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Recap

Solved second-order linear homogeneous ODE with
constant-coefficients.

Solved first-order linear ODE.

Made some remarks about nonlinear separable ODE.

Defined equilibria.
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Phase diagrams and trajectories (Not for exams)

If y ′ = g(y), one can draw tiny lines indicating the slope of a
potential solution at every point (x , y) in R2. These are called
phase diagrams. (Note that one can do the same even for
y ′ = F (x , y).)

If y(0) = y0, one can “flow” along the tiny line at (0, y0) for a
small time δ, and then look at the slope at (δ, y ′) and so on.
These curves are called trajectories of the “vector field”
associated to the ODE.

A qualitative picture of the solution is gleaned from these
phase diagrams and trajectories.

For instance, one can analyse
x ′ = ax(1− x)− h(1 + sin(2πt)) that represents the

population of fish with periodic harvesting.
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Euler’s method (Not for exams)

Suppose we want to solve y ′ = g(y)f (x) with y(0) = y0
numerically. (or more generally, y ′ = F (x , y)).

Using the intuition from phase diagrams, we arrive at Euler’s
iterative method: yn+1 = yn + F (xn, yn)h where h is the
step-size. More rigorously,
y(x + h) = y(x) +

∫ x+h
x F (x(t), y(t))dt. This formulation of

an ODE as an integral equation is useful for computational
and theoretical purposes (i.e. to prove existence and
uniqueness for instance). Watch Hidden Figures for instance!

This method is unfortunately numerically unstable often, i.e.,
the errors keep building up. There are better methods like the
Runge-Kutta methods (that replace the slope with a weighted
sum of slopes) that yield much better error estimates.
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Second-order linear inhomogeneous ODE with some
constant coefficients (Back to exams)

Now we attempt to solve y ′′ + Py ′ + Qy = R(x) where
P,Q ∈ R and R(x) is a continuous function.

As earlier, if y1 is a particular solution and y2 is any other
solution, then y1 − y2 solves the corresponding homogeneous
equation.

We already proved that the solutions of the homogeneous
equation form a real two-dimensional vector space spanned by
two functions u1(x), u2(x).

Thus the general solution is y1 + c1u1(x) + c2u2(x). Hence,
we “just” need to find onesolution of the inhomogeneous
equation. There is a way to do this using the homogeneous
equation itself.
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Variation of parameters

Clearly y = a1u1 + a2u2 where a1, a2 are constants does not
solve the inhomogeneous equation. What if we let them vary
with x? (Method of variation of parameters.)

Let’s try y = a1(x)u1(x) + a2(x)u2(x). y ′ =
∑

i aiu
′
i + a′iui .

y ′′ =
∑

i (a
′
iui )
′ + a′iu

′
i + aiu

′′
i . Thus

y ′′ + Py ′ + Qy =
∑

i (a
′
iui )
′ + a′iu

′
i + Pa′iui = R.

This is just one equation with two knowns a1(x), a2(x). The
trick is to set a′1u1 + a′2u2 = 0 and a′1u

′
1 + a′2u

′
2 = R.

So we have A

[
a′1
a′2

]
=

[
0
R

]
where A =

[
u1 u2
u′1 u′2

]
.

Since u1, u2 are linearly independent det(A) 6= 0 (?!) This
determinant is denoted as W (x) = u1u

′
2 − u2u

′
1 and is called

the Wronskian of u1, u2 (after a crazy Polish chap).

Thus a′1 = −u2R(x)
W (x) and a′2 = u1R(x)

W (x) . Integrating these, we get
the desired particular solution.
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An example

Solve y ′′ + y = tan(x) on (−π2 ,
π
2 ).

First we solve y ′′ + y = 0. In this case our methods easily
produce y = c1 cos(x) + c2 sin(x).

Now we attempt variation of parameters:
y1 = a1(x) cos(x) + a2(x) sin(x). The Wronskian of
cos(x), sin(x) is W (x) = cos2(x) + sin2(x) = 1.
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Other methods in special cases: R is a polynomial

The above procedure is painful to implement in general.
Suppose R is a polynomial of degree n and Q 6= 0.

We can try y1 =
∑n

k=0 akx
k .

For instance, solve y ′′ + y = x3. Let’s try
y1 = Ax3 + Bx2 + Cx + D. Then
A = 1,B = 0,C = −6,D = 0. Thus y1 = x3 − 6x is a
particular solution. The general solution is
y = x3 − 6x + c1 cos(x) + c2 sin(x).

On the other hand, variation of parameters leads to annoying
integrals like

∫
x3 cos(x).
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Other methods in special cases: R = p(x)emx

Suppose R = p(x)emx where m ∈ R and p(x) is a polynomial
of degree n.

We first try y(x) = u(x)emx . Then the ODE for u is
u′′ + (2m + P)u′ + (m2 + Pm + Q)u = p(x). This equation is
akin to the first case and hence we can try a polynomial for u.
Clearly if m2 + Pm + Q 6= 0 we ought to try a degree n
polynomial. If it is 0 and 2m + P is not zero, then a degree
n + 1 polynomial. If both are zero, then a degree n + 2
polynomial.

Find a particular solution to y ′′ + y = xe3x . In this case
m = 3 and hence 2m + P = 6 and m2 + Pm + Q = 10. So
let’s try u = Ax + B. It turns out that y1 = e3x (5x−3)

50 .
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Examples from mechanics

Suppose a particle of mass 1 is under the influence of a
potential V (x). Suppose it is at stable equilibrium at x = 0.

What will happen if we perturb it? V (x) ≈ V (0) + k2

2 x
2.

Since F = −V ′, F = −k2x .

Thus x ′′ = −k2x . This equation can be solved to yield
x = A cos(kt) + B sin(kt). This is a Harmonic Oscillator.

What if the particle is subject to air resistance? Stokes’ law
says that the viscous drag is F = −2cx ′.

Thus x ′′ + 2cx ′ + k2x = 0. Further, what if we apply another
external time-dependent force F (t) on it? Then
x ′′ + 2cx ′ + k2x = F (t).

This equation is precisely what we have been dealing with.
The key lies in finding solutions to the homogeneous problem.
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