$ where $m \in \mathbb{R}$ and p(x) is a polynomial of degree n.

3 D (3 D)

- Suppose $R = p(x)e^{mx}$ where $m \in \mathbb{R}$ and p(x) is a polynomial of degree n.
- We first try

• Suppose $R = p(x)e^{mx}$ where $m \in \mathbb{R}$ and p(x) is a polynomial of degree n.

• We first try
$$y(x) = u(x)e^{mx}$$
.

글 🖌 🔺 글 🕨

- Suppose $R = p(x)e^{mx}$ where $m \in \mathbb{R}$ and p(x) is a polynomial of degree n.
- We first try $y(x) = u(x)e^{mx}$. Then the ODE for

- Suppose $R = p(x)e^{mx}$ where $m \in \mathbb{R}$ and p(x) is a polynomial of degree n.
- We first try $y(x) = u(x)e^{mx}$. Then the ODE for u is

- Suppose $R = p(x)e^{mx}$ where $m \in \mathbb{R}$ and p(x) is a polynomial of degree n.
- We first try $y(x) = u(x)e^{mx}$. Then the ODE for *u* is $u'' + (2m + P)u' + (m^2 + Pm + Q)u = p(x)$.

- Suppose $R = p(x)e^{mx}$ where $m \in \mathbb{R}$ and p(x) is a polynomial of degree n.
- We first try $y(x) = u(x)e^{mx}$. Then the ODE for u is $u'' + (2m + P)u' + (m^2 + Pm + Q)u = p(x)$. This equation is akin

- Suppose $R = p(x)e^{mx}$ where $m \in \mathbb{R}$ and p(x) is a polynomial of degree n.
- We first try $y(x) = u(x)e^{mx}$. Then the ODE for u is $u'' + (2m + P)u' + (m^2 + Pm + Q)u = p(x)$. This equation is akin to the first case

- Suppose $R = p(x)e^{mx}$ where $m \in \mathbb{R}$ and p(x) is a polynomial of degree n.
- We first try $y(x) = u(x)e^{mx}$. Then the ODE for u is $u'' + (2m + P)u' + (m^2 + Pm + Q)u = p(x)$. This equation is akin to the first case and hence we can try a

- Suppose $R = p(x)e^{mx}$ where $m \in \mathbb{R}$ and p(x) is a polynomial of degree n.
- We first try $y(x) = u(x)e^{mx}$. Then the ODE for u is $u'' + (2m + P)u' + (m^2 + Pm + Q)u = p(x)$. This equation is akin to the first case and hence we can try a polynomial for u.

- Suppose $R = p(x)e^{mx}$ where $m \in \mathbb{R}$ and p(x) is a polynomial of degree n.
- We first try $y(x) = u(x)e^{mx}$. Then the ODE for u is $u'' + (2m + P)u' + (m^2 + Pm + Q)u = p(x)$. This equation is akin to the first case and hence we can try a polynomial for u. Clearly if $m^2 + Pm + Q \neq 0$

- Suppose $R = p(x)e^{mx}$ where $m \in \mathbb{R}$ and p(x) is a polynomial of degree n.
- We first try $y(x) = u(x)e^{mx}$. Then the ODE for u is $u'' + (2m + P)u' + (m^2 + Pm + Q)u = p(x)$. This equation is akin to the first case and hence we can try a polynomial for u. Clearly if $m^2 + Pm + Q \neq 0$ we ought to try

- Suppose $R = p(x)e^{mx}$ where $m \in \mathbb{R}$ and p(x) is a polynomial of degree n.
- We first try $y(x) = u(x)e^{mx}$. Then the ODE for u is $u'' + (2m + P)u' + (m^2 + Pm + Q)u = p(x)$. This equation is akin to the first case and hence we can try a polynomial for u. Clearly if $m^2 + Pm + Q \neq 0$ we ought to try a degree npolynomial.

- Suppose $R = p(x)e^{mx}$ where $m \in \mathbb{R}$ and p(x) is a polynomial of degree n.
- We first try $y(x) = u(x)e^{mx}$. Then the ODE for u is $u'' + (2m + P)u' + (m^2 + Pm + Q)u = p(x)$. This equation is akin to the first case and hence we can try a polynomial for u. Clearly if $m^2 + Pm + Q \neq 0$ we ought to try a degree npolynomial. If it is 0 and

- Suppose $R = p(x)e^{mx}$ where $m \in \mathbb{R}$ and p(x) is a polynomial of degree n.
- We first try $y(x) = u(x)e^{mx}$. Then the ODE for u is $u'' + (2m + P)u' + (m^2 + Pm + Q)u = p(x)$. This equation is akin to the first case and hence we can try a polynomial for u. Clearly if $m^2 + Pm + Q \neq 0$ we ought to try a degree npolynomial. If it is 0 and 2m + P is not zero,

- Suppose $R = p(x)e^{mx}$ where $m \in \mathbb{R}$ and p(x) is a polynomial of degree n.
- We first try $y(x) = u(x)e^{mx}$. Then the ODE for u is $u'' + (2m + P)u' + (m^2 + Pm + Q)u = p(x)$. This equation is akin to the first case and hence we can try a polynomial for u. Clearly if $m^2 + Pm + Q \neq 0$ we ought to try a degree npolynomial. If it is 0 and 2m + P is not zero, then a degree n + 1 polynomial.

9/10

- Suppose $R = p(x)e^{mx}$ where $m \in \mathbb{R}$ and p(x) is a polynomial of degree n.
- We first try $y(x) = u(x)e^{mx}$. Then the ODE for u is $u'' + (2m + P)u' + (m^2 + Pm + Q)u = p(x)$. This equation is akin to the first case and hence we can try a polynomial for u. Clearly if $m^2 + Pm + Q \neq 0$ we ought to try a degree npolynomial. If it is 0 and 2m + P is not zero, then a degree n + 1 polynomial. If both are zero,

9/10

- Suppose $R = p(x)e^{mx}$ where $m \in \mathbb{R}$ and p(x) is a polynomial of degree n.
- We first try $y(x) = u(x)e^{mx}$. Then the ODE for u is $u'' + (2m + P)u' + (m^2 + Pm + Q)u = p(x)$. This equation is akin to the first case and hence we can try a polynomial for u. Clearly if $m^2 + Pm + Q \neq 0$ we ought to try a degree npolynomial. If it is 0 and 2m + P is not zero, then a degree n + 1 polynomial. If both are zero, then a degree n + 2polynomial.

- Suppose $R = p(x)e^{mx}$ where $m \in \mathbb{R}$ and p(x) is a polynomial of degree n.
- We first try $y(x) = u(x)e^{mx}$. Then the ODE for u is $u'' + (2m + P)u' + (m^2 + Pm + Q)u = p(x)$. This equation is akin to the first case and hence we can try a polynomial for u. Clearly if $m^2 + Pm + Q \neq 0$ we ought to try a degree n polynomial. If it is 0 and 2m + P is not zero, then a degree n + 1 polynomial. If both are zero, then a degree n + 2 polynomial.
- Find a particular solution

- Suppose $R = p(x)e^{mx}$ where $m \in \mathbb{R}$ and p(x) is a polynomial of degree n.
- We first try $y(x) = u(x)e^{mx}$. Then the ODE for u is $u'' + (2m + P)u' + (m^2 + Pm + Q)u = p(x)$. This equation is akin to the first case and hence we can try a polynomial for u. Clearly if $m^2 + Pm + Q \neq 0$ we ought to try a degree n polynomial. If it is 0 and 2m + P is not zero, then a degree n + 1 polynomial. If both are zero, then a degree n + 2 polynomial.
- Find a particular solution to $y'' + y = xe^{3x}$.
- Suppose $R = p(x)e^{mx}$ where $m \in \mathbb{R}$ and p(x) is a polynomial of degree n.
- We first try $y(x) = u(x)e^{mx}$. Then the ODE for u is $u'' + (2m + P)u' + (m^2 + Pm + Q)u = p(x)$. This equation is akin to the first case and hence we can try a polynomial for u. Clearly if $m^2 + Pm + Q \neq 0$ we ought to try a degree npolynomial. If it is 0 and 2m + P is not zero, then a degree n + 1 polynomial. If both are zero, then a degree n + 2polynomial.
- Find a particular solution to $y'' + y = xe^{3x}$. In this case

- Suppose $R = p(x)e^{mx}$ where $m \in \mathbb{R}$ and p(x) is a polynomial of degree n.
- We first try $y(x) = u(x)e^{mx}$. Then the ODE for u is $u'' + (2m + P)u' + (m^2 + Pm + Q)u = p(x)$. This equation is akin to the first case and hence we can try a polynomial for u. Clearly if $m^2 + Pm + Q \neq 0$ we ought to try a degree n polynomial. If it is 0 and 2m + P is not zero, then a degree n + 1 polynomial. If both are zero, then a degree n + 2 polynomial.
- Find a particular solution to $y'' + y = xe^{3x}$. In this case m = 3 and hence

- Suppose $R = p(x)e^{mx}$ where $m \in \mathbb{R}$ and p(x) is a polynomial of degree n.
- We first try $y(x) = u(x)e^{mx}$. Then the ODE for u is $u'' + (2m + P)u' + (m^2 + Pm + Q)u = p(x)$. This equation is akin to the first case and hence we can try a polynomial for u. Clearly if $m^2 + Pm + Q \neq 0$ we ought to try a degree npolynomial. If it is 0 and 2m + P is not zero, then a degree n + 1 polynomial. If both are zero, then a degree n + 2polynomial.
- Find a particular solution to $y'' + y = xe^{3x}$. In this case m = 3 and hence 2m + P = 6 and $m^2 + Pm + Q = 10$.

- Suppose $R = p(x)e^{mx}$ where $m \in \mathbb{R}$ and p(x) is a polynomial of degree n.
- We first try $y(x) = u(x)e^{mx}$. Then the ODE for u is $u'' + (2m + P)u' + (m^2 + Pm + Q)u = p(x)$. This equation is akin to the first case and hence we can try a polynomial for u. Clearly if $m^2 + Pm + Q \neq 0$ we ought to try a degree npolynomial. If it is 0 and 2m + P is not zero, then a degree n + 1 polynomial. If both are zero, then a degree n + 2polynomial.
- Find a particular solution to $y'' + y = xe^{3x}$. In this case m = 3 and hence 2m + P = 6 and $m^2 + Pm + Q = 10$. So let's try u = Ax + B.

- Suppose $R = p(x)e^{mx}$ where $m \in \mathbb{R}$ and p(x) is a polynomial of degree n.
- We first try $y(x) = u(x)e^{mx}$. Then the ODE for u is $u'' + (2m + P)u' + (m^2 + Pm + Q)u = p(x)$. This equation is akin to the first case and hence we can try a polynomial for u. Clearly if $m^2 + Pm + Q \neq 0$ we ought to try a degree npolynomial. If it is 0 and 2m + P is not zero, then a degree n + 1 polynomial. If both are zero, then a degree n + 2polynomial.
- Find a particular solution to $y'' + y = xe^{3x}$. In this case m = 3 and hence 2m + P = 6 and $m^2 + Pm + Q = 10$. So let's try u = Ax + B. It turns out that

- Suppose $R = p(x)e^{mx}$ where $m \in \mathbb{R}$ and p(x) is a polynomial of degree n.
- We first try $y(x) = u(x)e^{mx}$. Then the ODE for u is $u'' + (2m + P)u' + (m^2 + Pm + Q)u = p(x)$. This equation is akin to the first case and hence we can try a polynomial for u. Clearly if $m^2 + Pm + Q \neq 0$ we ought to try a degree npolynomial. If it is 0 and 2m + P is not zero, then a degree n + 1 polynomial. If both are zero, then a degree n + 2polynomial.
- Find a particular solution to $y'' + y = xe^{3x}$. In this case m = 3 and hence 2m + P = 6 and $m^2 + Pm + Q = 10$. So let's try u = Ax + B. It turns out that $y_1 = \frac{e^{3x}(5x-3)}{50}$.

æ

• Suppose a particle

돈 돈 돈

• Suppose a particle of mass 1 is under

• Suppose a particle of mass 1 is under the influence of a potential *V*(*x*).

Suppose a particle of mass 1 is under the influence of a potential V(x). Suppose it is at stable equilibrium at x = 0.

Suppose a particle of mass 1 is under the influence of a potential V(x). Suppose it is at stable equilibrium at x = 0. What will happen

Suppose a particle of mass 1 is under the influence of a potential V(x). Suppose it is at stable equilibrium at x = 0. What will happen if we perturb it?

Suppose a particle of mass 1 is under the influence of a potential V(x). Suppose it is at stable equilibrium at x = 0. What will happen if we perturb it? V(x) ≈ V(0) + k²/2 x².

Suppose a particle of mass 1 is under the influence of a potential V(x). Suppose it is at stable equilibrium at x = 0. What will happen if we perturb it? V(x) ≈ V(0) + k²/2 x². Since F = -V',

Suppose a particle of mass 1 is under the influence of a potential V(x). Suppose it is at stable equilibrium at x = 0. What will happen if we perturb it? V(x) ≈ V(0) + k²/2 x². Since F = -V', F = -k²x.

- Suppose a particle of mass 1 is under the influence of a potential V(x). Suppose it is at stable equilibrium at x = 0. What will happen if we perturb it? V(x) ≈ V(0) + k²/2 x². Since F = -V', F = -k²x.
- Thus $x'' = -k^2 x$.

- Suppose a particle of mass 1 is under the influence of a potential V(x). Suppose it is at stable equilibrium at x = 0. What will happen if we perturb it? V(x) ≈ V(0) + k²/2 x². Since F = -V', F = -k²x.
- Thus $x'' = -k^2 x$. This equation can be

- Suppose a particle of mass 1 is under the influence of a potential V(x). Suppose it is at stable equilibrium at x = 0. What will happen if we perturb it? V(x) ≈ V(0) + k²/2 x². Since F = -V', F = -k²x.
- Thus $x'' = -k^2 x$. This equation can be solved to yield

- Suppose a particle of mass 1 is under the influence of a potential V(x). Suppose it is at stable equilibrium at x = 0. What will happen if we perturb it? $V(x) \approx V(0) + \frac{k^2}{2}x^2$. Since F = -V', $F = -k^2x$.
- Thus $x'' = -k^2 x$. This equation can be solved to yield $x = A\cos(kt) + B\sin(kt)$.

- Suppose a particle of mass 1 is under the influence of a potential V(x). Suppose it is at stable equilibrium at x = 0. What will happen if we perturb it? V(x) ≈ V(0) + k²/2 x². Since F = -V', F = -k²x.
- Thus $x'' = -k^2 x$. This equation can be solved to yield $x = A\cos(kt) + B\sin(kt)$. This is a Harmonic Oscillator.

- Suppose a particle of mass 1 is under the influence of a potential V(x). Suppose it is at stable equilibrium at x = 0. What will happen if we perturb it? V(x) ≈ V(0) + k²/2 x². Since F = -V', F = -k²x.
- Thus $x'' = -k^2 x$. This equation can be solved to yield $x = A\cos(kt) + B\sin(kt)$. This is a Harmonic Oscillator.
- What if

- Suppose a particle of mass 1 is under the influence of a potential V(x). Suppose it is at stable equilibrium at x = 0. What will happen if we perturb it? V(x) ≈ V(0) + k²/2 x². Since F = -V', F = -k²x.
- Thus $x'' = -k^2 x$. This equation can be solved to yield $x = A\cos(kt) + B\sin(kt)$. This is a Harmonic Oscillator.
- What if the particle is subject to

- Suppose a particle of mass 1 is under the influence of a potential V(x). Suppose it is at stable equilibrium at x = 0. What will happen if we perturb it? $V(x) \approx V(0) + \frac{k^2}{2}x^2$. Since F = -V', $F = -k^2x$.
- Thus $x'' = -k^2 x$. This equation can be solved to yield $x = A\cos(kt) + B\sin(kt)$. This is a Harmonic Oscillator.
- What if the particle is subject to air resistance?

- Suppose a particle of mass 1 is under the influence of a potential V(x). Suppose it is at stable equilibrium at x = 0. What will happen if we perturb it? V(x) ≈ V(0) + k²/2 x². Since F = -V', F = -k²x.
- Thus $x'' = -k^2 x$. This equation can be solved to yield $x = A\cos(kt) + B\sin(kt)$. This is a Harmonic Oscillator.
- What if the particle is subject to air resistance? Stokes' law says that

- Suppose a particle of mass 1 is under the influence of a potential V(x). Suppose it is at stable equilibrium at x = 0. What will happen if we perturb it? V(x) ≈ V(0) + k²/2 x². Since F = -V', F = -k²x.
- Thus $x'' = -k^2 x$. This equation can be solved to yield $x = A\cos(kt) + B\sin(kt)$. This is a Harmonic Oscillator.
- What if the particle is subject to air resistance? Stokes' law says that the viscous drag is F = -2cx'.

- Suppose a particle of mass 1 is under the influence of a potential V(x). Suppose it is at stable equilibrium at x = 0. What will happen if we perturb it? V(x) ≈ V(0) + k²/2 x². Since F = -V', F = -k²x.
- Thus $x'' = -k^2 x$. This equation can be solved to yield $x = A\cos(kt) + B\sin(kt)$. This is a Harmonic Oscillator.
- What if the particle is subject to air resistance? Stokes' law says that the viscous drag is F = -2cx'.

• Thus
$$x'' + 2cx' + k^2x = 0$$
.

- Suppose a particle of mass 1 is under the influence of a potential V(x). Suppose it is at stable equilibrium at x = 0. What will happen if we perturb it? $V(x) \approx V(0) + \frac{k^2}{2}x^2$. Since F = -V', $F = -k^2x$.
- Thus $x'' = -k^2 x$. This equation can be solved to yield $x = A\cos(kt) + B\sin(kt)$. This is a Harmonic Oscillator.
- What if the particle is subject to air resistance? Stokes' law says that the viscous drag is F = -2cx'.
- Thus $x'' + 2cx' + k^2x = 0$. Further, what if

- Suppose a particle of mass 1 is under the influence of a potential V(x). Suppose it is at stable equilibrium at x = 0. What will happen if we perturb it? $V(x) \approx V(0) + \frac{k^2}{2}x^2$. Since F = -V', $F = -k^2x$.
- Thus $x'' = -k^2 x$. This equation can be solved to yield $x = A\cos(kt) + B\sin(kt)$. This is a Harmonic Oscillator.
- What if the particle is subject to air resistance? Stokes' law says that the viscous drag is F = -2cx'.
- Thus $x'' + 2cx' + k^2x = 0$. Further, what if we apply another

- Suppose a particle of mass 1 is under the influence of a potential V(x). Suppose it is at stable equilibrium at x = 0. What will happen if we perturb it? $V(x) \approx V(0) + \frac{k^2}{2}x^2$. Since F = -V', $F = -k^2x$.
- Thus $x'' = -k^2 x$. This equation can be solved to yield $x = A\cos(kt) + B\sin(kt)$. This is a Harmonic Oscillator.
- What if the particle is subject to air resistance? Stokes' law says that the viscous drag is F = -2cx'.
- Thus $x'' + 2cx' + k^2x = 0$. Further, what if we apply another external time-dependent force F(t) on it?

- Suppose a particle of mass 1 is under the influence of a potential V(x). Suppose it is at stable equilibrium at x = 0. What will happen if we perturb it? $V(x) \approx V(0) + \frac{k^2}{2}x^2$. Since F = -V', $F = -k^2x$.
- Thus $x'' = -k^2 x$. This equation can be solved to yield $x = A\cos(kt) + B\sin(kt)$. This is a Harmonic Oscillator.
- What if the particle is subject to air resistance? Stokes' law says that the viscous drag is F = -2cx'.
- Thus $x'' + 2cx' + k^2x = 0$. Further, what if we apply another external time-dependent force F(t) on it? Then $x'' + 2cx' + k^2x = F(t)$.

- Suppose a particle of mass 1 is under the influence of a potential V(x). Suppose it is at stable equilibrium at x = 0. What will happen if we perturb it? $V(x) \approx V(0) + \frac{k^2}{2}x^2$. Since F = -V', $F = -k^2x$.
- Thus $x'' = -k^2 x$. This equation can be solved to yield $x = A\cos(kt) + B\sin(kt)$. This is a Harmonic Oscillator.
- What if the particle is subject to air resistance? Stokes' law says that the viscous drag is F = -2cx'.
- Thus $x'' + 2cx' + k^2x = 0$. Further, what if we apply another external time-dependent force F(t) on it? Then $x'' + 2cx' + k^2x = F(t)$.
- This equation is precisely

- Suppose a particle of mass 1 is under the influence of a potential V(x). Suppose it is at stable equilibrium at x = 0. What will happen if we perturb it? $V(x) \approx V(0) + \frac{k^2}{2}x^2$. Since F = -V', $F = -k^2x$.
- Thus $x'' = -k^2 x$. This equation can be solved to yield $x = A\cos(kt) + B\sin(kt)$. This is a Harmonic Oscillator.
- What if the particle is subject to air resistance? Stokes' law says that the viscous drag is F = -2cx'.
- Thus $x'' + 2cx' + k^2x = 0$. Further, what if we apply another external time-dependent force F(t) on it? Then $x'' + 2cx' + k^2x = F(t)$.
- This equation is precisely what we have been dealing with.

- Suppose a particle of mass 1 is under the influence of a potential V(x). Suppose it is at stable equilibrium at x = 0. What will happen if we perturb it? $V(x) \approx V(0) + \frac{k^2}{2}x^2$. Since F = -V', $F = -k^2x$.
- Thus $x'' = -k^2 x$. This equation can be solved to yield $x = A\cos(kt) + B\sin(kt)$. This is a Harmonic Oscillator.
- What if the particle is subject to air resistance? Stokes' law says that the viscous drag is F = -2cx'.
- Thus $x'' + 2cx' + k^2x = 0$. Further, what if we apply another external time-dependent force F(t) on it? Then $x'' + 2cx' + k^2x = F(t)$.
- This equation is precisely what we have been dealing with. The key lies in finding

- Suppose a particle of mass 1 is under the influence of a potential V(x). Suppose it is at stable equilibrium at x = 0. What will happen if we perturb it? V(x) ≈ V(0) + k²/2 x². Since F = -V', F = -k²x.
- Thus $x'' = -k^2 x$. This equation can be solved to yield $x = A\cos(kt) + B\sin(kt)$. This is a Harmonic Oscillator.
- What if the particle is subject to air resistance? Stokes' law says that the viscous drag is F = -2cx'.
- Thus x" + 2cx' + k²x = 0. Further, what if we apply another external time-dependent force F(t) on it? Then x" + 2cx' + k²x = F(t).
- This equation is precisely what we have been dealing with. The key lies in finding solutions to

- Suppose a particle of mass 1 is under the influence of a potential V(x). Suppose it is at stable equilibrium at x = 0. What will happen if we perturb it? V(x) ≈ V(0) + k²/2 x². Since F = -V', F = -k²x.
- Thus $x'' = -k^2 x$. This equation can be solved to yield $x = A\cos(kt) + B\sin(kt)$. This is a Harmonic Oscillator.
- What if the particle is subject to air resistance? Stokes' law says that the viscous drag is F = -2cx'.
- Thus $x'' + 2cx' + k^2x = 0$. Further, what if we apply another external time-dependent force F(t) on it? Then $x'' + 2cx' + k^2x = F(t)$.
- This equation is precisely what we have been dealing with. The key lies in finding solutions to the homogeneous problem.