Lecture 19 - UM 102 (Spring 2021)

Vamsi Pritham Pingali

IISc

Recap

Recap

- Solved second-order
- Solved second-order linear homogeneous
- Solved second-order linear homogeneous ODE with constant-coefficients.
- Solved second-order linear homogeneous ODE with constant-coefficients.
- Solved first-order
- Solved second-order linear homogeneous ODE with constant-coefficients.
- Solved first-order linear ODE.
- Solved second-order linear homogeneous ODE with constant-coefficients.
- Solved first-order linear ODE.
- Made some remarks about
- Solved second-order linear homogeneous ODE with constant-coefficients.
- Solved first-order linear ODE.
- Made some remarks about nonlinear separable ODE.
- Solved second-order linear homogeneous ODE with constant-coefficients.
- Solved first-order linear ODE.
- Made some remarks about nonlinear separable ODE.
- Defined equilibria.

Phase diagrams and trajectories (Not for exams)

Phase diagrams and trajectories (Not for exams)

- If $y^{\prime}=g(y)$,
- If $y^{\prime}=g(y)$, one can draw tiny lines
- If $y^{\prime}=g(y)$, one can draw tiny lines indicating the slope of
- If $y^{\prime}=g(y)$, one can draw tiny lines indicating the slope of a potential solution at
- If $y^{\prime}=g(y)$, one can draw tiny lines indicating the slope of a potential solution at every point (x, y) in \mathbb{R}^{2}.
- If $y^{\prime}=g(y)$, one can draw tiny lines indicating the slope of a potential solution at every point (x, y) in \mathbb{R}^{2}. These are called phase diagrams. (
- If $y^{\prime}=g(y)$, one can draw tiny lines indicating the slope of a potential solution at every point (x, y) in \mathbb{R}^{2}. These are called phase diagrams. (Note that one can do the same even for $y^{\prime}=F(x, y)$.)
- If $y^{\prime}=g(y)$, one can draw tiny lines indicating the slope of a potential solution at every point (x, y) in \mathbb{R}^{2}. These are called phase diagrams. (Note that one can do the same even for $y^{\prime}=F(x, y)$.)
- If $y(0)=y_{0}$,
- If $y^{\prime}=g(y)$, one can draw tiny lines indicating the slope of a potential solution at every point (x, y) in \mathbb{R}^{2}. These are called phase diagrams. (Note that one can do the same even for $y^{\prime}=F(x, y)$.)
- If $y(0)=y_{0}$, one can "flow" along
- If $y^{\prime}=g(y)$, one can draw tiny lines indicating the slope of a potential solution at every point (x, y) in \mathbb{R}^{2}. These are called phase diagrams. (Note that one can do the same even for $y^{\prime}=F(x, y)$.)
- If $y(0)=y_{0}$, one can "flow" along the tiny line at $\left(0, y_{0}\right)$
- If $y^{\prime}=g(y)$, one can draw tiny lines indicating the slope of a potential solution at every point (x, y) in \mathbb{R}^{2}. These are called phase diagrams. (Note that one can do the same even for $\left.y^{\prime}=F(x, y).\right)$
- If $y(0)=y_{0}$, one can "flow" along the tiny line at $\left(0, y_{0}\right)$ for a small time δ,
- If $y^{\prime}=g(y)$, one can draw tiny lines indicating the slope of a potential solution at every point (x, y) in \mathbb{R}^{2}. These are called phase diagrams. (Note that one can do the same even for $y^{\prime}=F(x, y)$.)
- If $y(0)=y_{0}$, one can "flow" along the tiny line at $\left(0, y_{0}\right)$ for a small time δ, and then look at the slope at $\left(\delta, y^{\prime}\right)$
- If $y^{\prime}=g(y)$, one can draw tiny lines indicating the slope of a potential solution at every point (x, y) in \mathbb{R}^{2}. These are called phase diagrams. (Note that one can do the same even for $y^{\prime}=F(x, y)$.)
- If $y(0)=y_{0}$, one can "flow" along the tiny line at $\left(0, y_{0}\right)$ for a small time δ, and then look at the slope at $\left(\delta, y^{\prime}\right)$ and so on.
- If $y^{\prime}=g(y)$, one can draw tiny lines indicating the slope of a potential solution at every point (x, y) in \mathbb{R}^{2}. These are called phase diagrams. (Note that one can do the same even for $y^{\prime}=F(x, y)$.)
- If $y(0)=y_{0}$, one can "flow" along the tiny line at $\left(0, y_{0}\right)$ for a small time δ, and then look at the slope at $\left(\delta, y^{\prime}\right)$ and so on. These curves are called
- If $y^{\prime}=g(y)$, one can draw tiny lines indicating the slope of a potential solution at every point (x, y) in \mathbb{R}^{2}. These are called phase diagrams. (Note that one can do the same even for $\left.y^{\prime}=F(x, y).\right)$
- If $y(0)=y_{0}$, one can "flow" along the tiny line at $\left(0, y_{0}\right)$ for a small time δ, and then look at the slope at $\left(\delta, y^{\prime}\right)$ and so on. These curves are called trajectories of the
- If $y^{\prime}=g(y)$, one can draw tiny lines indicating the slope of a potential solution at every point (x, y) in \mathbb{R}^{2}. These are called phase diagrams. (Note that one can do the same even for $y^{\prime}=F(x, y)$.)
- If $y(0)=y_{0}$, one can "flow" along the tiny line at $\left(0, y_{0}\right)$ for a small time δ, and then look at the slope at (δ, y^{\prime}) and so on. These curves are called trajectories of the "vector field" associated to the ODE.
- If $y^{\prime}=g(y)$, one can draw tiny lines indicating the slope of a potential solution at every point (x, y) in \mathbb{R}^{2}. These are called phase diagrams. (Note that one can do the same even for $y^{\prime}=F(x, y)$.)
- If $y(0)=y_{0}$, one can "flow" along the tiny line at $\left(0, y_{0}\right)$ for a small time δ, and then look at the slope at $\left(\delta, y^{\prime}\right)$ and so on. These curves are called trajectories of the "vector field" associated to the ODE.
- A qualitative picture of
- If $y^{\prime}=g(y)$, one can draw tiny lines indicating the slope of a potential solution at every point (x, y) in \mathbb{R}^{2}. These are called phase diagrams. (Note that one can do the same even for $\left.y^{\prime}=F(x, y).\right)$
- If $y(0)=y_{0}$, one can "flow" along the tiny line at $\left(0, y_{0}\right)$ for a small time δ, and then look at the slope at (δ, y^{\prime}) and so on. These curves are called trajectories of the "vector field" associated to the ODE.
- A qualitative picture of the solution is gleaned from
- If $y^{\prime}=g(y)$, one can draw tiny lines indicating the slope of a potential solution at every point (x, y) in \mathbb{R}^{2}. These are called phase diagrams. (Note that one can do the same even for $\left.y^{\prime}=F(x, y).\right)$
- If $y(0)=y_{0}$, one can "flow" along the tiny line at $\left(0, y_{0}\right)$ for a small time δ, and then look at the slope at $\left(\delta, y^{\prime}\right)$ and so on. These curves are called trajectories of the "vector field" associated to the ODE.
- A qualitative picture of the solution is gleaned from these phase diagrams and trajectories.
- If $y^{\prime}=g(y)$, one can draw tiny lines indicating the slope of a potential solution at every point (x, y) in \mathbb{R}^{2}. These are called phase diagrams. (Note that one can do the same even for $\left.y^{\prime}=F(x, y).\right)$
- If $y(0)=y_{0}$, one can "flow" along the tiny line at $\left(0, y_{0}\right)$ for a small time δ, and then look at the slope at $\left(\delta, y^{\prime}\right)$ and so on. These curves are called trajectories of the "vector field" associated to the ODE.
- A qualitative picture of the solution is gleaned from these phase diagrams and trajectories.
- For instance,
- If $y^{\prime}=g(y)$, one can draw tiny lines indicating the slope of a potential solution at every point (x, y) in \mathbb{R}^{2}. These are called phase diagrams. (Note that one can do the same even for $\left.y^{\prime}=F(x, y).\right)$
- If $y(0)=y_{0}$, one can "flow" along the tiny line at $\left(0, y_{0}\right)$ for a small time δ, and then look at the slope at $\left(\delta, y^{\prime}\right)$ and so on. These curves are called trajectories of the "vector field" associated to the ODE.
- A qualitative picture of the solution is gleaned from these phase diagrams and trajectories.
- For instance, one can analyse

$$
x^{\prime}=a x(1-x)-h(1+\sin (2 \pi t)) \text { that }
$$

- If $y^{\prime}=g(y)$, one can draw tiny lines indicating the slope of a potential solution at every point (x, y) in \mathbb{R}^{2}. These are called phase diagrams. (Note that one can do the same even for $\left.y^{\prime}=F(x, y).\right)$
- If $y(0)=y_{0}$, one can "flow" along the tiny line at $\left(0, y_{0}\right)$ for a small time δ, and then look at the slope at $\left(\delta, y^{\prime}\right)$ and so on. These curves are called trajectories of the "vector field" associated to the ODE.
- A qualitative picture of the solution is gleaned from these phase diagrams and trajectories.
- For instance, one can analyse $x^{\prime}=a x(1-x)-h(1+\sin (2 \pi t))$ that represents the population of fish
- If $y^{\prime}=g(y)$, one can draw tiny lines indicating the slope of a potential solution at every point (x, y) in \mathbb{R}^{2}. These are called phase diagrams. (Note that one can do the same even for $\left.y^{\prime}=F(x, y).\right)$
- If $y(0)=y_{0}$, one can "flow" along the tiny line at $\left(0, y_{0}\right)$ for a small time δ, and then look at the slope at $\left(\delta, y^{\prime}\right)$ and so on. These curves are called trajectories of the "vector field" associated to the ODE.
- A qualitative picture of the solution is gleaned from these phase diagrams and trajectories.
- For instance, one can analyse $x^{\prime}=a x(1-x)-h(1+\sin (2 \pi t))$ that represents the population of fish with periodic harvesting.
- If $y^{\prime}=g(y)$, one can draw tiny lines indicating the slope of a potential solution at every point (x, y) in \mathbb{R}^{2}. These are called phase diagrams. (Note that one can do the same even for $\left.y^{\prime}=F(x, y).\right)$
- If $y(0)=y_{0}$, one can "flow" along the tiny line at $\left(0, y_{0}\right)$ for a small time δ, and then look at the slope at $\left(\delta, y^{\prime}\right)$ and so on. These curves are called trajectories of the "vector field" associated to the ODE.
- A qualitative picture of the solution is gleaned from these phase diagrams and trajectories.
- For instance, one can analyse $x^{\prime}=a x(1-x)-h(1+\sin (2 \pi t))$ that represents the population of fish with periodic harvesting.

Euler's method (Not for exams)

Euler's method (Not for exams)

- Suppose we want to solve

Euler's method (Not for exams)

- Suppose we want to solve $y^{\prime}=g(y) f(x)$ with $y(0)=y_{0}$

Euler's method (Not for exams)

- Suppose we want to solve $y^{\prime}=g(y) f(x)$ with $y(0)=y_{0}$ numerically. (

Euler's method (Not for exams)

- Suppose we want to solve $y^{\prime}=g(y) f(x)$ with $y(0)=y_{0}$ numerically. (or more generally, $y^{\prime}=F(x, y)$).
- Suppose we want to solve $y^{\prime}=g(y) f(x)$ with $y(0)=y_{0}$ numerically. (or more generally, $y^{\prime}=F(x, y)$).
- Using the intuition from
- Suppose we want to solve $y^{\prime}=g(y) f(x)$ with $y(0)=y_{0}$ numerically. (or more generally, $y^{\prime}=F(x, y)$).
- Using the intuition from phase diagrams, we arrive at
- Suppose we want to solve $y^{\prime}=g(y) f(x)$ with $y(0)=y_{0}$ numerically. (or more generally, $y^{\prime}=F(x, y)$).
- Using the intuition from phase diagrams, we arrive at Euler's iterative method:
- Suppose we want to solve $y^{\prime}=g(y) f(x)$ with $y(0)=y_{0}$ numerically. (or more generally, $y^{\prime}=F(x, y)$).
- Using the intuition from phase diagrams, we arrive at Euler's iterative method: $y_{n+1}=y_{n}+F\left(x_{n}, y_{n}\right) h$ where
- Suppose we want to solve $y^{\prime}=g(y) f(x)$ with $y(0)=y_{0}$ numerically. (or more generally, $y^{\prime}=F(x, y)$).
- Using the intuition from phase diagrams, we arrive at Euler's iterative method: $y_{n+1}=y_{n}+F\left(x_{n}, y_{n}\right) h$ where h is the step-size.
- Suppose we want to solve $y^{\prime}=g(y) f(x)$ with $y(0)=y_{0}$ numerically. (or more generally, $y^{\prime}=F(x, y)$).
- Using the intuition from phase diagrams, we arrive at Euler's iterative method: $y_{n+1}=y_{n}+F\left(x_{n}, y_{n}\right) h$ where h is the step-size. More rigorously,

$$
y(x+h)=y(x)+\int_{x}^{x+h} F(x(t), y(t)) d t .
$$

- Suppose we want to solve $y^{\prime}=g(y) f(x)$ with $y(0)=y_{0}$ numerically. (or more generally, $y^{\prime}=F(x, y)$).
- Using the intuition from phase diagrams, we arrive at Euler's iterative method: $y_{n+1}=y_{n}+F\left(x_{n}, y_{n}\right) h$ where h is the step-size. More rigorously, $y(x+h)=y(x)+\int_{x}^{x+h} F(x(t), y(t)) d t$. This formulation of
- Suppose we want to solve $y^{\prime}=g(y) f(x)$ with $y(0)=y_{0}$ numerically. (or more generally, $y^{\prime}=F(x, y)$).
- Using the intuition from phase diagrams, we arrive at Euler's iterative method: $y_{n+1}=y_{n}+F\left(x_{n}, y_{n}\right) h$ where h is the step-size. More rigorously, $y(x+h)=y(x)+\int_{x}^{x+h} F(x(t), y(t)) d t$. This formulation of an ODE
- Suppose we want to solve $y^{\prime}=g(y) f(x)$ with $y(0)=y_{0}$ numerically. (or more generally, $y^{\prime}=F(x, y)$).
- Using the intuition from phase diagrams, we arrive at Euler's iterative method: $y_{n+1}=y_{n}+F\left(x_{n}, y_{n}\right) h$ where h is the step-size. More rigorously, $y(x+h)=y(x)+\int_{x}^{x+h} F(x(t), y(t)) d t$. This formulation of an ODE as an integral equation
- Suppose we want to solve $y^{\prime}=g(y) f(x)$ with $y(0)=y_{0}$ numerically. (or more generally, $y^{\prime}=F(x, y)$).
- Using the intuition from phase diagrams, we arrive at Euler's iterative method: $y_{n+1}=y_{n}+F\left(x_{n}, y_{n}\right) h$ where h is the step-size. More rigorously, $y(x+h)=y(x)+\int_{x}^{x+h} F(x(t), y(t)) d t$. This formulation of an ODE as an integral equation is useful for
- Suppose we want to solve $y^{\prime}=g(y) f(x)$ with $y(0)=y_{0}$ numerically. (or more generally, $y^{\prime}=F(x, y)$).
- Using the intuition from phase diagrams, we arrive at Euler's iterative method: $y_{n+1}=y_{n}+F\left(x_{n}, y_{n}\right) h$ where h is the step-size. More rigorously, $y(x+h)=y(x)+\int_{x}^{x+h} F(x(t), y(t)) d t$. This formulation of an ODE as an integral equation is useful for computational and theoretical purposes
- Suppose we want to solve $y^{\prime}=g(y) f(x)$ with $y(0)=y_{0}$ numerically. (or more generally, $y^{\prime}=F(x, y)$).
- Using the intuition from phase diagrams, we arrive at Euler's iterative method: $y_{n+1}=y_{n}+F\left(x_{n}, y_{n}\right) h$ where h is the step-size. More rigorously, $y(x+h)=y(x)+\int_{x}^{x+h} F(x(t), y(t)) d t$. This formulation of an ODE as an integral equation is useful for computational and theoretical purposes (i.e. to prove existence and uniqueness for instance).
- Suppose we want to solve $y^{\prime}=g(y) f(x)$ with $y(0)=y_{0}$ numerically. (or more generally, $y^{\prime}=F(x, y)$).
- Using the intuition from phase diagrams, we arrive at Euler's iterative method: $y_{n+1}=y_{n}+F\left(x_{n}, y_{n}\right) h$ where h is the step-size. More rigorously, $y(x+h)=y(x)+\int_{x}^{x+h} F(x(t), y(t)) d t$. This formulation of an ODE as an integral equation is useful for computational and theoretical purposes (i.e. to prove existence and uniqueness for instance). Watch Hidden Figures for instance!
- Suppose we want to solve $y^{\prime}=g(y) f(x)$ with $y(0)=y_{0}$ numerically. (or more generally, $y^{\prime}=F(x, y)$).
- Using the intuition from phase diagrams, we arrive at Euler's iterative method: $y_{n+1}=y_{n}+F\left(x_{n}, y_{n}\right) h$ where h is the step-size. More rigorously,
$y(x+h)=y(x)+\int_{x}^{x+h} F(x(t), y(t)) d t$. This formulation of an ODE as an integral equation is useful for computational and theoretical purposes (i.e. to prove existence and uniqueness for instance). Watch Hidden Figures for instance!
- This method is unfortunately
- Suppose we want to solve $y^{\prime}=g(y) f(x)$ with $y(0)=y_{0}$ numerically. (or more generally, $y^{\prime}=F(x, y)$).
- Using the intuition from phase diagrams, we arrive at Euler's iterative method: $y_{n+1}=y_{n}+F\left(x_{n}, y_{n}\right) h$ where h is the step-size. More rigorously,
$y(x+h)=y(x)+\int_{x}^{x+h} F(x(t), y(t)) d t$. This formulation of an ODE as an integral equation is useful for computational and theoretical purposes (i.e. to prove existence and uniqueness for instance). Watch Hidden Figures for instance!
- This method is unfortunately numerically unstable often, i.e.,
- Suppose we want to solve $y^{\prime}=g(y) f(x)$ with $y(0)=y_{0}$ numerically. (or more generally, $y^{\prime}=F(x, y)$).
- Using the intuition from phase diagrams, we arrive at Euler's iterative method: $y_{n+1}=y_{n}+F\left(x_{n}, y_{n}\right) h$ where h is the step-size. More rigorously,
$y(x+h)=y(x)+\int_{x}^{x+h} F(x(t), y(t)) d t$. This formulation of an ODE as an integral equation is useful for computational and theoretical purposes (i.e. to prove existence and uniqueness for instance). Watch Hidden Figures for instance!
- This method is unfortunately numerically unstable often, i.e., the errors keep building up.
- Suppose we want to solve $y^{\prime}=g(y) f(x)$ with $y(0)=y_{0}$ numerically. (or more generally, $y^{\prime}=F(x, y)$).
- Using the intuition from phase diagrams, we arrive at Euler's iterative method: $y_{n+1}=y_{n}+F\left(x_{n}, y_{n}\right) h$ where h is the step-size. More rigorously,
$y(x+h)=y(x)+\int_{x}^{x+h} F(x(t), y(t)) d t$. This formulation of an ODE as an integral equation is useful for computational and theoretical purposes (i.e. to prove existence and uniqueness for instance). Watch Hidden Figures for instance!
- This method is unfortunately numerically unstable often, i.e., the errors keep building up. There are better methods
- Suppose we want to solve $y^{\prime}=g(y) f(x)$ with $y(0)=y_{0}$ numerically. (or more generally, $y^{\prime}=F(x, y)$).
- Using the intuition from phase diagrams, we arrive at Euler's iterative method: $y_{n+1}=y_{n}+F\left(x_{n}, y_{n}\right) h$ where h is the step-size. More rigorously,
$y(x+h)=y(x)+\int_{x}^{x+h} F(x(t), y(t)) d t$. This formulation of an ODE as an integral equation is useful for computational and theoretical purposes (i.e. to prove existence and uniqueness for instance). Watch Hidden Figures for instance!
- This method is unfortunately numerically unstable often, i.e., the errors keep building up. There are better methods like the Runge-Kutta methods (
- Suppose we want to solve $y^{\prime}=g(y) f(x)$ with $y(0)=y_{0}$ numerically. (or more generally, $y^{\prime}=F(x, y)$).
- Using the intuition from phase diagrams, we arrive at Euler's iterative method: $y_{n+1}=y_{n}+F\left(x_{n}, y_{n}\right) h$ where h is the step-size. More rigorously,
$y(x+h)=y(x)+\int_{x}^{x+h} F(x(t), y(t)) d t$. This formulation of an ODE as an integral equation is useful for computational and theoretical purposes (i.e. to prove existence and uniqueness for instance). Watch Hidden Figures for instance!
- This method is unfortunately numerically unstable often, i.e., the errors keep building up. There are better methods like the Runge-Kutta methods (that replace
- Suppose we want to solve $y^{\prime}=g(y) f(x)$ with $y(0)=y_{0}$ numerically. (or more generally, $y^{\prime}=F(x, y)$).
- Using the intuition from phase diagrams, we arrive at Euler's iterative method: $y_{n+1}=y_{n}+F\left(x_{n}, y_{n}\right) h$ where h is the step-size. More rigorously,
$y(x+h)=y(x)+\int_{x}^{x+h} F(x(t), y(t)) d t$. This formulation of an ODE as an integral equation is useful for computational and theoretical purposes (i.e. to prove existence and uniqueness for instance). Watch Hidden Figures for instance!
- This method is unfortunately numerically unstable often, i.e., the errors keep building up. There are better methods like the Runge-Kutta methods (that replace the slope with a
- Suppose we want to solve $y^{\prime}=g(y) f(x)$ with $y(0)=y_{0}$ numerically. (or more generally, $y^{\prime}=F(x, y)$).
- Using the intuition from phase diagrams, we arrive at Euler's iterative method: $y_{n+1}=y_{n}+F\left(x_{n}, y_{n}\right) h$ where h is the step-size. More rigorously,
$y(x+h)=y(x)+\int_{x}^{x+h} F(x(t), y(t)) d t$. This formulation of an ODE as an integral equation is useful for computational and theoretical purposes (i.e. to prove existence and uniqueness for instance). Watch Hidden Figures for instance!
- This method is unfortunately numerically unstable often, i.e., the errors keep building up. There are better methods like the Runge-Kutta methods (that replace the slope with a weighted sum of slopes)
- Suppose we want to solve $y^{\prime}=g(y) f(x)$ with $y(0)=y_{0}$ numerically. (or more generally, $y^{\prime}=F(x, y)$).
- Using the intuition from phase diagrams, we arrive at Euler's iterative method: $y_{n+1}=y_{n}+F\left(x_{n}, y_{n}\right) h$ where h is the step-size. More rigorously,
$y(x+h)=y(x)+\int_{x}^{x+h} F(x(t), y(t)) d t$. This formulation of an ODE as an integral equation is useful for computational and theoretical purposes (i.e. to prove existence and uniqueness for instance). Watch Hidden Figures for instance!
- This method is unfortunately numerically unstable often, i.e., the errors keep building up. There are better methods like the Runge-Kutta methods (that replace the slope with a weighted sum of slopes) that yield much better error estimates.

Second-order linear inhomogeneous ODE with some constant coefficients (Back to exams)

Second-order linear inhomogeneous ODE with some constant coefficients (Back to exams)

- Now we attempt to solve

Second-order linear inhomogeneous ODE with some constant coefficients (Back to exams)

- Now we attempt to solve $y^{\prime \prime}+P y^{\prime}+Q y=R(x)$ where

Second-order linear inhomogeneous ODE with some constant coefficients (Back to exams)

- Now we attempt to solve $y^{\prime \prime}+P y^{\prime}+Q y=R(x)$ where $P, Q \in \mathbb{R}$ and

Second-order linear inhomogeneous ODE with some constant coefficients (Back to exams)

- Now we attempt to solve $y^{\prime \prime}+P y^{\prime}+Q y=R(x)$ where $P, Q \in \mathbb{R}$ and $R(x)$ is a continuous function.

Second-order linear inhomogeneous ODE with some constant coefficients (Back to exams)

- Now we attempt to solve $y^{\prime \prime}+P y^{\prime}+Q y=R(x)$ where $P, Q \in \mathbb{R}$ and $R(x)$ is a continuous function.
- As earlier,

Second-order linear inhomogeneous ODE with some constant coefficients (Back to exams)

- Now we attempt to solve $y^{\prime \prime}+P y^{\prime}+Q y=R(x)$ where $P, Q \in \mathbb{R}$ and $R(x)$ is a continuous function.
- As earlier, if y_{1} is a particular solution and

Second-order linear inhomogeneous ODE with some constant coefficients (Back to exams)

- Now we attempt to solve $y^{\prime \prime}+P y^{\prime}+Q y=R(x)$ where $P, Q \in \mathbb{R}$ and $R(x)$ is a continuous function.
- As earlier, if y_{1} is a particular solution and y_{2} is any other solution,

Second-order linear inhomogeneous ODE with some constant coefficients (Back to exams)

- Now we attempt to solve $y^{\prime \prime}+P y^{\prime}+Q y=R(x)$ where $P, Q \in \mathbb{R}$ and $R(x)$ is a continuous function.
- As earlier, if y_{1} is a particular solution and y_{2} is any other solution, then $y_{1}-y_{2}$ solves

Second-order linear inhomogeneous ODE with some constant coefficients (Back to exams)

- Now we attempt to solve $y^{\prime \prime}+P y^{\prime}+Q y=R(x)$ where $P, Q \in \mathbb{R}$ and $R(x)$ is a continuous function.
- As earlier, if y_{1} is a particular solution and y_{2} is any other solution, then $y_{1}-y_{2}$ solves the corresponding homogeneous equation.

Second-order linear inhomogeneous ODE with some constant coefficients (Back to exams)

- Now we attempt to solve $y^{\prime \prime}+P y^{\prime}+Q y=R(x)$ where $P, Q \in \mathbb{R}$ and $R(x)$ is a continuous function.
- As earlier, if y_{1} is a particular solution and y_{2} is any other solution, then $y_{1}-y_{2}$ solves the corresponding homogeneous equation.
- We already proved that

Second-order linear inhomogeneous ODE with some constant coefficients (Back to exams)

- Now we attempt to solve $y^{\prime \prime}+P y^{\prime}+Q y=R(x)$ where $P, Q \in \mathbb{R}$ and $R(x)$ is a continuous function.
- As earlier, if y_{1} is a particular solution and y_{2} is any other solution, then $y_{1}-y_{2}$ solves the corresponding homogeneous equation.
- We already proved that the solutions of

Second-order linear inhomogeneous ODE with some constant coefficients (Back to exams)

- Now we attempt to solve $y^{\prime \prime}+P y^{\prime}+Q y=R(x)$ where $P, Q \in \mathbb{R}$ and $R(x)$ is a continuous function.
- As earlier, if y_{1} is a particular solution and y_{2} is any other solution, then $y_{1}-y_{2}$ solves the corresponding homogeneous equation.
- We already proved that the solutions of the homogeneous equation

Second-order linear inhomogeneous ODE with some constant coefficients (Back to exams)

- Now we attempt to solve $y^{\prime \prime}+P y^{\prime}+Q y=R(x)$ where $P, Q \in \mathbb{R}$ and $R(x)$ is a continuous function.
- As earlier, if y_{1} is a particular solution and y_{2} is any other solution, then $y_{1}-y_{2}$ solves the corresponding homogeneous equation.
- We already proved that the solutions of the homogeneous equation form a real two-dimensional vector space

Second-order linear inhomogeneous ODE with some constant coefficients (Back to exams)

- Now we attempt to solve $y^{\prime \prime}+P y^{\prime}+Q y=R(x)$ where $P, Q \in \mathbb{R}$ and $R(x)$ is a continuous function.
- As earlier, if y_{1} is a particular solution and y_{2} is any other solution, then $y_{1}-y_{2}$ solves the corresponding homogeneous equation.
- We already proved that the solutions of the homogeneous equation form a real two-dimensional vector space spanned by two functions $u_{1}(x), u_{2}(x)$.

Second-order linear inhomogeneous ODE with some constant coefficients (Back to exams)

- Now we attempt to solve $y^{\prime \prime}+P y^{\prime}+Q y=R(x)$ where $P, Q \in \mathbb{R}$ and $R(x)$ is a continuous function.
- As earlier, if y_{1} is a particular solution and y_{2} is any other solution, then $y_{1}-y_{2}$ solves the corresponding homogeneous equation.
- We already proved that the solutions of the homogeneous equation form a real two-dimensional vector space spanned by two functions $u_{1}(x), u_{2}(x)$.
- Thus the general solution

Second-order linear inhomogeneous ODE with some constant coefficients (Back to exams)

- Now we attempt to solve $y^{\prime \prime}+P y^{\prime}+Q y=R(x)$ where $P, Q \in \mathbb{R}$ and $R(x)$ is a continuous function.
- As earlier, if y_{1} is a particular solution and y_{2} is any other solution, then $y_{1}-y_{2}$ solves the corresponding homogeneous equation.
- We already proved that the solutions of the homogeneous equation form a real two-dimensional vector space spanned by two functions $u_{1}(x), u_{2}(x)$.
- Thus the general solution is $y_{1}+c_{1} u_{1}(x)+c_{2} u_{2}(x)$.

Second-order linear inhomogeneous ODE with some constant coefficients (Back to exams)

- Now we attempt to solve $y^{\prime \prime}+P y^{\prime}+Q y=R(x)$ where $P, Q \in \mathbb{R}$ and $R(x)$ is a continuous function.
- As earlier, if y_{1} is a particular solution and y_{2} is any other solution, then $y_{1}-y_{2}$ solves the corresponding homogeneous equation.
- We already proved that the solutions of the homogeneous equation form a real two-dimensional vector space spanned by two functions $u_{1}(x), u_{2}(x)$.
- Thus the general solution is $y_{1}+c_{1} u_{1}(x)+c_{2} u_{2}(x)$. Hence, we "just"

Second-order linear inhomogeneous ODE with some constant coefficients (Back to exams)

- Now we attempt to solve $y^{\prime \prime}+P y^{\prime}+Q y=R(x)$ where $P, Q \in \mathbb{R}$ and $R(x)$ is a continuous function.
- As earlier, if y_{1} is a particular solution and y_{2} is any other solution, then $y_{1}-y_{2}$ solves the corresponding homogeneous equation.
- We already proved that the solutions of the homogeneous equation form a real two-dimensional vector space spanned by two functions $u_{1}(x), u_{2}(x)$.
- Thus the general solution is $y_{1}+c_{1} u_{1}(x)+c_{2} u_{2}(x)$. Hence, we "just" need to find one

Second-order linear inhomogeneous ODE with some constant coefficients (Back to exams)

- Now we attempt to solve $y^{\prime \prime}+P y^{\prime}+Q y=R(x)$ where $P, Q \in \mathbb{R}$ and $R(x)$ is a continuous function.
- As earlier, if y_{1} is a particular solution and y_{2} is any other solution, then $y_{1}-y_{2}$ solves the corresponding homogeneous equation.
- We already proved that the solutions of the homogeneous equation form a real two-dimensional vector space spanned by two functions $u_{1}(x), u_{2}(x)$.
- Thus the general solution is $y_{1}+c_{1} u_{1}(x)+c_{2} u_{2}(x)$. Hence, we "just" need to find onesolution of

Second-order linear inhomogeneous ODE with some constant coefficients (Back to exams)

- Now we attempt to solve $y^{\prime \prime}+P y^{\prime}+Q y=R(x)$ where $P, Q \in \mathbb{R}$ and $R(x)$ is a continuous function.
- As earlier, if y_{1} is a particular solution and y_{2} is any other solution, then $y_{1}-y_{2}$ solves the corresponding homogeneous equation.
- We already proved that the solutions of the homogeneous equation form a real two-dimensional vector space spanned by two functions $u_{1}(x), u_{2}(x)$.
- Thus the general solution is $y_{1}+c_{1} u_{1}(x)+c_{2} u_{2}(x)$. Hence, we "just" need to find onesolution of the inhomogeneous equation.

Second-order linear inhomogeneous ODE with some constant coefficients (Back to exams)

- Now we attempt to solve $y^{\prime \prime}+P y^{\prime}+Q y=R(x)$ where $P, Q \in \mathbb{R}$ and $R(x)$ is a continuous function.
- As earlier, if y_{1} is a particular solution and y_{2} is any other solution, then $y_{1}-y_{2}$ solves the corresponding homogeneous equation.
- We already proved that the solutions of the homogeneous equation form a real two-dimensional vector space spanned by two functions $u_{1}(x), u_{2}(x)$.
- Thus the general solution is $y_{1}+c_{1} u_{1}(x)+c_{2} u_{2}(x)$. Hence, we "just" need to find onesolution of the inhomogeneous equation. There is a way

Second-order linear inhomogeneous ODE with some constant coefficients (Back to exams)

- Now we attempt to solve $y^{\prime \prime}+P y^{\prime}+Q y=R(x)$ where $P, Q \in \mathbb{R}$ and $R(x)$ is a continuous function.
- As earlier, if y_{1} is a particular solution and y_{2} is any other solution, then $y_{1}-y_{2}$ solves the corresponding homogeneous equation.
- We already proved that the solutions of the homogeneous equation form a real two-dimensional vector space spanned by two functions $u_{1}(x), u_{2}(x)$.
- Thus the general solution is $y_{1}+c_{1} u_{1}(x)+c_{2} u_{2}(x)$. Hence, we "just" need to find onesolution of the inhomogeneous equation. There is a way to do this using

Second-order linear inhomogeneous ODE with some constant coefficients (Back to exams)

- Now we attempt to solve $y^{\prime \prime}+P y^{\prime}+Q y=R(x)$ where $P, Q \in \mathbb{R}$ and $R(x)$ is a continuous function.
- As earlier, if y_{1} is a particular solution and y_{2} is any other solution, then $y_{1}-y_{2}$ solves the corresponding homogeneous equation.
- We already proved that the solutions of the homogeneous equation form a real two-dimensional vector space spanned by two functions $u_{1}(x), u_{2}(x)$.
- Thus the general solution is $y_{1}+c_{1} u_{1}(x)+c_{2} u_{2}(x)$. Hence, we "just" need to find onesolution of the inhomogeneous equation. There is a way to do this using the homogeneous equation itself.

Variation of parameters

Variation of parameters

- Clearly $y=a_{1} u_{1}+a_{2} u_{2}$ where a_{1}, a_{2} are constants

Variation of parameters

- Clearly $y=a_{1} u_{1}+a_{2} u_{2}$ where a_{1}, a_{2} are constants does not solve the inhomogeneous equation.

Variation of parameters

- Clearly $y=a_{1} u_{1}+a_{2} u_{2}$ where a_{1}, a_{2} are constants does not solve the inhomogeneous equation. What if we

Variation of parameters

- Clearly $y=a_{1} u_{1}+a_{2} u_{2}$ where a_{1}, a_{2} are constants does not solve the inhomogeneous equation. What if we let them vary with x ? (

Variation of parameters

- Clearly $y=a_{1} u_{1}+a_{2} u_{2}$ where a_{1}, a_{2} are constants does not solve the inhomogeneous equation. What if we let them vary with x ? (Method of variation of parameters.)

Variation of parameters

- Clearly $y=a_{1} u_{1}+a_{2} u_{2}$ where a_{1}, a_{2} are constants does not solve the inhomogeneous equation. What if we let them vary with x ? (Method of variation of parameters.)
- Let's try $y=a_{1}(x) u_{1}(x)+a_{2}(x) u_{2}(x)$.

Variation of parameters

- Clearly $y=a_{1} u_{1}+a_{2} u_{2}$ where a_{1}, a_{2} are constants does not solve the inhomogeneous equation. What if we let them vary with x ? (Method of variation of parameters.)
- Let's try $y=a_{1}(x) u_{1}(x)+a_{2}(x) u_{2}(x) . y^{\prime}=\sum_{i} a_{i} u_{i}^{\prime}+a_{i}^{\prime} u_{i}$.

Variation of parameters

- Clearly $y=a_{1} u_{1}+a_{2} u_{2}$ where a_{1}, a_{2} are constants does not solve the inhomogeneous equation. What if we let them vary with x ? (Method of variation of parameters.)
- Let's try $y=a_{1}(x) u_{1}(x)+a_{2}(x) u_{2}(x) . y^{\prime}=\sum_{i} a_{i} u_{i}^{\prime}+a_{i}^{\prime} u_{i}$. $y^{\prime \prime}=\sum_{i}\left(a_{i}^{\prime} u_{i}\right)^{\prime}+a_{i}^{\prime} u_{i}^{\prime}+a_{i} u_{i}^{\prime \prime}$.

Variation of parameters

- Clearly $y=a_{1} u_{1}+a_{2} u_{2}$ where a_{1}, a_{2} are constants does not solve the inhomogeneous equation. What if we let them vary with x ? (Method of variation of parameters.)
- Let's try $y=a_{1}(x) u_{1}(x)+a_{2}(x) u_{2}(x) . y^{\prime}=\sum_{i} a_{i} u_{i}^{\prime}+a_{i}^{\prime} u_{i}$.

$$
\begin{aligned}
& y^{\prime \prime}=\sum_{i}\left(a_{i}^{\prime} u_{i}\right)^{\prime}+a_{i}^{\prime} u_{i}^{\prime}+a_{i} u_{i}^{\prime \prime} . \text { Thus } \\
& y^{\prime \prime}+P y^{\prime}+Q y=\sum_{i}\left(a_{i}^{\prime} u_{i}\right)^{\prime}+a_{i}^{\prime} u_{i}^{\prime}+P a_{i}^{\prime} u_{i}=R .
\end{aligned}
$$

Variation of parameters

- Clearly $y=a_{1} u_{1}+a_{2} u_{2}$ where a_{1}, a_{2} are constants does not solve the inhomogeneous equation. What if we let them vary with x ? (Method of variation of parameters.)
- Let's try $y=a_{1}(x) u_{1}(x)+a_{2}(x) u_{2}(x) . y^{\prime}=\sum_{i} a_{i} u_{i}^{\prime}+a_{i}^{\prime} u_{i}$.

$$
\begin{aligned}
& y^{\prime \prime}=\sum_{i}\left(a_{i}^{\prime} u_{i}\right)^{\prime}+a_{i}^{\prime} u_{i}^{\prime}+a_{i} u_{i}^{\prime \prime} . \text { Thus } \\
& y^{\prime \prime}+P y^{\prime}+Q y=\sum_{i}\left(a_{i}^{\prime} u_{i}\right)^{\prime}+a_{i}^{\prime} u_{i}^{\prime}+P a_{i}^{\prime} u_{i}=R .
\end{aligned}
$$

- This is just

Variation of parameters

- Clearly $y=a_{1} u_{1}+a_{2} u_{2}$ where a_{1}, a_{2} are constants does not solve the inhomogeneous equation. What if we let them vary with x ? (Method of variation of parameters.)
- Let's try $y=a_{1}(x) u_{1}(x)+a_{2}(x) u_{2}(x) . y^{\prime}=\sum_{i} a_{i} u_{i}^{\prime}+a_{i}^{\prime} u_{i}$.

$$
\begin{aligned}
& y^{\prime \prime}=\sum_{i}\left(a_{i}^{\prime} u_{i}\right)^{\prime}+a_{i}^{\prime} u_{i}^{\prime}+a_{i} u_{i}^{\prime \prime} . \text { Thus } \\
& y^{\prime \prime}+P y^{\prime}+Q y=\sum_{i}\left(a_{i}^{\prime} u_{i}\right)^{\prime}+a_{i}^{\prime} u_{i}^{\prime}+P a_{i}^{\prime} u_{i}=R .
\end{aligned}
$$

- This is just one equation with

Variation of parameters

- Clearly $y=a_{1} u_{1}+a_{2} u_{2}$ where a_{1}, a_{2} are constants does not solve the inhomogeneous equation. What if we let them vary with x ? (Method of variation of parameters.)
- Let's try $y=a_{1}(x) u_{1}(x)+a_{2}(x) u_{2}(x) . y^{\prime}=\sum_{i} a_{i} u_{i}^{\prime}+a_{i}^{\prime} u_{i}$. $y^{\prime \prime}=\sum_{i}\left(a_{i}^{\prime} u_{i}\right)^{\prime}+a_{i}^{\prime} u_{i}^{\prime}+a_{i} u_{i}^{\prime \prime}$. Thus $y^{\prime \prime}+P y^{\prime}+Q y=\sum_{i}\left(a_{i}^{\prime} u_{i}\right)^{\prime}+a_{i}^{\prime} u_{i}^{\prime}+P a_{i}^{\prime} u_{i}=R$.
- This is just one equation with two knowns $a_{1}(x), a_{2}(x)$.

Variation of parameters

- Clearly $y=a_{1} u_{1}+a_{2} u_{2}$ where a_{1}, a_{2} are constants does not solve the inhomogeneous equation. What if we let them vary with x ? (Method of variation of parameters.)
- Let's try $y=a_{1}(x) u_{1}(x)+a_{2}(x) u_{2}(x) . y^{\prime}=\sum_{i} a_{i} u_{i}^{\prime}+a_{i}^{\prime} u_{i}$. $y^{\prime \prime}=\sum_{i}\left(a_{i}^{\prime} u_{i}\right)^{\prime}+a_{i}^{\prime} u_{i}^{\prime}+a_{i} u_{i}^{\prime \prime}$. Thus $y^{\prime \prime}+P y^{\prime}+Q y=\sum_{i}\left(a_{i}^{\prime} u_{i}\right)^{\prime}+a_{i}^{\prime} u_{i}^{\prime}+P a_{i}^{\prime} u_{i}=R$.
- This is just one equation with two knowns $a_{1}(x), a_{2}(x)$. The trick is to

Variation of parameters

- Clearly $y=a_{1} u_{1}+a_{2} u_{2}$ where a_{1}, a_{2} are constants does not solve the inhomogeneous equation. What if we let them vary with x ? (Method of variation of parameters.)
- Let's try $y=a_{1}(x) u_{1}(x)+a_{2}(x) u_{2}(x) . y^{\prime}=\sum_{i} a_{i} u_{i}^{\prime}+a_{i}^{\prime} u_{i}$. $y^{\prime \prime}=\sum_{i}\left(a_{i}^{\prime} u_{i}\right)^{\prime}+a_{i}^{\prime} u_{i}^{\prime}+a_{i} u_{i}^{\prime \prime}$. Thus $y^{\prime \prime}+P y^{\prime}+Q y=\sum_{i}\left(a_{i}^{\prime} u_{i}\right)^{\prime}+a_{i}^{\prime} u_{i}^{\prime}+P a_{i}^{\prime} u_{i}=R$.
- This is just one equation with two knowns $a_{1}(x), a_{2}(x)$. The trick is to set $a_{1}^{\prime} u_{1}+a_{2}^{\prime} u_{2}=0$ and

Variation of parameters

- Clearly $y=a_{1} u_{1}+a_{2} u_{2}$ where a_{1}, a_{2} are constants does not solve the inhomogeneous equation. What if we let them vary with x ? (Method of variation of parameters.)
- Let's try $y=a_{1}(x) u_{1}(x)+a_{2}(x) u_{2}(x) . y^{\prime}=\sum_{i} a_{i} u_{i}^{\prime}+a_{i}^{\prime} u_{i}$. $y^{\prime \prime}=\sum_{i}\left(a_{i}^{\prime} u_{i}\right)^{\prime}+a_{i}^{\prime} u_{i}^{\prime}+a_{i} u_{i}^{\prime \prime}$. Thus $y^{\prime \prime}+P y^{\prime}+Q y=\sum_{i}\left(a_{i}^{\prime} u_{i}\right)^{\prime}+a_{i}^{\prime} u_{i}^{\prime}+P a_{i}^{\prime} u_{i}=R$.
- This is just one equation with two knowns $a_{1}(x), a_{2}(x)$. The trick is to set $a_{1}^{\prime} u_{1}+a_{2}^{\prime} u_{2}=0$ and $a_{1}^{\prime} u_{1}^{\prime}+a_{2}^{\prime} u_{2}^{\prime}=R$.

Variation of parameters

- Clearly $y=a_{1} u_{1}+a_{2} u_{2}$ where a_{1}, a_{2} are constants does not solve the inhomogeneous equation. What if we let them vary with x ? (Method of variation of parameters.)
- Let's try $y=a_{1}(x) u_{1}(x)+a_{2}(x) u_{2}(x) . y^{\prime}=\sum_{i} a_{i} u_{i}^{\prime}+a_{i}^{\prime} u_{i}$. $y^{\prime \prime}=\sum_{i}\left(a_{i}^{\prime} u_{i}\right)^{\prime}+a_{i}^{\prime} u_{i}^{\prime}+a_{i} u_{i}^{\prime \prime}$. Thus $y^{\prime \prime}+P y^{\prime}+Q y=\sum_{i}\left(a_{i}^{\prime} u_{i}\right)^{\prime}+a_{i}^{\prime} u_{i}^{\prime}+P a_{i}^{\prime} u_{i}=R$.
- This is just one equation with two knowns $a_{1}(x), a_{2}(x)$. The trick is to set $a_{1}^{\prime} u_{1}+a_{2}^{\prime} u_{2}=0$ and $a_{1}^{\prime} u_{1}^{\prime}+a_{2}^{\prime} u_{2}^{\prime}=R$.
- So we have

Variation of parameters

- Clearly $y=a_{1} u_{1}+a_{2} u_{2}$ where a_{1}, a_{2} are constants does not solve the inhomogeneous equation. What if we let them vary with x ? (Method of variation of parameters.)
- Let's try $y=a_{1}(x) u_{1}(x)+a_{2}(x) u_{2}(x) . y^{\prime}=\sum_{i} a_{i} u_{i}^{\prime}+a_{i}^{\prime} u_{i}$. $y^{\prime \prime}=\sum_{i}\left(a_{i}^{\prime} u_{i}\right)^{\prime}+a_{i}^{\prime} u_{i}^{\prime}+a_{i} u_{i}^{\prime \prime}$. Thus $y^{\prime \prime}+P y^{\prime}+Q y=\sum_{i}\left(a_{i}^{\prime} u_{i}\right)^{\prime}+a_{i}^{\prime} u_{i}^{\prime}+P a_{i}^{\prime} u_{i}=R$.
- This is just one equation with two knowns $a_{1}(x), a_{2}(x)$. The trick is to set $a_{1}^{\prime} u_{1}+a_{2}^{\prime} u_{2}=0$ and $a_{1}^{\prime} u_{1}^{\prime}+a_{2}^{\prime} u_{2}^{\prime}=R$.
- So we have $A\left[\begin{array}{l}a_{1}^{\prime} \\ a_{2}^{\prime}\end{array}\right]=\left[\begin{array}{l}0 \\ R\end{array}\right]$ where

Variation of parameters

- Clearly $y=a_{1} u_{1}+a_{2} u_{2}$ where a_{1}, a_{2} are constants does not solve the inhomogeneous equation. What if we let them vary with x ? (Method of variation of parameters.)
- Let's try $y=a_{1}(x) u_{1}(x)+a_{2}(x) u_{2}(x) . y^{\prime}=\sum_{i} a_{i} u_{i}^{\prime}+a_{i}^{\prime} u_{i}$. $y^{\prime \prime}=\sum_{i}\left(a_{i}^{\prime} u_{i}\right)^{\prime}+a_{i}^{\prime} u_{i}^{\prime}+a_{i} u_{i}^{\prime \prime}$. Thus $y^{\prime \prime}+P y^{\prime}+Q y=\sum_{i}\left(a_{i}^{\prime} u_{i}\right)^{\prime}+a_{i}^{\prime} u_{i}^{\prime}+P a_{i}^{\prime} u_{i}=R$.
- This is just one equation with two knowns $a_{1}(x), a_{2}(x)$. The trick is to set $a_{1}^{\prime} u_{1}+a_{2}^{\prime} u_{2}=0$ and $a_{1}^{\prime} u_{1}^{\prime}+a_{2}^{\prime} u_{2}^{\prime}=R$.
- So we have $A\left[\begin{array}{l}a_{1}^{\prime} \\ a_{2}^{\prime}\end{array}\right]=\left[\begin{array}{c}0 \\ R\end{array}\right]$ where $A=\left[\begin{array}{ll}u_{1} & u_{2} \\ u_{1}^{\prime} & u_{2}^{\prime}\end{array}\right]$.

Variation of parameters

- Clearly $y=a_{1} u_{1}+a_{2} u_{2}$ where a_{1}, a_{2} are constants does not solve the inhomogeneous equation. What if we let them vary with x ? (Method of variation of parameters.)
- Let's try $y=a_{1}(x) u_{1}(x)+a_{2}(x) u_{2}(x) . y^{\prime}=\sum_{i} a_{i} u_{i}^{\prime}+a_{i}^{\prime} u_{i}$. $y^{\prime \prime}=\sum_{i}\left(a_{i}^{\prime} u_{i}\right)^{\prime}+a_{i}^{\prime} u_{i}^{\prime}+a_{i} u_{i}^{\prime \prime}$. Thus $y^{\prime \prime}+P y^{\prime}+Q y=\sum_{i}\left(a_{i}^{\prime} u_{i}\right)^{\prime}+a_{i}^{\prime} u_{i}^{\prime}+P a_{i}^{\prime} u_{i}=R$.
- This is just one equation with two knowns $a_{1}(x), a_{2}(x)$. The trick is to set $a_{1}^{\prime} u_{1}+a_{2}^{\prime} u_{2}=0$ and $a_{1}^{\prime} u_{1}^{\prime}+a_{2}^{\prime} u_{2}^{\prime}=R$.
- So we have $A\left[\begin{array}{l}a_{1}^{\prime} \\ a_{2}^{\prime}\end{array}\right]=\left[\begin{array}{l}0 \\ R\end{array}\right]$ where $A=\left[\begin{array}{ll}u_{1} & u_{2} \\ u_{1}^{\prime} & u_{2}^{\prime}\end{array}\right]$.
- Since u_{1}, u_{2} are

Variation of parameters

- Clearly $y=a_{1} u_{1}+a_{2} u_{2}$ where a_{1}, a_{2} are constants does not solve the inhomogeneous equation. What if we let them vary with x ? (Method of variation of parameters.)
- Let's try $y=a_{1}(x) u_{1}(x)+a_{2}(x) u_{2}(x) . y^{\prime}=\sum_{i} a_{i} u_{i}^{\prime}+a_{i}^{\prime} u_{i}$. $y^{\prime \prime}=\sum_{i}\left(a_{i}^{\prime} u_{i}\right)^{\prime}+a_{i}^{\prime} u_{i}^{\prime}+a_{i} u_{i}^{\prime \prime}$. Thus $y^{\prime \prime}+P y^{\prime}+Q y=\sum_{i}\left(a_{i}^{\prime} u_{i}\right)^{\prime}+a_{i}^{\prime} u_{i}^{\prime}+P a_{i}^{\prime} u_{i}=R$.
- This is just one equation with two knowns $a_{1}(x), a_{2}(x)$. The trick is to set $a_{1}^{\prime} u_{1}+a_{2}^{\prime} u_{2}=0$ and $a_{1}^{\prime} u_{1}^{\prime}+a_{2}^{\prime} u_{2}^{\prime}=R$.
- So we have $A\left[\begin{array}{l}a_{1}^{\prime} \\ a_{2}^{\prime}\end{array}\right]=\left[\begin{array}{l}0 \\ R\end{array}\right]$ where $A=\left[\begin{array}{ll}u_{1} & u_{2} \\ u_{1}^{\prime} & u_{2}^{\prime}\end{array}\right]$.
- Since u_{1}, u_{2} are linearly independent

Variation of parameters

- Clearly $y=a_{1} u_{1}+a_{2} u_{2}$ where a_{1}, a_{2} are constants does not solve the inhomogeneous equation. What if we let them vary with x ? (Method of variation of parameters.)
- Let's try $y=a_{1}(x) u_{1}(x)+a_{2}(x) u_{2}(x) . y^{\prime}=\sum_{i} a_{i} u_{i}^{\prime}+a_{i}^{\prime} u_{i}$. $y^{\prime \prime}=\sum_{i}\left(a_{i}^{\prime} u_{i}\right)^{\prime}+a_{i}^{\prime} u_{i}^{\prime}+a_{i} u_{i}^{\prime \prime}$. Thus $y^{\prime \prime}+P y^{\prime}+Q y=\sum_{i}\left(a_{i}^{\prime} u_{i}\right)^{\prime}+a_{i}^{\prime} u_{i}^{\prime}+P a_{i}^{\prime} u_{i}=R$.
- This is just one equation with two knowns $a_{1}(x), a_{2}(x)$. The trick is to set $a_{1}^{\prime} u_{1}+a_{2}^{\prime} u_{2}=0$ and $a_{1}^{\prime} u_{1}^{\prime}+a_{2}^{\prime} u_{2}^{\prime}=R$.
- So we have $A\left[\begin{array}{l}a_{1}^{\prime} \\ a_{2}^{\prime}\end{array}\right]=\left[\begin{array}{l}0 \\ R\end{array}\right]$ where $A=\left[\begin{array}{ll}u_{1} & u_{2} \\ u_{1}^{\prime} & u_{2}^{\prime}\end{array}\right]$.
- Since u_{1}, u_{2} are linearly independent $\operatorname{det}(A) \neq 0$ (?!)

Variation of parameters

- Clearly $y=a_{1} u_{1}+a_{2} u_{2}$ where a_{1}, a_{2} are constants does not solve the inhomogeneous equation. What if we let them vary with x ? (Method of variation of parameters.)
- Let's try $y=a_{1}(x) u_{1}(x)+a_{2}(x) u_{2}(x) . y^{\prime}=\sum_{i} a_{i} u_{i}^{\prime}+a_{i}^{\prime} u_{i}$. $y^{\prime \prime}=\sum_{i}\left(a_{i}^{\prime} u_{i}\right)^{\prime}+a_{i}^{\prime} u_{i}^{\prime}+a_{i} u_{i}^{\prime \prime}$. Thus $y^{\prime \prime}+P y^{\prime}+Q y=\sum_{i}\left(a_{i}^{\prime} u_{i}\right)^{\prime}+a_{i}^{\prime} u_{i}^{\prime}+P a_{i}^{\prime} u_{i}=R$.
- This is just one equation with two knowns $a_{1}(x), a_{2}(x)$. The trick is to set $a_{1}^{\prime} u_{1}+a_{2}^{\prime} u_{2}=0$ and $a_{1}^{\prime} u_{1}^{\prime}+a_{2}^{\prime} u_{2}^{\prime}=R$.
- So we have $A\left[\begin{array}{l}a_{1}^{\prime} \\ a_{2}^{\prime}\end{array}\right]=\left[\begin{array}{l}0 \\ R\end{array}\right]$ where $A=\left[\begin{array}{ll}u_{1} & u_{2} \\ u_{1}^{\prime} & u_{2}^{\prime}\end{array}\right]$.
- Since u_{1}, u_{2} are linearly independent $\operatorname{det}(A) \neq 0(?!)$ This determinant is denoted as

Variation of parameters

- Clearly $y=a_{1} u_{1}+a_{2} u_{2}$ where a_{1}, a_{2} are constants does not solve the inhomogeneous equation. What if we let them vary with x ? (Method of variation of parameters.)
- Let's try $y=a_{1}(x) u_{1}(x)+a_{2}(x) u_{2}(x) . y^{\prime}=\sum_{i} a_{i} u_{i}^{\prime}+a_{i}^{\prime} u_{i}$. $y^{\prime \prime}=\sum_{i}\left(a_{i}^{\prime} u_{i}\right)^{\prime}+a_{i}^{\prime} u_{i}^{\prime}+a_{i} u_{i}^{\prime \prime}$. Thus $y^{\prime \prime}+P y^{\prime}+Q y=\sum_{i}\left(a_{i}^{\prime} u_{i}\right)^{\prime}+a_{i}^{\prime} u_{i}^{\prime}+P a_{i}^{\prime} u_{i}=R$.
- This is just one equation with two knowns $a_{1}(x), a_{2}(x)$. The trick is to set $a_{1}^{\prime} u_{1}+a_{2}^{\prime} u_{2}=0$ and $a_{1}^{\prime} u_{1}^{\prime}+a_{2}^{\prime} u_{2}^{\prime}=R$.
- So we have $A\left[\begin{array}{l}a_{1}^{\prime} \\ a_{2}^{\prime}\end{array}\right]=\left[\begin{array}{l}0 \\ R\end{array}\right]$ where $A=\left[\begin{array}{ll}u_{1} & u_{2} \\ u_{1}^{\prime} & u_{2}^{\prime}\end{array}\right]$.
- Since u_{1}, u_{2} are linearly independent $\operatorname{det}(A) \neq 0$ (?!) This determinant is denoted as $W(x)=u_{1} u_{2}^{\prime}-u_{2} u_{1}^{\prime}$ and is called

Variation of parameters

- Clearly $y=a_{1} u_{1}+a_{2} u_{2}$ where a_{1}, a_{2} are constants does not solve the inhomogeneous equation. What if we let them vary with x ? (Method of variation of parameters.)
- Let's try $y=a_{1}(x) u_{1}(x)+a_{2}(x) u_{2}(x) . y^{\prime}=\sum_{i} a_{i} u_{i}^{\prime}+a_{i}^{\prime} u_{i}$. $y^{\prime \prime}=\sum_{i}\left(a_{i}^{\prime} u_{i}\right)^{\prime}+a_{i}^{\prime} u_{i}^{\prime}+a_{i} u_{i}^{\prime \prime}$. Thus $y^{\prime \prime}+P y^{\prime}+Q y=\sum_{i}\left(a_{i}^{\prime} u_{i}\right)^{\prime}+a_{i}^{\prime} u_{i}^{\prime}+P a_{i}^{\prime} u_{i}=R$.
- This is just one equation with two knowns $a_{1}(x), a_{2}(x)$. The trick is to set $a_{1}^{\prime} u_{1}+a_{2}^{\prime} u_{2}=0$ and $a_{1}^{\prime} u_{1}^{\prime}+a_{2}^{\prime} u_{2}^{\prime}=R$.
- So we have $A\left[\begin{array}{l}a_{1}^{\prime} \\ a_{2}^{\prime}\end{array}\right]=\left[\begin{array}{l}0 \\ R\end{array}\right]$ where $A=\left[\begin{array}{ll}u_{1} & u_{2} \\ u_{1}^{\prime} & u_{2}^{\prime}\end{array}\right]$.
- Since u_{1}, u_{2} are linearly independent $\operatorname{det}(A) \neq 0$ (?!) This determinant is denoted as $W(x)=u_{1} u_{2}^{\prime}-u_{2} u_{1}^{\prime}$ and is called the Wronskian of u_{1}, u_{2} (

Variation of parameters

- Clearly $y=a_{1} u_{1}+a_{2} u_{2}$ where a_{1}, a_{2} are constants does not solve the inhomogeneous equation. What if we let them vary with x ? (Method of variation of parameters.)
- Let's try $y=a_{1}(x) u_{1}(x)+a_{2}(x) u_{2}(x) . y^{\prime}=\sum_{i} a_{i} u_{i}^{\prime}+a_{i}^{\prime} u_{i}$. $y^{\prime \prime}=\sum_{i}\left(a_{i}^{\prime} u_{i}\right)^{\prime}+a_{i}^{\prime} u_{i}^{\prime}+a_{i} u_{i}^{\prime \prime}$. Thus $y^{\prime \prime}+P y^{\prime}+Q y=\sum_{i}\left(a_{i}^{\prime} u_{i}\right)^{\prime}+a_{i}^{\prime} u_{i}^{\prime}+P a_{i}^{\prime} u_{i}=R$.
- This is just one equation with two knowns $a_{1}(x), a_{2}(x)$. The trick is to set $a_{1}^{\prime} u_{1}+a_{2}^{\prime} u_{2}=0$ and $a_{1}^{\prime} u_{1}^{\prime}+a_{2}^{\prime} u_{2}^{\prime}=R$.
- So we have $A\left[\begin{array}{l}a_{1}^{\prime} \\ a_{2}^{\prime}\end{array}\right]=\left[\begin{array}{l}0 \\ R\end{array}\right]$ where $A=\left[\begin{array}{ll}u_{1} & u_{2} \\ u_{1}^{\prime} & u_{2}^{\prime}\end{array}\right]$.
- Since u_{1}, u_{2} are linearly independent $\operatorname{det}(A) \neq 0$ (?!) This determinant is denoted as $W(x)=u_{1} u_{2}^{\prime}-u_{2} u_{1}^{\prime}$ and is called the Wronskian of u_{1}, u_{2} (after a crazy Polish chap).

Variation of parameters

- Clearly $y=a_{1} u_{1}+a_{2} u_{2}$ where a_{1}, a_{2} are constants does not solve the inhomogeneous equation. What if we let them vary with x ? (Method of variation of parameters.)
- Let's try $y=a_{1}(x) u_{1}(x)+a_{2}(x) u_{2}(x) . y^{\prime}=\sum_{i} a_{i} u_{i}^{\prime}+a_{i}^{\prime} u_{i}$. $y^{\prime \prime}=\sum_{i}\left(a_{i}^{\prime} u_{i}\right)^{\prime}+a_{i}^{\prime} u_{i}^{\prime}+a_{i} u_{i}^{\prime \prime}$. Thus $y^{\prime \prime}+P y^{\prime}+Q y=\sum_{i}\left(a_{i}^{\prime} u_{i}\right)^{\prime}+a_{i}^{\prime} u_{i}^{\prime}+P a_{i}^{\prime} u_{i}=R$.
- This is just one equation with two knowns $a_{1}(x), a_{2}(x)$. The trick is to set $a_{1}^{\prime} u_{1}+a_{2}^{\prime} u_{2}=0$ and $a_{1}^{\prime} u_{1}^{\prime}+a_{2}^{\prime} u_{2}^{\prime}=R$.
- So we have $A\left[\begin{array}{l}a_{1}^{\prime} \\ a_{2}^{\prime}\end{array}\right]=\left[\begin{array}{l}0 \\ R\end{array}\right]$ where $A=\left[\begin{array}{ll}u_{1} & u_{2} \\ u_{1}^{\prime} & u_{2}^{\prime}\end{array}\right]$.
- Since u_{1}, u_{2} are linearly independent $\operatorname{det}(A) \neq 0$ (?!) This determinant is denoted as $W(x)=u_{1} u_{2}^{\prime}-u_{2} u_{1}^{\prime}$ and is called the Wronskian of u_{1}, u_{2} (after a crazy Polish chap).
- Thus $a_{1}^{\prime}=\frac{-u_{2} R(x)}{W(x)}$ and

Variation of parameters

- Clearly $y=a_{1} u_{1}+a_{2} u_{2}$ where a_{1}, a_{2} are constants does not solve the inhomogeneous equation. What if we let them vary with x ? (Method of variation of parameters.)
- Let's try $y=a_{1}(x) u_{1}(x)+a_{2}(x) u_{2}(x) . y^{\prime}=\sum_{i} a_{i} u_{i}^{\prime}+a_{i}^{\prime} u_{i}$. $y^{\prime \prime}=\sum_{i}\left(a_{i}^{\prime} u_{i}\right)^{\prime}+a_{i}^{\prime} u_{i}^{\prime}+a_{i} u_{i}^{\prime \prime}$. Thus $y^{\prime \prime}+P y^{\prime}+Q y=\sum_{i}\left(a_{i}^{\prime} u_{i}\right)^{\prime}+a_{i}^{\prime} u_{i}^{\prime}+P a_{i}^{\prime} u_{i}=R$.
- This is just one equation with two knowns $a_{1}(x), a_{2}(x)$. The trick is to set $a_{1}^{\prime} u_{1}+a_{2}^{\prime} u_{2}=0$ and $a_{1}^{\prime} u_{1}^{\prime}+a_{2}^{\prime} u_{2}^{\prime}=R$.
- So we have $A\left[\begin{array}{l}a_{1}^{\prime} \\ a_{2}^{\prime}\end{array}\right]=\left[\begin{array}{l}0 \\ R\end{array}\right]$ where $A=\left[\begin{array}{ll}u_{1} & u_{2} \\ u_{1}^{\prime} & u_{2}^{\prime}\end{array}\right]$.
- Since u_{1}, u_{2} are linearly independent $\operatorname{det}(A) \neq 0$ (?!) This determinant is denoted as $W(x)=u_{1} u_{2}^{\prime}-u_{2} u_{1}^{\prime}$ and is called the Wronskian of u_{1}, u_{2} (after a crazy Polish chap).
- Thus $a_{1}^{\prime}=\frac{-u_{2} R(x)}{W(x)}$ and $a_{2}^{\prime}=\frac{u_{1} R(x)}{W(x)}$.

Variation of parameters

- Clearly $y=a_{1} u_{1}+a_{2} u_{2}$ where a_{1}, a_{2} are constants does not solve the inhomogeneous equation. What if we let them vary with x ? (Method of variation of parameters.)
- Let's try $y=a_{1}(x) u_{1}(x)+a_{2}(x) u_{2}(x) . y^{\prime}=\sum_{i} a_{i} u_{i}^{\prime}+a_{i}^{\prime} u_{i}$. $y^{\prime \prime}=\sum_{i}\left(a_{i}^{\prime} u_{i}\right)^{\prime}+a_{i}^{\prime} u_{i}^{\prime}+a_{i} u_{i}^{\prime \prime}$. Thus $y^{\prime \prime}+P y^{\prime}+Q y=\sum_{i}\left(a_{i}^{\prime} u_{i}\right)^{\prime}+a_{i}^{\prime} u_{i}^{\prime}+P a_{i}^{\prime} u_{i}=R$.
- This is just one equation with two knowns $a_{1}(x), a_{2}(x)$. The trick is to set $a_{1}^{\prime} u_{1}+a_{2}^{\prime} u_{2}=0$ and $a_{1}^{\prime} u_{1}^{\prime}+a_{2}^{\prime} u_{2}^{\prime}=R$.
- So we have $A\left[\begin{array}{l}a_{1}^{\prime} \\ a_{2}^{\prime}\end{array}\right]=\left[\begin{array}{l}0 \\ R\end{array}\right]$ where $A=\left[\begin{array}{ll}u_{1} & u_{2} \\ u_{1}^{\prime} & u_{2}^{\prime}\end{array}\right]$.
- Since u_{1}, u_{2} are linearly independent $\operatorname{det}(A) \neq 0$ (?!) This determinant is denoted as $W(x)=u_{1} u_{2}^{\prime}-u_{2} u_{1}^{\prime}$ and is called the Wronskian of u_{1}, u_{2} (after a crazy Polish chap).
- Thus $a_{1}^{\prime}=\frac{-u_{2} R(x)}{W(x)}$ and $a_{2}^{\prime}=\frac{u_{1} R(x)}{W(x)}$. Integrating these,

Variation of parameters

- Clearly $y=a_{1} u_{1}+a_{2} u_{2}$ where a_{1}, a_{2} are constants does not solve the inhomogeneous equation. What if we let them vary with x ? (Method of variation of parameters.)
- Let's try $y=a_{1}(x) u_{1}(x)+a_{2}(x) u_{2}(x) . y^{\prime}=\sum_{i} a_{i} u_{i}^{\prime}+a_{i}^{\prime} u_{i}$. $y^{\prime \prime}=\sum_{i}\left(a_{i}^{\prime} u_{i}\right)^{\prime}+a_{i}^{\prime} u_{i}^{\prime}+a_{i} u_{i}^{\prime \prime}$. Thus $y^{\prime \prime}+P y^{\prime}+Q y=\sum_{i}\left(a_{i}^{\prime} u_{i}\right)^{\prime}+a_{i}^{\prime} u_{i}^{\prime}+P a_{i}^{\prime} u_{i}=R$.
- This is just one equation with two knowns $a_{1}(x), a_{2}(x)$. The trick is to set $a_{1}^{\prime} u_{1}+a_{2}^{\prime} u_{2}=0$ and $a_{1}^{\prime} u_{1}^{\prime}+a_{2}^{\prime} u_{2}^{\prime}=R$.
- So we have $A\left[\begin{array}{l}a_{1}^{\prime} \\ a_{2}^{\prime}\end{array}\right]=\left[\begin{array}{l}0 \\ R\end{array}\right]$ where $A=\left[\begin{array}{ll}u_{1} & u_{2} \\ u_{1}^{\prime} & u_{2}^{\prime}\end{array}\right]$.
- Since u_{1}, u_{2} are linearly independent $\operatorname{det}(A) \neq 0$ (?!) This determinant is denoted as $W(x)=u_{1} u_{2}^{\prime}-u_{2} u_{1}^{\prime}$ and is called the Wronskian of u_{1}, u_{2} (after a crazy Polish chap).
- Thus $a_{1}^{\prime}=\frac{-u_{2} R(x)}{W(x)}$ and $a_{2}^{\prime}=\frac{u_{1} R(x)}{W(x)}$. Integrating these, we get the desired particular solution.

An example

An example

- Solve $y^{\prime \prime}+y=\tan (x)$ on $\left(\frac{-\pi}{2}, \frac{\pi}{2}\right)$.

An example

- Solve $y^{\prime \prime}+y=\tan (x)$ on $\left(\frac{-\pi}{2}, \frac{\pi}{2}\right)$.
- First we solve

An example

- Solve $y^{\prime \prime}+y=\tan (x)$ on $\left(\frac{-\pi}{2}, \frac{\pi}{2}\right)$.
- First we solve $y^{\prime \prime}+y=0$. In this case

An example

- Solve $y^{\prime \prime}+y=\tan (x)$ on $\left(\frac{-\pi}{2}, \frac{\pi}{2}\right)$.
- First we solve $y^{\prime \prime}+y=0$. In this case our methods easily produce

An example

- Solve $y^{\prime \prime}+y=\tan (x)$ on $\left(\frac{-\pi}{2}, \frac{\pi}{2}\right)$.
- First we solve $y^{\prime \prime}+y=0$. In this case our methods easily produce $y=c_{1} \cos (x)+c_{2} \sin (x)$.

An example

- Solve $y^{\prime \prime}+y=\tan (x)$ on $\left(\frac{-\pi}{2}, \frac{\pi}{2}\right)$.
- First we solve $y^{\prime \prime}+y=0$. In this case our methods easily produce $y=c_{1} \cos (x)+c_{2} \sin (x)$.
- Now we attempt

An example

- Solve $y^{\prime \prime}+y=\tan (x)$ on $\left(\frac{-\pi}{2}, \frac{\pi}{2}\right)$.
- First we solve $y^{\prime \prime}+y=0$. In this case our methods easily produce $y=c_{1} \cos (x)+c_{2} \sin (x)$.
- Now we attempt variation of parameters:

An example

- Solve $y^{\prime \prime}+y=\tan (x)$ on $\left(\frac{-\pi}{2}, \frac{\pi}{2}\right)$.
- First we solve $y^{\prime \prime}+y=0$. In this case our methods easily produce $y=c_{1} \cos (x)+c_{2} \sin (x)$.
- Now we attempt variation of parameters:
$y_{1}=a_{1}(x) \cos (x)+a_{2}(x) \sin (x)$.

An example

- Solve $y^{\prime \prime}+y=\tan (x)$ on $\left(\frac{-\pi}{2}, \frac{\pi}{2}\right)$.
- First we solve $y^{\prime \prime}+y=0$. In this case our methods easily produce $y=c_{1} \cos (x)+c_{2} \sin (x)$.
- Now we attempt variation of parameters:
$y_{1}=a_{1}(x) \cos (x)+a_{2}(x) \sin (x)$. The Wronskian of $\cos (x), \sin (x)$ is

An example

- Solve $y^{\prime \prime}+y=\tan (x)$ on $\left(\frac{-\pi}{2}, \frac{\pi}{2}\right)$.
- First we solve $y^{\prime \prime}+y=0$. In this case our methods easily produce $y=c_{1} \cos (x)+c_{2} \sin (x)$.
- Now we attempt variation of parameters:
$y_{1}=a_{1}(x) \cos (x)+a_{2}(x) \sin (x)$. The Wronskian of $\cos (x), \sin (x)$ is $W(x)=\cos ^{2}(x)+\sin ^{2}(x)=1$.

An example

- Solve $y^{\prime \prime}+y=\tan (x)$ on $\left(\frac{-\pi}{2}, \frac{\pi}{2}\right)$.
- First we solve $y^{\prime \prime}+y=0$. In this case our methods easily produce $y=c_{1} \cos (x)+c_{2} \sin (x)$.
- Now we attempt variation of parameters:
$y_{1}=a_{1}(x) \cos (x)+a_{2}(x) \sin (x)$. The Wronskian of $\cos (x), \sin (x)$ is $W(x)=\cos ^{2}(x)+\sin ^{2}(x)=1$.
- Hence $a_{1}^{\prime}=-\sin (x) \tan (x)$ and $a_{2}^{\prime}=\cos (x) \tan (x)=\sin (x)$.

An example

- Solve $y^{\prime \prime}+y=\tan (x)$ on $\left(\frac{-\pi}{2}, \frac{\pi}{2}\right)$.
- First we solve $y^{\prime \prime}+y=0$. In this case our methods easily produce $y=c_{1} \cos (x)+c_{2} \sin (x)$.
- Now we attempt variation of parameters:
$y_{1}=a_{1}(x) \cos (x)+a_{2}(x) \sin (x)$. The Wronskian of $\cos (x), \sin (x)$ is $W(x)=\cos ^{2}(x)+\sin ^{2}(x)=1$.
- Hence $a_{1}^{\prime}=-\sin (x) \tan (x)$ and $a_{2}^{\prime}=\cos (x) \tan (x)=\sin (x)$. Thus $a_{2}=-\cos (x)$ and

An example

- Solve $y^{\prime \prime}+y=\tan (x)$ on $\left(\frac{-\pi}{2}, \frac{\pi}{2}\right)$.
- First we solve $y^{\prime \prime}+y=0$. In this case our methods easily produce $y=c_{1} \cos (x)+c_{2} \sin (x)$.
- Now we attempt variation of parameters:
$y_{1}=a_{1}(x) \cos (x)+a_{2}(x) \sin (x)$. The Wronskian of $\cos (x), \sin (x)$ is $W(x)=\cos ^{2}(x)+\sin ^{2}(x)=1$.
- Hence $a_{1}^{\prime}=-\sin (x) \tan (x)$ and $a_{2}^{\prime}=\cos (x) \tan (x)=\sin (x)$. Thus $a_{2}=-\cos (x)$ and

$$
a_{1}=\int(-\sec (x)+\cos (x))=\sin (x)-\ln |\sec (x)+\tan (x)| .
$$

An example

- Solve $y^{\prime \prime}+y=\tan (x)$ on $\left(\frac{-\pi}{2}, \frac{\pi}{2}\right)$.
- First we solve $y^{\prime \prime}+y=0$. In this case our methods easily produce $y=c_{1} \cos (x)+c_{2} \sin (x)$.
- Now we attempt variation of parameters:
$y_{1}=a_{1}(x) \cos (x)+a_{2}(x) \sin (x)$. The Wronskian of $\cos (x), \sin (x)$ is $W(x)=\cos ^{2}(x)+\sin ^{2}(x)=1$.
- Hence $a_{1}^{\prime}=-\sin (x) \tan (x)$ and $a_{2}^{\prime}=\cos (x) \tan (x)=\sin (x)$. Thus $a_{2}=-\cos (x)$ and $a_{1}=\int(-\sec (x)+\cos (x))=\sin (x)-\ln |\sec (x)+\tan (x)|$.
- Therefore

An example

- Solve $y^{\prime \prime}+y=\tan (x)$ on $\left(\frac{-\pi}{2}, \frac{\pi}{2}\right)$.
- First we solve $y^{\prime \prime}+y=0$. In this case our methods easily produce $y=c_{1} \cos (x)+c_{2} \sin (x)$.
- Now we attempt variation of parameters:
$y_{1}=a_{1}(x) \cos (x)+a_{2}(x) \sin (x)$. The Wronskian of $\cos (x), \sin (x)$ is $W(x)=\cos ^{2}(x)+\sin ^{2}(x)=1$.
- Hence $a_{1}^{\prime}=-\sin (x) \tan (x)$ and $a_{2}^{\prime}=\cos (x) \tan (x)=\sin (x)$. Thus $a_{2}=-\cos (x)$ and $a_{1}=\int(-\sec (x)+\cos (x))=\sin (x)-\ln |\sec (x)+\tan (x)|$.
- Therefore the general solution is

An example

- Solve $y^{\prime \prime}+y=\tan (x)$ on $\left(\frac{-\pi}{2}, \frac{\pi}{2}\right)$.
- First we solve $y^{\prime \prime}+y=0$. In this case our methods easily produce $y=c_{1} \cos (x)+c_{2} \sin (x)$.
- Now we attempt variation of parameters:
$y_{1}=a_{1}(x) \cos (x)+a_{2}(x) \sin (x)$. The Wronskian of $\cos (x), \sin (x)$ is $W(x)=\cos ^{2}(x)+\sin ^{2}(x)=1$.
- Hence $a_{1}^{\prime}=-\sin (x) \tan (x)$ and $a_{2}^{\prime}=\cos (x) \tan (x)=\sin (x)$. Thus $a_{2}=-\cos (x)$ and $a_{1}=\int(-\sec (x)+\cos (x))=\sin (x)-\ln |\sec (x)+\tan (x)|$.
- Therefore the general solution is

$$
y=c_{1} \cos (x)+c_{2} \sin (x)-\cos (x) \ln |\sec (x)+\tan (x)|
$$

Other methods in special cases: R is a polynomial

Other methods in special cases: R is a polynomial

- The above procedure

Other methods in special cases: R is a polynomial

- The above procedure is painful to implement

Other methods in special cases: R is a polynomial

- The above procedure is painful to implement in general.

Other methods in special cases: R is a polynomial

- The above procedure is painful to implement in general. Suppose R is

Other methods in special cases: R is a polynomial

- The above procedure is painful to implement in general. Suppose R is a polynomial of

Other methods in special cases: R is a polynomial

- The above procedure is painful to implement in general. Suppose R is a polynomial of degree n

Other methods in special cases: R is a polynomial

- The above procedure is painful to implement in general. Suppose R is a polynomial of degree n and $Q \neq 0$.

Other methods in special cases: R is a polynomial

- The above procedure is painful to implement in general. Suppose R is a polynomial of degree n and $Q \neq 0$.
- We can try

Other methods in special cases: R is a polynomial

- The above procedure is painful to implement in general. Suppose R is a polynomial of degree n and $Q \neq 0$.
- We can try $y_{1}=\sum_{k=0}^{n} a_{k} x^{k}$.

Other methods in special cases: R is a polynomial

- The above procedure is painful to implement in general. Suppose R is a polynomial of degree n and $Q \neq 0$.
- We can try $y_{1}=\sum_{k=0}^{n} a_{k} x^{k}$.
- For instance,

Other methods in special cases: R is a polynomial

- The above procedure is painful to implement in general. Suppose R is a polynomial of degree n and $Q \neq 0$.
- We can try $y_{1}=\sum_{k=0}^{n} a_{k} x^{k}$.
- For instance, solve $y^{\prime \prime}+y=x^{3}$.

Other methods in special cases: R is a polynomial

- The above procedure is painful to implement in general. Suppose R is a polynomial of degree n and $Q \neq 0$.
- We can try $y_{1}=\sum_{k=0}^{n} a_{k} x^{k}$.
- For instance, solve $y^{\prime \prime}+y=x^{3}$. Let's try

Other methods in special cases: R is a polynomial

- The above procedure is painful to implement in general. Suppose R is a polynomial of degree n and $Q \neq 0$.
- We can try $y_{1}=\sum_{k=0}^{n} a_{k} x^{k}$.
- For instance, solve $y^{\prime \prime}+y=x^{3}$. Let's try $y_{1}=A x^{3}+B x^{2}+C x+D$.

Other methods in special cases: R is a polynomial

- The above procedure is painful to implement in general. Suppose R is a polynomial of degree n and $Q \neq 0$.
- We can try $y_{1}=\sum_{k=0}^{n} a_{k} x^{k}$.
- For instance, solve $y^{\prime \prime}+y=x^{3}$. Let's try

$$
\begin{aligned}
& y_{1}=A x^{3}+B x^{2}+C x+D . \text { Then } \\
& A=1, B=0, C=-6, D=0 .
\end{aligned}
$$

Other methods in special cases: R is a polynomial

- The above procedure is painful to implement in general. Suppose R is a polynomial of degree n and $Q \neq 0$.
- We can try $y_{1}=\sum_{k=0}^{n} a_{k} x^{k}$.
- For instance, solve $y^{\prime \prime}+y=x^{3}$. Let's try $y_{1}=A x^{3}+B x^{2}+C x+D$. Then
$A=1, B=0, C=-6, D=0$. Thus $y_{1}=x^{3}-6 x$ is

Other methods in special cases: R is a polynomial

- The above procedure is painful to implement in general. Suppose R is a polynomial of degree n and $Q \neq 0$.
- We can try $y_{1}=\sum_{k=0}^{n} a_{k} x^{k}$.
- For instance, solve $y^{\prime \prime}+y=x^{3}$. Let's try $y_{1}=A x^{3}+B x^{2}+C x+D$. Then $A=1, B=0, C=-6, D=0$. Thus $y_{1}=x^{3}-6 x$ is a particular solution.

Other methods in special cases: R is a polynomial

- The above procedure is painful to implement in general. Suppose R is a polynomial of degree n and $Q \neq 0$.
- We can try $y_{1}=\sum_{k=0}^{n} a_{k} x^{k}$.
- For instance, solve $y^{\prime \prime}+y=x^{3}$. Let's try $y_{1}=A x^{3}+B x^{2}+C x+D$. Then $A=1, B=0, C=-6, D=0$. Thus $y_{1}=x^{3}-6 x$ is a particular solution. The general solution is

Other methods in special cases: R is a polynomial

- The above procedure is painful to implement in general. Suppose R is a polynomial of degree n and $Q \neq 0$.
- We can try $y_{1}=\sum_{k=0}^{n} a_{k} x^{k}$.
- For instance, solve $y^{\prime \prime}+y=x^{3}$. Let's try $y_{1}=A x^{3}+B x^{2}+C x+D$. Then $A=1, B=0, C=-6, D=0$. Thus $y_{1}=x^{3}-6 x$ is a particular solution. The general solution is $y=x^{3}-6 x+c_{1} \cos (x)+c_{2} \sin (x)$.

Other methods in special cases: R is a polynomial

- The above procedure is painful to implement in general. Suppose R is a polynomial of degree n and $Q \neq 0$.
- We can try $y_{1}=\sum_{k=0}^{n} a_{k} x^{k}$.
- For instance, solve $y^{\prime \prime}+y=x^{3}$. Let's try $y_{1}=A x^{3}+B x^{2}+C x+D$. Then $A=1, B=0, C=-6, D=0$. Thus $y_{1}=x^{3}-6 x$ is a particular solution. The general solution is $y=x^{3}-6 x+c_{1} \cos (x)+c_{2} \sin (x)$.
- On the other hand,

Other methods in special cases: R is a polynomial

- The above procedure is painful to implement in general. Suppose R is a polynomial of degree n and $Q \neq 0$.
- We can try $y_{1}=\sum_{k=0}^{n} a_{k} x^{k}$.
- For instance, solve $y^{\prime \prime}+y=x^{3}$. Let's try $y_{1}=A x^{3}+B x^{2}+C x+D$. Then $A=1, B=0, C=-6, D=0$. Thus $y_{1}=x^{3}-6 x$ is a particular solution. The general solution is $y=x^{3}-6 x+c_{1} \cos (x)+c_{2} \sin (x)$.
- On the other hand, variation of parameters leads

Other methods in special cases: R is a polynomial

- The above procedure is painful to implement in general. Suppose R is a polynomial of degree n and $Q \neq 0$.
- We can try $y_{1}=\sum_{k=0}^{n} a_{k} x^{k}$.
- For instance, solve $y^{\prime \prime}+y=x^{3}$. Let's try $y_{1}=A x^{3}+B x^{2}+C x+D$. Then $A=1, B=0, C=-6, D=0$. Thus $y_{1}=x^{3}-6 x$ is a particular solution. The general solution is $y=x^{3}-6 x+c_{1} \cos (x)+c_{2} \sin (x)$.
- On the other hand, variation of parameters leads to annoying integrals like

Other methods in special cases: R is a polynomial

- The above procedure is painful to implement in general. Suppose R is a polynomial of degree n and $Q \neq 0$.
- We can try $y_{1}=\sum_{k=0}^{n} a_{k} x^{k}$.
- For instance, solve $y^{\prime \prime}+y=x^{3}$. Let's try $y_{1}=A x^{3}+B x^{2}+C x+D$. Then $A=1, B=0, C=-6, D=0$. Thus $y_{1}=x^{3}-6 x$ is a particular solution. The general solution is $y=x^{3}-6 x+c_{1} \cos (x)+c_{2} \sin (x)$.
- On the other hand, variation of parameters leads to annoying integrals like $\int x^{3} \cos (x)$.

Other methods in special cases: $R=p(x) e^{m x}$

Other methods in special cases: $R=p(x) e^{m x}$

- Suppose $R=p(x) e^{m x}$ where

Other methods in special cases: $R=p(x) e^{m x}$

- Suppose $R=p(x) e^{m x}$ where $m \in \mathbb{R}$ and

Other methods in special cases: $R=p(x) e^{m x}$

- Suppose $R=p(x) e^{m x}$ where $m \in \mathbb{R}$ and $p(x)$ is a polynomial

Other methods in special cases: $R=p(x) e^{m x}$

- Suppose $R=p(x) e^{m x}$ where $m \in \mathbb{R}$ and $p(x)$ is a polynomial of degree n.

Other methods in special cases: $R=p(x) e^{m x}$

- Suppose $R=p(x) e^{m x}$ where $m \in \mathbb{R}$ and $p(x)$ is a polynomial of degree n.
- We first try

Other methods in special cases: $R=p(x) e^{m x}$

- Suppose $R=p(x) e^{m x}$ where $m \in \mathbb{R}$ and $p(x)$ is a polynomial of degree n.
- We first try $y(x)=u(x) e^{m x}$.

Other methods in special cases: $R=p(x) e^{m x}$

- Suppose $R=p(x) e^{m x}$ where $m \in \mathbb{R}$ and $p(x)$ is a polynomial of degree n.
- We first try $y(x)=u(x) e^{m x}$. Then the ODE for

Other methods in special cases: $R=p(x) e^{m x}$

- Suppose $R=p(x) e^{m x}$ where $m \in \mathbb{R}$ and $p(x)$ is a polynomial of degree n.
- We first try $y(x)=u(x) e^{m x}$. Then the ODE for u is

Other methods in special cases: $R=p(x) e^{m x}$

- Suppose $R=p(x) e^{m x}$ where $m \in \mathbb{R}$ and $p(x)$ is a polynomial of degree n.
- We first try $y(x)=u(x) e^{m x}$. Then the ODE for u is $u^{\prime \prime}+(2 m+P) u^{\prime}+\left(m^{2}+P m+Q\right) u=p(x)$.

Other methods in special cases: $R=p(x) e^{m x}$

- Suppose $R=p(x) e^{m x}$ where $m \in \mathbb{R}$ and $p(x)$ is a polynomial of degree n.
- We first try $y(x)=u(x) e^{m x}$. Then the ODE for u is $u^{\prime \prime}+(2 m+P) u^{\prime}+\left(m^{2}+P m+Q\right) u=p(x)$. This equation is akin

Other methods in special cases: $R=p(x) e^{m x}$

- Suppose $R=p(x) e^{m x}$ where $m \in \mathbb{R}$ and $p(x)$ is a polynomial of degree n.
- We first try $y(x)=u(x) e^{m x}$. Then the ODE for u is $u^{\prime \prime}+(2 m+P) u^{\prime}+\left(m^{2}+P m+Q\right) u=p(x)$. This equation is akin to the first case

Other methods in special cases: $R=p(x) e^{m x}$

- Suppose $R=p(x) e^{m x}$ where $m \in \mathbb{R}$ and $p(x)$ is a polynomial of degree n.
- We first try $y(x)=u(x) e^{m x}$. Then the ODE for u is $u^{\prime \prime}+(2 m+P) u^{\prime}+\left(m^{2}+P m+Q\right) u=p(x)$. This equation is akin to the first case and hence we can try a

Other methods in special cases: $R=p(x) e^{m x}$

- Suppose $R=p(x) e^{m x}$ where $m \in \mathbb{R}$ and $p(x)$ is a polynomial of degree n.
- We first try $y(x)=u(x) e^{m x}$. Then the ODE for u is $u^{\prime \prime}+(2 m+P) u^{\prime}+\left(m^{2}+P m+Q\right) u=p(x)$. This equation is akin to the first case and hence we can try a polynomial for u.

Other methods in special cases: $R=p(x) e^{m x}$

- Suppose $R=p(x) e^{m x}$ where $m \in \mathbb{R}$ and $p(x)$ is a polynomial of degree n.
- We first try $y(x)=u(x) e^{m x}$. Then the ODE for u is $u^{\prime \prime}+(2 m+P) u^{\prime}+\left(m^{2}+P m+Q\right) u=p(x)$. This equation is akin to the first case and hence we can try a polynomial for u. Clearly if $m^{2}+P m+Q \neq 0$

Other methods in special cases: $R=p(x) e^{m x}$

- Suppose $R=p(x) e^{m x}$ where $m \in \mathbb{R}$ and $p(x)$ is a polynomial of degree n.
- We first try $y(x)=u(x) e^{m x}$. Then the ODE for u is $u^{\prime \prime}+(2 m+P) u^{\prime}+\left(m^{2}+P m+Q\right) u=p(x)$. This equation is akin to the first case and hence we can try a polynomial for u. Clearly if $m^{2}+P m+Q \neq 0$ we ought to try

Other methods in special cases: $R=p(x) e^{m x}$

- Suppose $R=p(x) e^{m x}$ where $m \in \mathbb{R}$ and $p(x)$ is a polynomial of degree n.
- We first try $y(x)=u(x) e^{m x}$. Then the ODE for u is $u^{\prime \prime}+(2 m+P) u^{\prime}+\left(m^{2}+P m+Q\right) u=p(x)$. This equation is akin to the first case and hence we can try a polynomial for u. Clearly if $m^{2}+P m+Q \neq 0$ we ought to try a degree n polynomial.

Other methods in special cases: $R=p(x) e^{m x}$

- Suppose $R=p(x) e^{m x}$ where $m \in \mathbb{R}$ and $p(x)$ is a polynomial of degree n.
- We first try $y(x)=u(x) e^{m x}$. Then the ODE for u is $u^{\prime \prime}+(2 m+P) u^{\prime}+\left(m^{2}+P m+Q\right) u=p(x)$. This equation is akin to the first case and hence we can try a polynomial for u. Clearly if $m^{2}+P m+Q \neq 0$ we ought to try a degree n polynomial. If it is 0 and

Other methods in special cases: $R=p(x) e^{m x}$

- Suppose $R=p(x) e^{m x}$ where $m \in \mathbb{R}$ and $p(x)$ is a polynomial of degree n.
- We first try $y(x)=u(x) e^{m x}$. Then the ODE for u is $u^{\prime \prime}+(2 m+P) u^{\prime}+\left(m^{2}+P m+Q\right) u=p(x)$. This equation is akin to the first case and hence we can try a polynomial for u. Clearly if $m^{2}+P m+Q \neq 0$ we ought to try a degree n polynomial. If it is 0 and $2 m+P$ is not zero,

Other methods in special cases: $R=p(x) e^{m x}$

- Suppose $R=p(x) e^{m x}$ where $m \in \mathbb{R}$ and $p(x)$ is a polynomial of degree n.
- We first try $y(x)=u(x) e^{m x}$. Then the ODE for u is $u^{\prime \prime}+(2 m+P) u^{\prime}+\left(m^{2}+P m+Q\right) u=p(x)$. This equation is akin to the first case and hence we can try a polynomial for u. Clearly if $m^{2}+P m+Q \neq 0$ we ought to try a degree n polynomial. If it is 0 and $2 m+P$ is not zero, then a degree $n+1$ polynomial.

Other methods in special cases: $R=p(x) e^{m x}$

- Suppose $R=p(x) e^{m x}$ where $m \in \mathbb{R}$ and $p(x)$ is a polynomial of degree n.
- We first try $y(x)=u(x) e^{m x}$. Then the ODE for u is $u^{\prime \prime}+(2 m+P) u^{\prime}+\left(m^{2}+P m+Q\right) u=p(x)$. This equation is akin to the first case and hence we can try a polynomial for u. Clearly if $m^{2}+P m+Q \neq 0$ we ought to try a degree n polynomial. If it is 0 and $2 m+P$ is not zero, then a degree $n+1$ polynomial. If both are zero,

Other methods in special cases: $R=p(x) e^{m x}$

- Suppose $R=p(x) e^{m x}$ where $m \in \mathbb{R}$ and $p(x)$ is a polynomial of degree n.
- We first try $y(x)=u(x) e^{m x}$. Then the ODE for u is $u^{\prime \prime}+(2 m+P) u^{\prime}+\left(m^{2}+P m+Q\right) u=p(x)$. This equation is akin to the first case and hence we can try a polynomial for u. Clearly if $m^{2}+P m+Q \neq 0$ we ought to try a degree n polynomial. If it is 0 and $2 m+P$ is not zero, then a degree $n+1$ polynomial. If both are zero, then a degree $n+2$ polynomial.

Other methods in special cases: $R=p(x) e^{m x}$

- Suppose $R=p(x) e^{m x}$ where $m \in \mathbb{R}$ and $p(x)$ is a polynomial of degree n.
- We first try $y(x)=u(x) e^{m x}$. Then the ODE for u is $u^{\prime \prime}+(2 m+P) u^{\prime}+\left(m^{2}+P m+Q\right) u=p(x)$. This equation is akin to the first case and hence we can try a polynomial for u. Clearly if $m^{2}+P m+Q \neq 0$ we ought to try a degree n polynomial. If it is 0 and $2 m+P$ is not zero, then a degree $n+1$ polynomial. If both are zero, then a degree $n+2$ polynomial.
- Find a particular solution

Other methods in special cases: $R=p(x) e^{m x}$

- Suppose $R=p(x) e^{m x}$ where $m \in \mathbb{R}$ and $p(x)$ is a polynomial of degree n.
- We first try $y(x)=u(x) e^{m x}$. Then the ODE for u is $u^{\prime \prime}+(2 m+P) u^{\prime}+\left(m^{2}+P m+Q\right) u=p(x)$. This equation is akin to the first case and hence we can try a polynomial for u. Clearly if $m^{2}+P m+Q \neq 0$ we ought to try a degree n polynomial. If it is 0 and $2 m+P$ is not zero, then a degree $n+1$ polynomial. If both are zero, then a degree $n+2$ polynomial.
- Find a particular solution to $y^{\prime \prime}+y=x e^{3 x}$.

Other methods in special cases: $R=p(x) e^{m x}$

- Suppose $R=p(x) e^{m x}$ where $m \in \mathbb{R}$ and $p(x)$ is a polynomial of degree n.
- We first try $y(x)=u(x) e^{m x}$. Then the ODE for u is $u^{\prime \prime}+(2 m+P) u^{\prime}+\left(m^{2}+P m+Q\right) u=p(x)$. This equation is akin to the first case and hence we can try a polynomial for u. Clearly if $m^{2}+P m+Q \neq 0$ we ought to try a degree n polynomial. If it is 0 and $2 m+P$ is not zero, then a degree $n+1$ polynomial. If both are zero, then a degree $n+2$ polynomial.
- Find a particular solution to $y^{\prime \prime}+y=x e^{3 x}$. In this case

Other methods in special cases: $R=p(x) e^{m x}$

- Suppose $R=p(x) e^{m x}$ where $m \in \mathbb{R}$ and $p(x)$ is a polynomial of degree n.
- We first try $y(x)=u(x) e^{m x}$. Then the ODE for u is $u^{\prime \prime}+(2 m+P) u^{\prime}+\left(m^{2}+P m+Q\right) u=p(x)$. This equation is akin to the first case and hence we can try a polynomial for u. Clearly if $m^{2}+P m+Q \neq 0$ we ought to try a degree n polynomial. If it is 0 and $2 m+P$ is not zero, then a degree $n+1$ polynomial. If both are zero, then a degree $n+2$ polynomial.
- Find a particular solution to $y^{\prime \prime}+y=x e^{3 x}$. In this case $m=3$ and hence

Other methods in special cases: $R=p(x) e^{m x}$

- Suppose $R=p(x) e^{m x}$ where $m \in \mathbb{R}$ and $p(x)$ is a polynomial of degree n.
- We first try $y(x)=u(x) e^{m x}$. Then the ODE for u is $u^{\prime \prime}+(2 m+P) u^{\prime}+\left(m^{2}+P m+Q\right) u=p(x)$. This equation is akin to the first case and hence we can try a polynomial for u. Clearly if $m^{2}+P m+Q \neq 0$ we ought to try a degree n polynomial. If it is 0 and $2 m+P$ is not zero, then a degree $n+1$ polynomial. If both are zero, then a degree $n+2$ polynomial.
- Find a particular solution to $y^{\prime \prime}+y=x e^{3 x}$. In this case $m=3$ and hence $2 m+P=6$ and $m^{2}+P m+Q=10$.

Other methods in special cases: $R=p(x) e^{m x}$

- Suppose $R=p(x) e^{m x}$ where $m \in \mathbb{R}$ and $p(x)$ is a polynomial of degree n.
- We first try $y(x)=u(x) e^{m x}$. Then the ODE for u is $u^{\prime \prime}+(2 m+P) u^{\prime}+\left(m^{2}+P m+Q\right) u=p(x)$. This equation is akin to the first case and hence we can try a polynomial for u. Clearly if $m^{2}+P m+Q \neq 0$ we ought to try a degree n polynomial. If it is 0 and $2 m+P$ is not zero, then a degree $n+1$ polynomial. If both are zero, then a degree $n+2$ polynomial.
- Find a particular solution to $y^{\prime \prime}+y=x e^{3 x}$. In this case $m=3$ and hence $2 m+P=6$ and $m^{2}+P m+Q=10$. So let's try $u=A x+B$.

Other methods in special cases: $R=p(x) e^{m x}$

- Suppose $R=p(x) e^{m x}$ where $m \in \mathbb{R}$ and $p(x)$ is a polynomial of degree n.
- We first try $y(x)=u(x) e^{m x}$. Then the ODE for u is $u^{\prime \prime}+(2 m+P) u^{\prime}+\left(m^{2}+P m+Q\right) u=p(x)$. This equation is akin to the first case and hence we can try a polynomial for u. Clearly if $m^{2}+P m+Q \neq 0$ we ought to try a degree n polynomial. If it is 0 and $2 m+P$ is not zero, then a degree $n+1$ polynomial. If both are zero, then a degree $n+2$ polynomial.
- Find a particular solution to $y^{\prime \prime}+y=x e^{3 x}$. In this case $m=3$ and hence $2 m+P=6$ and $m^{2}+P m+Q=10$. So let's try $u=A x+B$. It turns out that

Other methods in special cases: $R=p(x) e^{m x}$

- Suppose $R=p(x) e^{m x}$ where $m \in \mathbb{R}$ and $p(x)$ is a polynomial of degree n.
- We first try $y(x)=u(x) e^{m x}$. Then the ODE for u is $u^{\prime \prime}+(2 m+P) u^{\prime}+\left(m^{2}+P m+Q\right) u=p(x)$. This equation is akin to the first case and hence we can try a polynomial for u. Clearly if $m^{2}+P m+Q \neq 0$ we ought to try a degree n polynomial. If it is 0 and $2 m+P$ is not zero, then a degree $n+1$ polynomial. If both are zero, then a degree $n+2$ polynomial.
- Find a particular solution to $y^{\prime \prime}+y=x e^{3 x}$. In this case $m=3$ and hence $2 m+P=6$ and $m^{2}+P m+Q=10$. So let's try $u=A x+B$. It turns out that $y_{1}=\frac{e^{3 x}(5 x-3)}{50}$.

Examples from mechanics

Examples from mechanics

- Suppose a particle

Examples from mechanics

- Suppose a particle of mass 1 is under

Examples from mechanics

- Suppose a particle of mass 1 is under the influence of a potential $V(x)$.

Examples from mechanics

- Suppose a particle of mass 1 is under the influence of a potential $V(x)$. Suppose it is at stable equilibrium at $x=0$.

Examples from mechanics

- Suppose a particle of mass 1 is under the influence of a potential $V(x)$. Suppose it is at stable equilibrium at $x=0$. What will happen

Examples from mechanics

- Suppose a particle of mass 1 is under the influence of a potential $V(x)$. Suppose it is at stable equilibrium at $x=0$. What will happen if we perturb it?

Examples from mechanics

- Suppose a particle of mass 1 is under the influence of a potential $V(x)$. Suppose it is at stable equilibrium at $x=0$. What will happen if we perturb it? $V(x) \approx V(0)+\frac{k^{2}}{2} x^{2}$.
- Suppose a particle of mass 1 is under the influence of a potential $V(x)$. Suppose it is at stable equilibrium at $x=0$. What will happen if we perturb it? $V(x) \approx V(0)+\frac{k^{2}}{2} x^{2}$. Since $F=-V^{\prime}$,
- Suppose a particle of mass 1 is under the influence of a potential $V(x)$. Suppose it is at stable equilibrium at $x=0$. What will happen if we perturb it? $V(x) \approx V(0)+\frac{k^{2}}{2} x^{2}$. Since $F=-V^{\prime}, F=-k^{2} x$.
- Suppose a particle of mass 1 is under the influence of a potential $V(x)$. Suppose it is at stable equilibrium at $x=0$. What will happen if we perturb it? $V(x) \approx V(0)+\frac{k^{2}}{2} x^{2}$. Since $F=-V^{\prime}, F=-k^{2} x$.
- Thus $x^{\prime \prime}=-k^{2} x$.
- Suppose a particle of mass 1 is under the influence of a potential $V(x)$. Suppose it is at stable equilibrium at $x=0$. What will happen if we perturb it? $V(x) \approx V(0)+\frac{k^{2}}{2} x^{2}$. Since $F=-V^{\prime}, F=-k^{2} x$.
- Thus $x^{\prime \prime}=-k^{2} x$. This equation can be
- Suppose a particle of mass 1 is under the influence of a potential $V(x)$. Suppose it is at stable equilibrium at $x=0$. What will happen if we perturb it? $V(x) \approx V(0)+\frac{k^{2}}{2} x^{2}$. Since $F=-V^{\prime}, F=-k^{2} x$.
- Thus $x^{\prime \prime}=-k^{2} x$. This equation can be solved to yield

Examples from mechanics

- Suppose a particle of mass 1 is under the influence of a potential $V(x)$. Suppose it is at stable equilibrium at $x=0$. What will happen if we perturb it? $V(x) \approx V(0)+\frac{k^{2}}{2} x^{2}$. Since $F=-V^{\prime}, F=-k^{2} x$.
- Thus $x^{\prime \prime}=-k^{2} x$. This equation can be solved to yield $x=A \cos (k t)+B \sin (k t)$.

Examples from mechanics

- Suppose a particle of mass 1 is under the influence of a potential $V(x)$. Suppose it is at stable equilibrium at $x=0$. What will happen if we perturb it? $V(x) \approx V(0)+\frac{k^{2}}{2} x^{2}$. Since $F=-V^{\prime}, F=-k^{2} x$.
- Thus $x^{\prime \prime}=-k^{2} x$. This equation can be solved to yield $x=A \cos (k t)+B \sin (k t)$. This is a Harmonic Oscillator.
- Suppose a particle of mass 1 is under the influence of a potential $V(x)$. Suppose it is at stable equilibrium at $x=0$. What will happen if we perturb it? $V(x) \approx V(0)+\frac{k^{2}}{2} x^{2}$. Since $F=-V^{\prime}, F=-k^{2} x$.
- Thus $x^{\prime \prime}=-k^{2} x$. This equation can be solved to yield $x=A \cos (k t)+B \sin (k t)$. This is a Harmonic Oscillator.
- What if
- Suppose a particle of mass 1 is under the influence of a potential $V(x)$. Suppose it is at stable equilibrium at $x=0$. What will happen if we perturb it? $V(x) \approx V(0)+\frac{k^{2}}{2} x^{2}$. Since $F=-V^{\prime}, F=-k^{2} x$.
- Thus $x^{\prime \prime}=-k^{2} x$. This equation can be solved to yield $x=A \cos (k t)+B \sin (k t)$. This is a Harmonic Oscillator.
- What if the particle is subject to
- Suppose a particle of mass 1 is under the influence of a potential $V(x)$. Suppose it is at stable equilibrium at $x=0$. What will happen if we perturb it? $V(x) \approx V(0)+\frac{k^{2}}{2} x^{2}$. Since $F=-V^{\prime}, F=-k^{2} x$.
- Thus $x^{\prime \prime}=-k^{2} x$. This equation can be solved to yield $x=A \cos (k t)+B \sin (k t)$. This is a Harmonic Oscillator.
- What if the particle is subject to air resistance?
- Suppose a particle of mass 1 is under the influence of a potential $V(x)$. Suppose it is at stable equilibrium at $x=0$. What will happen if we perturb it? $V(x) \approx V(0)+\frac{k^{2}}{2} x^{2}$. Since $F=-V^{\prime}, F=-k^{2} x$.
- Thus $x^{\prime \prime}=-k^{2} x$. This equation can be solved to yield $x=A \cos (k t)+B \sin (k t)$. This is a Harmonic Oscillator.
- What if the particle is subject to air resistance? Stokes' law says that
- Suppose a particle of mass 1 is under the influence of a potential $V(x)$. Suppose it is at stable equilibrium at $x=0$. What will happen if we perturb it? $V(x) \approx V(0)+\frac{k^{2}}{2} x^{2}$. Since $F=-V^{\prime}, F=-k^{2} x$.
- Thus $x^{\prime \prime}=-k^{2} x$. This equation can be solved to yield $x=A \cos (k t)+B \sin (k t)$. This is a Harmonic Oscillator.
- What if the particle is subject to air resistance? Stokes' law says that the viscous drag is $F=-2 c x^{\prime}$.
- Suppose a particle of mass 1 is under the influence of a potential $V(x)$. Suppose it is at stable equilibrium at $x=0$. What will happen if we perturb it? $V(x) \approx V(0)+\frac{k^{2}}{2} x^{2}$. Since $F=-V^{\prime}, F=-k^{2} x$.
- Thus $x^{\prime \prime}=-k^{2} x$. This equation can be solved to yield $x=A \cos (k t)+B \sin (k t)$. This is a Harmonic Oscillator.
- What if the particle is subject to air resistance? Stokes' law says that the viscous drag is $F=-2 c x^{\prime}$.
- Thus $x^{\prime \prime}+2 c x^{\prime}+k^{2} x=0$.
- Suppose a particle of mass 1 is under the influence of a potential $V(x)$. Suppose it is at stable equilibrium at $x=0$. What will happen if we perturb it? $V(x) \approx V(0)+\frac{k^{2}}{2} x^{2}$. Since $F=-V^{\prime}, F=-k^{2} x$.
- Thus $x^{\prime \prime}=-k^{2} x$. This equation can be solved to yield $x=A \cos (k t)+B \sin (k t)$. This is a Harmonic Oscillator.
- What if the particle is subject to air resistance? Stokes' law says that the viscous drag is $F=-2 c x^{\prime}$.
- Thus $x^{\prime \prime}+2 c x^{\prime}+k^{2} x=0$. Further, what if
- Suppose a particle of mass 1 is under the influence of a potential $V(x)$. Suppose it is at stable equilibrium at $x=0$. What will happen if we perturb it? $V(x) \approx V(0)+\frac{k^{2}}{2} x^{2}$. Since $F=-V^{\prime}, F=-k^{2} x$.
- Thus $x^{\prime \prime}=-k^{2} x$. This equation can be solved to yield $x=A \cos (k t)+B \sin (k t)$. This is a Harmonic Oscillator.
- What if the particle is subject to air resistance? Stokes' law says that the viscous drag is $F=-2 c x^{\prime}$.
- Thus $x^{\prime \prime}+2 c x^{\prime}+k^{2} x=0$. Further, what if we apply another
- Suppose a particle of mass 1 is under the influence of a potential $V(x)$. Suppose it is at stable equilibrium at $x=0$. What will happen if we perturb it? $V(x) \approx V(0)+\frac{k^{2}}{2} x^{2}$. Since $F=-V^{\prime}, F=-k^{2} x$.
- Thus $x^{\prime \prime}=-k^{2} x$. This equation can be solved to yield $x=A \cos (k t)+B \sin (k t)$. This is a Harmonic Oscillator.
- What if the particle is subject to air resistance? Stokes' law says that the viscous drag is $F=-2 c x^{\prime}$.
- Thus $x^{\prime \prime}+2 c x^{\prime}+k^{2} x=0$. Further, what if we apply another external time-dependent force $F(t)$ on it?
- Suppose a particle of mass 1 is under the influence of a potential $V(x)$. Suppose it is at stable equilibrium at $x=0$. What will happen if we perturb it? $V(x) \approx V(0)+\frac{k^{2}}{2} x^{2}$. Since $F=-V^{\prime}, F=-k^{2} x$.
- Thus $x^{\prime \prime}=-k^{2} x$. This equation can be solved to yield $x=A \cos (k t)+B \sin (k t)$. This is a Harmonic Oscillator.
- What if the particle is subject to air resistance? Stokes' law says that the viscous drag is $F=-2 c x^{\prime}$.
- Thus $x^{\prime \prime}+2 c x^{\prime}+k^{2} x=0$. Further, what if we apply another external time-dependent force $F(t)$ on it? Then $x^{\prime \prime}+2 c x^{\prime}+k^{2} x=F(t)$.
- Suppose a particle of mass 1 is under the influence of a potential $V(x)$. Suppose it is at stable equilibrium at $x=0$. What will happen if we perturb it? $V(x) \approx V(0)+\frac{k^{2}}{2} x^{2}$. Since $F=-V^{\prime}, F=-k^{2} x$.
- Thus $x^{\prime \prime}=-k^{2} x$. This equation can be solved to yield $x=A \cos (k t)+B \sin (k t)$. This is a Harmonic Oscillator.
- What if the particle is subject to air resistance? Stokes' law says that the viscous drag is $F=-2 c x^{\prime}$.
- Thus $x^{\prime \prime}+2 c x^{\prime}+k^{2} x=0$. Further, what if we apply another external time-dependent force $F(t)$ on it? Then $x^{\prime \prime}+2 c x^{\prime}+k^{2} x=F(t)$.
- This equation is precisely
- Suppose a particle of mass 1 is under the influence of a potential $V(x)$. Suppose it is at stable equilibrium at $x=0$. What will happen if we perturb it? $V(x) \approx V(0)+\frac{k^{2}}{2} x^{2}$. Since $F=-V^{\prime}, F=-k^{2} x$.
- Thus $x^{\prime \prime}=-k^{2} x$. This equation can be solved to yield $x=A \cos (k t)+B \sin (k t)$. This is a Harmonic Oscillator.
- What if the particle is subject to air resistance? Stokes' law says that the viscous drag is $F=-2 c x^{\prime}$.
- Thus $x^{\prime \prime}+2 c x^{\prime}+k^{2} x=0$. Further, what if we apply another external time-dependent force $F(t)$ on it? Then $x^{\prime \prime}+2 c x^{\prime}+k^{2} x=F(t)$.
- This equation is precisely what we have been dealing with.
- Suppose a particle of mass 1 is under the influence of a potential $V(x)$. Suppose it is at stable equilibrium at $x=0$. What will happen if we perturb it? $V(x) \approx V(0)+\frac{k^{2}}{2} x^{2}$. Since $F=-V^{\prime}, F=-k^{2} x$.
- Thus $x^{\prime \prime}=-k^{2} x$. This equation can be solved to yield $x=A \cos (k t)+B \sin (k t)$. This is a Harmonic Oscillator.
- What if the particle is subject to air resistance? Stokes' law says that the viscous drag is $F=-2 c x^{\prime}$.
- Thus $x^{\prime \prime}+2 c x^{\prime}+k^{2} x=0$. Further, what if we apply another external time-dependent force $F(t)$ on it? Then $x^{\prime \prime}+2 c x^{\prime}+k^{2} x=F(t)$.
- This equation is precisely what we have been dealing with. The key lies in finding
- Suppose a particle of mass 1 is under the influence of a potential $V(x)$. Suppose it is at stable equilibrium at $x=0$. What will happen if we perturb it? $V(x) \approx V(0)+\frac{k^{2}}{2} x^{2}$. Since $F=-V^{\prime}, F=-k^{2} x$.
- Thus $x^{\prime \prime}=-k^{2} x$. This equation can be solved to yield $x=A \cos (k t)+B \sin (k t)$. This is a Harmonic Oscillator.
- What if the particle is subject to air resistance? Stokes' law says that the viscous drag is $F=-2 c x^{\prime}$.
- Thus $x^{\prime \prime}+2 c x^{\prime}+k^{2} x=0$. Further, what if we apply another external time-dependent force $F(t)$ on it? Then $x^{\prime \prime}+2 c x^{\prime}+k^{2} x=F(t)$.
- This equation is precisely what we have been dealing with. The key lies in finding solutions to
- Suppose a particle of mass 1 is under the influence of a potential $V(x)$. Suppose it is at stable equilibrium at $x=0$. What will happen if we perturb it? $V(x) \approx V(0)+\frac{k^{2}}{2} x^{2}$. Since $F=-V^{\prime}, F=-k^{2} x$.
- Thus $x^{\prime \prime}=-k^{2} x$. This equation can be solved to yield $x=A \cos (k t)+B \sin (k t)$. This is a Harmonic Oscillator.
- What if the particle is subject to air resistance? Stokes' law says that the viscous drag is $F=-2 c x^{\prime}$.
- Thus $x^{\prime \prime}+2 c x^{\prime}+k^{2} x=0$. Further, what if we apply another external time-dependent force $F(t)$ on it? Then $x^{\prime \prime}+2 c x^{\prime}+k^{2} x=F(t)$.
- This equation is precisely what we have been dealing with. The key lies in finding solutions to the homogeneous problem.

