Lecture 20 - UM 102 (Spring 2021)

Vamsi Pritham Pingali

IISc

- Discussed phase diagrams
- Discussed phase diagrams and Euler's method.

Recap

- Discussed phase diagrams and Euler's method.
- The method of variation of parameters

Recap

- Discussed phase diagrams and Euler's method.
- The method of variation of parameters to solve

Recap

- Discussed phase diagrams and Euler's method.
- The method of variation of parameters to solve second-order linear
- Discussed phase diagrams and Euler's method.
- The method of variation of parameters to solve second-order linear inhomogeneous ODE with
- Discussed phase diagrams and Euler's method.
- The method of variation of parameters to solve second-order linear inhomogeneous ODE with constant coefficients.
- Discussed phase diagrams and Euler's method.
- The method of variation of parameters to solve second-order linear inhomogeneous ODE with constant coefficients. Discussed the
- Discussed phase diagrams and Euler's method.
- The method of variation of parameters to solve second-order linear inhomogeneous ODE with constant coefficients. Discussed the Wronskian along the way.
- Discussed phase diagrams and Euler's method.
- The method of variation of parameters to solve second-order linear inhomogeneous ODE with constant coefficients. Discussed the Wronskian along the way.
- A simpler method
- Discussed phase diagrams and Euler's method.
- The method of variation of parameters to solve second-order linear inhomogeneous ODE with constant coefficients. Discussed the Wronskian along the way.
- A simpler method when the RHS is

Recap

- Discussed phase diagrams and Euler's method.
- The method of variation of parameters to solve second-order linear inhomogeneous ODE with constant coefficients. Discussed the Wronskian along the way.
- A simpler method when the RHS is $p(x)$ or $p(x) e^{m x}$.

Recap

- Discussed phase diagrams and Euler's method.
- The method of variation of parameters to solve second-order linear inhomogeneous ODE with constant coefficients. Discussed the Wronskian along the way.
- A simpler method when the RHS is $p(x)$ or $p(x) e^{m x}$.
- Ended with

Recap

- Discussed phase diagrams and Euler's method.
- The method of variation of parameters to solve second-order linear inhomogeneous ODE with constant coefficients. Discussed the Wronskian along the way.
- A simpler method when the RHS is $p(x)$ or $p(x) e^{m x}$.
- Ended with the formulation of

Recap

- Discussed phase diagrams and Euler's method.
- The method of variation of parameters to solve second-order linear inhomogeneous ODE with constant coefficients. Discussed the Wronskian along the way.
- A simpler method when the RHS is $p(x)$ or $p(x) e^{m x}$.
- Ended with the formulation of a damped forced oscillator:

Recap

- Discussed phase diagrams and Euler's method.
- The method of variation of parameters to solve second-order linear inhomogeneous ODE with constant coefficients. Discussed the Wronskian along the way.
- A simpler method when the RHS is $p(x)$ or $p(x) e^{m x}$.
- Ended with the formulation of a damped forced oscillator: $y^{\prime \prime}+2 c y^{\prime}+k^{2} y=F(t)$ where $c>0, k \in \mathbb{R}$.

A damped oscillator

A damped oscillator

- When the forcing term

A damped oscillator

- When the forcing term $F(t)=0$,

A damped oscillator

- When the forcing term $F(t)=0$, we have a damped oscillator $y^{\prime \prime}+2 c y^{\prime}+k^{2} y=0$.

A damped oscillator

- When the forcing term $F(t)=0$, we have a damped oscillator $y^{\prime \prime}+2 c y^{\prime}+k^{2} y=0$.
- To solve this ODE

A damped oscillator

- When the forcing term $F(t)=0$, we have a damped oscillator $y^{\prime \prime}+2 c y^{\prime}+k^{2} y=0$.
- To solve this ODE consider $D^{2}+2 c D+k^{2}=0$.

A damped oscillator

- When the forcing term $F(t)=0$, we have a damped oscillator $y^{\prime \prime}+2 c y^{\prime}+k^{2} y=0$.
- To solve this ODE consider $D^{2}+2 c D+k^{2}=0$. The roots are

A damped oscillator

- When the forcing term $F(t)=0$, we have a damped oscillator $y^{\prime \prime}+2 c y^{\prime}+k^{2} y=0$.
- To solve this ODE consider $D^{2}+2 c D+k^{2}=0$. The roots are $-c \pm \sqrt{c^{2}-k^{2}}$.

A damped oscillator

- When the forcing term $F(t)=0$, we have a damped oscillator $y^{\prime \prime}+2 c y^{\prime}+k^{2} y=0$.
- To solve this ODE consider $D^{2}+2 c D+k^{2}=0$. The roots are $-c \pm \sqrt{c^{2}-k^{2}}$.
- If $c>k$ (overdamped),

A damped oscillator

- When the forcing term $F(t)=0$, we have a damped oscillator $y^{\prime \prime}+2 c y^{\prime}+k^{2} y=0$.
- To solve this ODE consider $D^{2}+2 c D+k^{2}=0$. The roots are $-c \pm \sqrt{c^{2}-k^{2}}$.
- If $c>k$ (overdamped), the roots are real, distinct, and negative.

A damped oscillator

- When the forcing term $F(t)=0$, we have a damped oscillator $y^{\prime \prime}+2 c y^{\prime}+k^{2} y=0$.
- To solve this ODE consider $D^{2}+2 c D+k^{2}=0$. The roots are $-c \pm \sqrt{c^{2}-k^{2}}$.
- If $c>k$ (overdamped), the roots are real, distinct, and negative. Thus $y=a e^{\lambda_{1} t}+b e^{\lambda_{2} t}$ is the solution.

A damped oscillator

- When the forcing term $F(t)=0$, we have a damped oscillator $y^{\prime \prime}+2 c y^{\prime}+k^{2} y=0$.
- To solve this ODE consider $D^{2}+2 c D+k^{2}=0$. The roots are $-c \pm \sqrt{c^{2}-k^{2}}$.
- If $c>k$ (overdamped), the roots are real, distinct, and negative. Thus $y=a e^{\lambda_{1} t}+b e^{\lambda_{2} t}$ is the solution. Hence as $t \rightarrow \infty, y \rightarrow 0$.

A damped oscillator

- When the forcing term $F(t)=0$, we have a damped oscillator $y^{\prime \prime}+2 c y^{\prime}+k^{2} y=0$.
- To solve this ODE consider $D^{2}+2 c D+k^{2}=0$. The roots are $-c \pm \sqrt{c^{2}-k^{2}}$.
- If $c>k$ (overdamped), the roots are real, distinct, and negative. Thus $y=a e^{\lambda_{1} t}+b e^{\lambda_{2} t}$ is the solution. Hence as $t \rightarrow \infty, y \rightarrow 0$.
- If $c=k$ (critically damped),

A damped oscillator

- When the forcing term $F(t)=0$, we have a damped oscillator $y^{\prime \prime}+2 c y^{\prime}+k^{2} y=0$.
- To solve this ODE consider $D^{2}+2 c D+k^{2}=0$. The roots are $-c \pm \sqrt{c^{2}-k^{2}}$.
- If $c>k$ (overdamped), the roots are real, distinct, and negative. Thus $y=a e^{\lambda_{1} t}+b e^{\lambda_{2} t}$ is the solution. Hence as $t \rightarrow \infty, y \rightarrow 0$.
- If $c=k$ (critically damped), the roots are real and equal to $-c$.

A damped oscillator

- When the forcing term $F(t)=0$, we have a damped oscillator $y^{\prime \prime}+2 c y^{\prime}+k^{2} y=0$.
- To solve this ODE consider $D^{2}+2 c D+k^{2}=0$. The roots are $-c \pm \sqrt{c^{2}-k^{2}}$.
- If $c>k$ (overdamped), the roots are real, distinct, and negative. Thus $y=a e^{\lambda_{1} t}+b e^{\lambda_{2} t}$ is the solution. Hence as $t \rightarrow \infty, y \rightarrow 0$.
- If $c=k$ (critically damped), the roots are real and equal to $-c$. In this case

A damped oscillator

- When the forcing term $F(t)=0$, we have a damped oscillator $y^{\prime \prime}+2 c y^{\prime}+k^{2} y=0$.
- To solve this ODE consider $D^{2}+2 c D+k^{2}=0$. The roots are $-c \pm \sqrt{c^{2}-k^{2}}$.
- If $c>k$ (overdamped), the roots are real, distinct, and negative. Thus $y=a e^{\lambda_{1} t}+b e^{\lambda_{2} t}$ is the solution. Hence as $t \rightarrow \infty, y \rightarrow 0$.
- If $c=k$ (critically damped), the roots are real and equal to $-c$. In this case $y=e^{-c t}(a+b t)$ is the solution.

A damped oscillator

- When the forcing term $F(t)=0$, we have a damped oscillator $y^{\prime \prime}+2 c y^{\prime}+k^{2} y=0$.
- To solve this ODE consider $D^{2}+2 c D+k^{2}=0$. The roots are $-c \pm \sqrt{c^{2}-k^{2}}$.
- If $c>k$ (overdamped), the roots are real, distinct, and negative. Thus $y=a e^{\lambda_{1} t}+b e^{\lambda_{2} t}$ is the solution. Hence as $t \rightarrow \infty, y \rightarrow 0$.
- If $c=k$ (critically damped), the roots are real and equal to $-c$. In this case $y=e^{-c t}(a+b t)$ is the solution. These solutions also

A damped oscillator

- When the forcing term $F(t)=0$, we have a damped oscillator $y^{\prime \prime}+2 c y^{\prime}+k^{2} y=0$.
- To solve this ODE consider $D^{2}+2 c D+k^{2}=0$. The roots are $-c \pm \sqrt{c^{2}-k^{2}}$.
- If $c>k$ (overdamped), the roots are real, distinct, and negative. Thus $y=a e^{\lambda_{1} t}+b e^{\lambda_{2} t}$ is the solution. Hence as $t \rightarrow \infty, y \rightarrow 0$.
- If $c=k$ (critically damped), the roots are real and equal to $-c$. In this case $y=e^{-c t}(a+b t)$ is the solution. These solutions also go to 0 as $t \rightarrow \infty$.

A damped oscillator

A damped oscillator

- If $c<k$ (underdamped),

A damped oscillator

- If $c<k$ (underdamped), the roots are complex and distinct.

A damped oscillator

- If $c<k$ (underdamped), the roots are complex and distinct. Thus $y=e^{-c t}\left(a \cos \left(\sqrt{k^{2}-c^{2}} t\right)+b \sin \left(\sqrt{k^{2}-c^{2}} t\right)\right)$.

A damped oscillator

- If $c<k$ (underdamped), the roots are complex and distinct. Thus $y=e^{-c t}\left(a \cos \left(\sqrt{k^{2}-c^{2}} t\right)+b \sin \left(\sqrt{k^{2}-c^{2}} t\right)\right)$. The solution oscillates

A damped oscillator

- If $c<k$ (underdamped), the roots are complex and distinct. Thus $y=e^{-c t}\left(a \cos \left(\sqrt{k^{2}-c^{2}} t\right)+b \sin \left(\sqrt{k^{2}-c^{2}} t\right)\right)$. The solution oscillates with ever decreasing amplitude

A damped oscillator

- If $c<k$ (underdamped), the roots are complex and distinct. Thus $y=e^{-c t}\left(a \cos \left(\sqrt{k^{2}-c^{2}} t\right)+b \sin \left(\sqrt{k^{2}-c^{2}} t\right)\right)$. The solution oscillates with ever decreasing amplitude and goes to 0 as $t \rightarrow \infty$.

A damped oscillator

- If $c<k$ (underdamped), the roots are complex and distinct. Thus $y=e^{-c t}\left(a \cos \left(\sqrt{k^{2}-c^{2}} t\right)+b \sin \left(\sqrt{k^{2}-c^{2}} t\right)\right)$. The solution oscillates with ever decreasing amplitude and goes to 0 as $t \rightarrow \infty$.
- Of course,

A damped oscillator

- If $c<k$ (underdamped), the roots are complex and distinct. Thus $y=e^{-c t}\left(a \cos \left(\sqrt{k^{2}-c^{2}} t\right)+b \sin \left(\sqrt{k^{2}-c^{2}} t\right)\right)$. The solution oscillates with ever decreasing amplitude and goes to 0 as $t \rightarrow \infty$.
- Of course, if $c>0$ (a boost as opposed to resistance),

A damped oscillator

- If $c<k$ (underdamped), the roots are complex and distinct. Thus $y=e^{-c t}\left(a \cos \left(\sqrt{k^{2}-c^{2}} t\right)+b \sin \left(\sqrt{k^{2}-c^{2}} t\right)\right)$. The solution oscillates with ever decreasing amplitude and goes to 0 as $t \rightarrow \infty$.
- Of course, if $c>0$ (a boost as opposed to resistance), these solution fly away to infinity.

A damped oscillator

- If $c<k$ (underdamped), the roots are complex and distinct. Thus $y=e^{-c t}\left(a \cos \left(\sqrt{k^{2}-c^{2}} t\right)+b \sin \left(\sqrt{k^{2}-c^{2}} t\right)\right)$. The solution oscillates with ever decreasing amplitude and goes to 0 as $t \rightarrow \infty$.
- Of course, if $c>0$ (a boost as opposed to resistance), these solution fly away to infinity.
- A similar ODE

A damped oscillator

- If $c<k$ (underdamped), the roots are complex and distinct. Thus $y=e^{-c t}\left(a \cos \left(\sqrt{k^{2}-c^{2}} t\right)+b \sin \left(\sqrt{k^{2}-c^{2}} t\right)\right)$. The solution oscillates with ever decreasing amplitude and goes to 0 as $t \rightarrow \infty$.
- Of course, if $c>0$ (a boost as opposed to resistance), these solution fly away to infinity.
- A similar ODE appears in

A damped oscillator

- If $c<k$ (underdamped), the roots are complex and distinct. Thus $y=e^{-c t}\left(a \cos \left(\sqrt{k^{2}-c^{2}} t\right)+b \sin \left(\sqrt{k^{2}-c^{2}} t\right)\right)$. The solution oscillates with ever decreasing amplitude and goes to 0 as $t \rightarrow \infty$.
- Of course, if $c>0$ (a boost as opposed to resistance), these solution fly away to infinity.
- A similar ODE appears in RLC circuits:

A damped oscillator

- If $c<k$ (underdamped), the roots are complex and distinct. Thus $y=e^{-c t}\left(a \cos \left(\sqrt{k^{2}-c^{2}} t\right)+b \sin \left(\sqrt{k^{2}-c^{2}} t\right)\right)$. The solution oscillates with ever decreasing amplitude and goes to 0 as $t \rightarrow \infty$.
- Of course, if $c>0$ (a boost as opposed to resistance), these solution fly away to infinity.
- A similar ODE appears in RLC circuits: $L I^{\prime}+R I+\frac{1}{C} \int I=V(t)$, i.e.,

A damped oscillator

- If $c<k$ (underdamped), the roots are complex and distinct. Thus $y=e^{-c t}\left(a \cos \left(\sqrt{k^{2}-c^{2}} t\right)+b \sin \left(\sqrt{k^{2}-c^{2}} t\right)\right)$. The solution oscillates with ever decreasing amplitude and goes to 0 as $t \rightarrow \infty$.
- Of course, if $c>0$ (a boost as opposed to resistance), these solution fly away to infinity.
- A similar ODE appears in RLC circuits: $L I^{\prime}+R I+\frac{1}{C} \int I=V(t)$, i.e., $L I^{\prime \prime}+R I^{\prime}+\frac{1}{C} I=V^{\prime}$.

A damped oscillator

- If $c<k$ (underdamped), the roots are complex and distinct. Thus $y=e^{-c t}\left(a \cos \left(\sqrt{k^{2}-c^{2}} t\right)+b \sin \left(\sqrt{k^{2}-c^{2}} t\right)\right)$. The solution oscillates with ever decreasing amplitude and goes to 0 as $t \rightarrow \infty$.
- Of course, if $c>0$ (a boost as opposed to resistance), these solution fly away to infinity.
- A similar ODE appears in RLC circuits: $L I^{\prime}+R I+\frac{1}{C} \int I=V(t)$, i.e., $L I^{\prime \prime}+R I^{\prime}+\frac{1}{C} I=V^{\prime}$. We can simply copy

A damped oscillator

- If $c<k$ (underdamped), the roots are complex and distinct. Thus $y=e^{-c t}\left(a \cos \left(\sqrt{k^{2}-c^{2}} t\right)+b \sin \left(\sqrt{k^{2}-c^{2}} t\right)\right)$. The solution oscillates with ever decreasing amplitude and goes to 0 as $t \rightarrow \infty$.
- Of course, if $c>0$ (a boost as opposed to resistance), these solution fly away to infinity.
- A similar ODE appears in RLC circuits: $L I^{\prime}+R I+\frac{1}{C} \int I=V(t)$, i.e., $L I^{\prime \prime}+R I^{\prime}+\frac{1}{C} I=V^{\prime}$. We can simply copy the solution from above.

A damped oscillator

- If $c<k$ (underdamped), the roots are complex and distinct. Thus $y=e^{-c t}\left(a \cos \left(\sqrt{k^{2}-c^{2}} t\right)+b \sin \left(\sqrt{k^{2}-c^{2}} t\right)\right)$. The solution oscillates with ever decreasing amplitude and goes to 0 as $t \rightarrow \infty$.
- Of course, if $c>0$ (a boost as opposed to resistance), these solution fly away to infinity.
- A similar ODE appears in RLC circuits: $L I^{\prime}+R I+\frac{1}{C} \int I=V(t)$, i.e., $L I^{\prime \prime}+R I^{\prime}+\frac{1}{C} I=V^{\prime}$. We can simply copy the solution from above. It is also a

A damped oscillator

- If $c<k$ (underdamped), the roots are complex and distinct. Thus $y=e^{-c t}\left(a \cos \left(\sqrt{k^{2}-c^{2}} t\right)+b \sin \left(\sqrt{k^{2}-c^{2}} t\right)\right)$. The solution oscillates with ever decreasing amplitude and goes to 0 as $t \rightarrow \infty$.
- Of course, if $c>0$ (a boost as opposed to resistance), these solution fly away to infinity.
- A similar ODE appears in RLC circuits: $L I^{\prime}+R I+\frac{1}{C} \int I=V(t)$, i.e., $L I^{\prime \prime}+R I^{\prime}+\frac{1}{C} I=V^{\prime}$. We can simply copy the solution from above. It is also a damped oscillator

A damped oscillator

- If $c<k$ (underdamped), the roots are complex and distinct. Thus $y=e^{-c t}\left(a \cos \left(\sqrt{k^{2}-c^{2}} t\right)+b \sin \left(\sqrt{k^{2}-c^{2}} t\right)\right)$. The solution oscillates with ever decreasing amplitude and goes to 0 as $t \rightarrow \infty$.
- Of course, if $c>0$ (a boost as opposed to resistance), these solution fly away to infinity.
- A similar ODE appears in RLC circuits: $L I^{\prime}+R I+\frac{1}{C} \int I=V(t)$, i.e., $L I^{\prime \prime}+R I^{\prime}+\frac{1}{C} I=V^{\prime}$. We can simply copy the solution from above. It is also a damped oscillator with the damping provided by R.

A damped oscillator

- If $c<k$ (underdamped), the roots are complex and distinct. Thus $y=e^{-c t}\left(a \cos \left(\sqrt{k^{2}-c^{2}} t\right)+b \sin \left(\sqrt{k^{2}-c^{2}} t\right)\right)$. The solution oscillates with ever decreasing amplitude and goes to 0 as $t \rightarrow \infty$.
- Of course, if $c>0$ (a boost as opposed to resistance), these solution fly away to infinity.
- A similar ODE appears in RLC circuits: $L I^{\prime}+R I+\frac{1}{C} \int I=V(t)$, i.e., $L I^{\prime \prime}+R I^{\prime}+\frac{1}{C} I=V^{\prime}$. We can simply copy the solution from above. It is also a damped oscillator with the damping provided by R. It is in fact

A damped oscillator

- If $c<k$ (underdamped), the roots are complex and distinct. Thus $y=e^{-c t}\left(a \cos \left(\sqrt{k^{2}-c^{2}} t\right)+b \sin \left(\sqrt{k^{2}-c^{2}} t\right)\right)$. The solution oscillates with ever decreasing amplitude and goes to 0 as $t \rightarrow \infty$.
- Of course, if $c>0$ (a boost as opposed to resistance), these solution fly away to infinity.
- A similar ODE appears in RLC circuits: $L I^{\prime}+R I+\frac{1}{C} \int I=V(t)$, i.e., $L I^{\prime \prime}+R I^{\prime}+\frac{1}{C} I=V^{\prime}$. We can simply copy the solution from above. It is also a damped oscillator with the damping provided by R. It is in fact a forced damped oscillator.

Multivariable calculus

Multivariable calculus

- So far,

Multivariable calculus

- So far, we looked at

Multivariable calculus

- So far, we looked at either functions $f: U \subset \mathbb{R} \rightarrow \mathbb{R}$ and

Multivariable calculus

- So far, we looked at either functions $f: U \subset \mathbb{R} \rightarrow \mathbb{R}$ and studied their continuity, differentiability, integrability, etc or

Multivariable calculus

- So far, we looked at either functions $f: U \subset \mathbb{R} \rightarrow \mathbb{R}$ and studied their continuity, differentiability, integrability, etc or linear functions $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ given by $f(x)=A x$ and

Multivariable calculus

- So far, we looked at either functions $f: U \subset \mathbb{R} \rightarrow \mathbb{R}$ and studied their continuity, differentiability, integrability, etc or linear functions $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ given by $f(x)=A x$ and generalisations $T: V \rightarrow W$ to linear maps.

Multivariable calculus

- So far, we looked at either functions $f: U \subset \mathbb{R} \rightarrow \mathbb{R}$ and studied their continuity, differentiability, integrability, etc or linear functions $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ given by $f(x)=A x$ and generalisations $T: V \rightarrow W$ to linear maps.
- Most of life is

Multivariable calculus

- So far, we looked at either functions $f: U \subset \mathbb{R} \rightarrow \mathbb{R}$ and studied their continuity, differentiability, integrability, etc or linear functions $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ given by $f(x)=A x$ and generalisations $T: V \rightarrow W$ to linear maps.
- Most of life is nonlinear and multivariate

Multivariable calculus

- So far, we looked at either functions $f: U \subset \mathbb{R} \rightarrow \mathbb{R}$ and studied their continuity, differentiability, integrability, etc or linear functions $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ given by $f(x)=A x$ and generalisations $T: V \rightarrow W$ to linear maps.
- Most of life is nonlinear and multivariate (like

Multivariable calculus

- So far, we looked at either functions $f: U \subset \mathbb{R} \rightarrow \mathbb{R}$ and studied their continuity, differentiability, integrability, etc or linear functions $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ given by $f(x)=A x$ and generalisations $T: V \rightarrow W$ to linear maps.
- Most of life is nonlinear and multivariate (like the airflow around an aeroplane,

Multivariable calculus

- So far, we looked at either functions $f: U \subset \mathbb{R} \rightarrow \mathbb{R}$ and studied their continuity, differentiability, integrability, etc or linear functions $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ given by $f(x)=A x$ and generalisations $T: V \rightarrow W$ to linear maps.
- Most of life is nonlinear and multivariate (like the airflow around an aeroplane, some aspects of the stock market,

Multivariable calculus

- So far, we looked at either functions $f: U \subset \mathbb{R} \rightarrow \mathbb{R}$ and studied their continuity, differentiability, integrability, etc or linear functions $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ given by $f(x)=A x$ and generalisations $T: V \rightarrow W$ to linear maps.
- Most of life is nonlinear and multivariate (like the airflow around an aeroplane, some aspects of the stock market, the curvature of the earth,

Multivariable calculus

- So far, we looked at either functions $f: U \subset \mathbb{R} \rightarrow \mathbb{R}$ and studied their continuity, differentiability, integrability, etc or linear functions $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ given by $f(x)=A x$ and generalisations $T: V \rightarrow W$ to linear maps.
- Most of life is nonlinear and multivariate (like the airflow around an aeroplane, some aspects of the stock market, the curvature of the earth, protein folding,

Multivariable calculus

- So far, we looked at either functions $f: U \subset \mathbb{R} \rightarrow \mathbb{R}$ and studied their continuity, differentiability, integrability, etc or linear functions $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ given by $f(x)=A x$ and generalisations $T: V \rightarrow W$ to linear maps.
- Most of life is nonlinear and multivariate (like the airflow around an aeroplane, some aspects of the stock market, the curvature of the earth, protein folding, Ricci flow for the Poincaré conjecture, etc).

Multivariable calculus

- So far, we looked at either functions $f: U \subset \mathbb{R} \rightarrow \mathbb{R}$ and studied their continuity, differentiability, integrability, etc or linear functions $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ given by $f(x)=A x$ and generalisations $T: V \rightarrow W$ to linear maps.
- Most of life is nonlinear and multivariate (like the airflow around an aeroplane, some aspects of the stock market, the curvature of the earth, protein folding, Ricci flow for the Poincaré conjecture, etc).
- So we need to

Multivariable calculus

- So far, we looked at either functions $f: U \subset \mathbb{R} \rightarrow \mathbb{R}$ and studied their continuity, differentiability, integrability, etc or linear functions $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ given by $f(x)=A x$ and generalisations $T: V \rightarrow W$ to linear maps.
- Most of life is nonlinear and multivariate (like the airflow around an aeroplane, some aspects of the stock market, the curvature of the earth, protein folding, Ricci flow for the Poincaré conjecture, etc).
- So we need to study the calculus of functions $f: U \subset \mathbb{R}^{m} \rightarrow \mathbb{R}^{n}$.

Multivariable calculus

- So far, we looked at either functions $f: U \subset \mathbb{R} \rightarrow \mathbb{R}$ and studied their continuity, differentiability, integrability, etc or linear functions $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ given by $f(x)=A x$ and generalisations $T: V \rightarrow W$ to linear maps.
- Most of life is nonlinear and multivariate (like the airflow around an aeroplane, some aspects of the stock market, the curvature of the earth, protein folding, Ricci flow for the Poincaré conjecture, etc).
- So we need to study the calculus of functions $f: U \subset \mathbb{R}^{m} \rightarrow \mathbb{R}^{n}$.
- When $n=1$,

Multivariable calculus

- So far, we looked at either functions $f: U \subset \mathbb{R} \rightarrow \mathbb{R}$ and studied their continuity, differentiability, integrability, etc or linear functions $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ given by $f(x)=A x$ and generalisations $T: V \rightarrow W$ to linear maps.
- Most of life is nonlinear and multivariate (like the airflow around an aeroplane, some aspects of the stock market, the curvature of the earth, protein folding, Ricci flow for the Poincaré conjecture, etc).
- So we need to study the calculus of functions $f: U \subset \mathbb{R}^{m} \rightarrow \mathbb{R}^{n}$.
- When $n=1$, the function is called scalar-valued

Multivariable calculus

- So far, we looked at either functions $f: U \subset \mathbb{R} \rightarrow \mathbb{R}$ and studied their continuity, differentiability, integrability, etc or linear functions $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ given by $f(x)=A x$ and generalisations $T: V \rightarrow W$ to linear maps.
- Most of life is nonlinear and multivariate (like the airflow around an aeroplane, some aspects of the stock market, the curvature of the earth, protein folding, Ricci flow for the Poincaré conjecture, etc).
- So we need to study the calculus of functions $f: U \subset \mathbb{R}^{m} \rightarrow \mathbb{R}^{n}$.
- When $n=1$, the function is called scalar-valued or a scalar field and

Multivariable calculus

- So far, we looked at either functions $f: U \subset \mathbb{R} \rightarrow \mathbb{R}$ and studied their continuity, differentiability, integrability, etc or linear functions $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ given by $f(x)=A x$ and generalisations $T: V \rightarrow W$ to linear maps.
- Most of life is nonlinear and multivariate (like the airflow around an aeroplane, some aspects of the stock market, the curvature of the earth, protein folding, Ricci flow for the Poincaré conjecture, etc).
- So we need to study the calculus of functions $f: U \subset \mathbb{R}^{m} \rightarrow \mathbb{R}^{n}$.
- When $n=1$, the function is called scalar-valued or a scalar field and when $n>1$ it is called vector-valued

Multivariable calculus

- So far, we looked at either functions $f: U \subset \mathbb{R} \rightarrow \mathbb{R}$ and studied their continuity, differentiability, integrability, etc or linear functions $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ given by $f(x)=A x$ and generalisations $T: V \rightarrow W$ to linear maps.
- Most of life is nonlinear and multivariate (like the airflow around an aeroplane, some aspects of the stock market, the curvature of the earth, protein folding, Ricci flow for the Poincaré conjecture, etc).
- So we need to study the calculus of functions $f: U \subset \mathbb{R}^{m} \rightarrow \mathbb{R}^{n}$.
- When $n=1$, the function is called scalar-valued or a scalar field and when $n>1$ it is called vector-valued or a vector field.

Open ball

Open ball

- Recall that

Open ball

- Recall that a function $f: U \subset \mathbb{R} \rightarrow \mathbb{R}$ is

Open ball

- Recall that a function $f: U \subset \mathbb{R} \rightarrow \mathbb{R}$ is continuous at $a \in U$ if

Open ball

- Recall that a function $f: U \subset \mathbb{R} \rightarrow \mathbb{R}$ is continuous at $a \in U$ if for every $\epsilon>0$

Open ball

- Recall that a function $f: U \subset \mathbb{R} \rightarrow \mathbb{R}$ is continuous at $a \in U$ if for every $\epsilon>0$ there exists a $\delta_{\epsilon}>0$ such that

Open ball

- Recall that a function $f: U \subset \mathbb{R} \rightarrow \mathbb{R}$ is continuous at $a \in U$ if for every $\epsilon>0$ there exists a $\delta_{\epsilon}>0$ such that whenever $|x-a|<\delta$ and $x \in U$,

Open ball

- Recall that a function $f: U \subset \mathbb{R} \rightarrow \mathbb{R}$ is continuous at $a \in U$ if for every $\epsilon>0$ there exists a $\delta_{\epsilon}>0$ such that whenever $|x-a|<\delta$ and $x \in U,|f(x)-f(a)|<\epsilon$.

Open ball

- Recall that a function $f: U \subset \mathbb{R} \rightarrow \mathbb{R}$ is continuous at $a \in U$ if for every $\epsilon>0$ there exists a $\delta_{\epsilon}>0$ such that whenever $|x-a|<\delta$ and $x \in U,|f(x)-f(a)|<\epsilon$.
- So to even

Open ball

- Recall that a function $f: U \subset \mathbb{R} \rightarrow \mathbb{R}$ is continuous at $a \in U$ if for every $\epsilon>0$ there exists a $\delta_{\epsilon}>0$ such that whenever $|x-a|<\delta$ and $x \in U,|f(x)-f(a)|<\epsilon$.
- So to even define continuity of $f: U \subset \mathbb{R}^{m} \rightarrow \mathbb{R}^{n}$,

Open ball

- Recall that a function $f: U \subset \mathbb{R} \rightarrow \mathbb{R}$ is continuous at $a \in U$ if for every $\epsilon>0$ there exists a $\delta_{\epsilon}>0$ such that whenever $|x-a|<\delta$ and $x \in U,|f(x)-f(a)|<\epsilon$.
- So to even define continuity of $f: U \subset \mathbb{R}^{m} \rightarrow \mathbb{R}^{n}$, we need to be able

Open ball

- Recall that a function $f: U \subset \mathbb{R} \rightarrow \mathbb{R}$ is continuous at $a \in U$ if for every $\epsilon>0$ there exists a $\delta_{\epsilon}>0$ such that whenever $|x-a|<\delta$ and $x \in U,|f(x)-f(a)|<\epsilon$.
- So to even define continuity of $f: U \subset \mathbb{R}^{m} \rightarrow \mathbb{R}^{n}$, we need to be able to measure distances.

Open ball

- Recall that a function $f: U \subset \mathbb{R} \rightarrow \mathbb{R}$ is continuous at $a \in U$ if for every $\epsilon>0$ there exists a $\delta_{\epsilon}>0$ such that whenever $|x-a|<\delta$ and $x \in U,|f(x)-f(a)|<\epsilon$.
- So to even define continuity of $f: U \subset \mathbb{R}^{m} \rightarrow \mathbb{R}^{n}$, we need to be able to measure distances.
- To this end,

Open ball

- Recall that a function $f: U \subset \mathbb{R} \rightarrow \mathbb{R}$ is continuous at $a \in U$ if for every $\epsilon>0$ there exists a $\delta_{\epsilon}>0$ such that whenever $|x-a|<\delta$ and $x \in U,|f(x)-f(a)|<\epsilon$.
- So to even define continuity of $f: U \subset \mathbb{R}^{m} \rightarrow \mathbb{R}^{n}$, we need to be able to measure distances.
- To this end, we use the usual norm

Open ball

- Recall that a function $f: U \subset \mathbb{R} \rightarrow \mathbb{R}$ is continuous at $a \in U$ if for every $\epsilon>0$ there exists a $\delta_{\epsilon}>0$ such that whenever $|x-a|<\delta$ and $x \in U,|f(x)-f(a)|<\epsilon$.
- So to even define continuity of $f: U \subset \mathbb{R}^{m} \rightarrow \mathbb{R}^{n}$, we need to be able to measure distances.
- To this end, we use the usual norm coming from the usual dot product

Open ball

- Recall that a function $f: U \subset \mathbb{R} \rightarrow \mathbb{R}$ is continuous at $a \in U$ if for every $\epsilon>0$ there exists a $\delta_{\epsilon}>0$ such that whenever $|x-a|<\delta$ and $x \in U,|f(x)-f(a)|<\epsilon$.
- So to even define continuity of $f: U \subset \mathbb{R}^{m} \rightarrow \mathbb{R}^{n}$, we need to be able to measure distances.
- To this end, we use the usual norm coming from the usual dot product $\vec{v} \cdot \vec{w}=\sum_{i} v_{i} w_{i}$ and $\|v-w\|=\sqrt{\left(v_{1}-w_{1}\right)^{2}+\ldots}$.

Open ball

- Recall that a function $f: U \subset \mathbb{R} \rightarrow \mathbb{R}$ is continuous at $a \in U$ if for every $\epsilon>0$ there exists a $\delta_{\epsilon}>0$ such that whenever $|x-a|<\delta$ and $x \in U,|f(x)-f(a)|<\epsilon$.
- So to even define continuity of $f: U \subset \mathbb{R}^{m} \rightarrow \mathbb{R}^{n}$, we need to be able to measure distances.
- To this end, we use the usual norm coming from the usual dot product $\vec{v} \cdot \vec{w}=\sum_{i} v_{i} w_{i}$ and $\|v-w\|=\sqrt{\left(v_{1}-w_{1}\right)^{2}+\ldots}$.
- The definition of

Open ball

- Recall that a function $f: U \subset \mathbb{R} \rightarrow \mathbb{R}$ is continuous at $a \in U$ if for every $\epsilon>0$ there exists a $\delta_{\epsilon}>0$ such that whenever $|x-a|<\delta$ and $x \in U,|f(x)-f(a)|<\epsilon$.
- So to even define continuity of $f: U \subset \mathbb{R}^{m} \rightarrow \mathbb{R}^{n}$, we need to be able to measure distances.
- To this end, we use the usual norm coming from the usual dot product $\vec{v} \cdot \vec{w}=\sum_{i} v_{i} w_{i}$ and $\|v-w\|=\sqrt{\left(v_{1}-w_{1}\right)^{2}+\ldots}$.
- The definition of continuity in one-variable

Open ball

- Recall that a function $f: U \subset \mathbb{R} \rightarrow \mathbb{R}$ is continuous at $a \in U$ if for every $\epsilon>0$ there exists a $\delta_{\epsilon}>0$ such that whenever $|x-a|<\delta$ and $x \in U,|f(x)-f(a)|<\epsilon$.
- So to even define continuity of $f: U \subset \mathbb{R}^{m} \rightarrow \mathbb{R}^{n}$, we need to be able to measure distances.
- To this end, we use the usual norm coming from the usual dot product $\vec{v} \cdot \vec{w}=\sum_{i} v_{i} w_{i}$ and $\|v-w\|=\sqrt{\left(v_{1}-w_{1}\right)^{2}+\ldots}$.
- The definition of continuity in one-variable is easiest to visualise

Open ball

- Recall that a function $f: U \subset \mathbb{R} \rightarrow \mathbb{R}$ is continuous at $a \in U$ if for every $\epsilon>0$ there exists a $\delta_{\epsilon}>0$ such that whenever $|x-a|<\delta$ and $x \in U,|f(x)-f(a)|<\epsilon$.
- So to even define continuity of $f: U \subset \mathbb{R}^{m} \rightarrow \mathbb{R}^{n}$, we need to be able to measure distances.
- To this end, we use the usual norm coming from the usual dot product $\vec{v} \cdot \vec{w}=\sum_{i} v_{i} w_{i}$ and $\|v-w\|=\sqrt{\left(v_{1}-w_{1}\right)^{2}+\ldots}$.
- The definition of continuity in one-variable is easiest to visualise when $U=(a, b)$.

Open ball

- Recall that a function $f: U \subset \mathbb{R} \rightarrow \mathbb{R}$ is continuous at $a \in U$ if for every $\epsilon>0$ there exists a $\delta_{\epsilon}>0$ such that whenever $|x-a|<\delta$ and $x \in U,|f(x)-f(a)|<\epsilon$.
- So to even define continuity of $f: U \subset \mathbb{R}^{m} \rightarrow \mathbb{R}^{n}$, we need to be able to measure distances.
- To this end, we use the usual norm coming from the usual dot product $\vec{v} \cdot \vec{w}=\sum_{i} v_{i} w_{i}$ and $\|v-w\|=\sqrt{\left(v_{1}-w_{1}\right)^{2}+\ldots}$.
- The definition of continuity in one-variable is easiest to visualise when $U=(a, b)$. Therefore, we need

Open ball

- Recall that a function $f: U \subset \mathbb{R} \rightarrow \mathbb{R}$ is continuous at $a \in U$ if for every $\epsilon>0$ there exists a $\delta_{\epsilon}>0$ such that whenever $|x-a|<\delta$ and $x \in U,|f(x)-f(a)|<\epsilon$.
- So to even define continuity of $f: U \subset \mathbb{R}^{m} \rightarrow \mathbb{R}^{n}$, we need to be able to measure distances.
- To this end, we use the usual norm coming from the usual dot product $\vec{v} \cdot \vec{w}=\sum_{i} v_{i} w_{i}$ and $\|v-w\|=\sqrt{\left(v_{1}-w_{1}\right)^{2}+\ldots}$.
- The definition of continuity in one-variable is easiest to visualise when $U=(a, b)$. Therefore, we need to generalise

Open ball

- Recall that a function $f: U \subset \mathbb{R} \rightarrow \mathbb{R}$ is continuous at $a \in U$ if for every $\epsilon>0$ there exists a $\delta_{\epsilon}>0$ such that whenever $|x-a|<\delta$ and $x \in U,|f(x)-f(a)|<\epsilon$.
- So to even define continuity of $f: U \subset \mathbb{R}^{m} \rightarrow \mathbb{R}^{n}$, we need to be able to measure distances.
- To this end, we use the usual norm coming from the usual dot product $\vec{v} \cdot \vec{w}=\sum_{i} v_{i} w_{i}$ and $\|v-w\|=\sqrt{\left(v_{1}-w_{1}\right)^{2}+\ldots}$.
- The definition of continuity in one-variable is easiest to visualise when $U=(a, b)$. Therefore, we need to generalise the notion of an open interval

Open ball

- Recall that a function $f: U \subset \mathbb{R} \rightarrow \mathbb{R}$ is continuous at $a \in U$ if for every $\epsilon>0$ there exists a $\delta_{\epsilon}>0$ such that whenever $|x-a|<\delta$ and $x \in U,|f(x)-f(a)|<\epsilon$.
- So to even define continuity of $f: U \subset \mathbb{R}^{m} \rightarrow \mathbb{R}^{n}$, we need to be able to measure distances.
- To this end, we use the usual norm coming from the usual dot product $\vec{v} \cdot \vec{w}=\sum_{i} v_{i} w_{i}$ and $\|v-w\|=\sqrt{\left(v_{1}-w_{1}\right)^{2}+\ldots}$.
- The definition of continuity in one-variable is easiest to visualise when $U=(a, b)$. Therefore, we need to generalise the notion of an open interval to higher-dimensions.

Open ball

- Recall that a function $f: U \subset \mathbb{R} \rightarrow \mathbb{R}$ is continuous at $a \in U$ if for every $\epsilon>0$ there exists a $\delta_{\epsilon}>0$ such that whenever $|x-a|<\delta$ and $x \in U,|f(x)-f(a)|<\epsilon$.
- So to even define continuity of $f: U \subset \mathbb{R}^{m} \rightarrow \mathbb{R}^{n}$, we need to be able to measure distances.
- To this end, we use the usual norm coming from the usual dot product $\vec{v} \cdot \vec{w}=\sum_{i} v_{i} w_{i}$ and $\|v-w\|=\sqrt{\left(v_{1}-w_{1}\right)^{2}+\ldots}$
- The definition of continuity in one-variable is easiest to visualise when $U=(a, b)$. Therefore, we need to generalise the notion of an open interval to higher-dimensions.
- Open ball:

Open ball

- Recall that a function $f: U \subset \mathbb{R} \rightarrow \mathbb{R}$ is continuous at $a \in U$ if for every $\epsilon>0$ there exists a $\delta_{\epsilon}>0$ such that whenever $|x-a|<\delta$ and $x \in U,|f(x)-f(a)|<\epsilon$.
- So to even define continuity of $f: U \subset \mathbb{R}^{m} \rightarrow \mathbb{R}^{n}$, we need to be able to measure distances.
- To this end, we use the usual norm coming from the usual dot product $\vec{v} \cdot \vec{w}=\sum_{i} v_{i} w_{i}$ and $\|v-w\|=\sqrt{\left(v_{1}-w_{1}\right)^{2}+\ldots}$
- The definition of continuity in one-variable is easiest to visualise when $U=(a, b)$. Therefore, we need to generalise the notion of an open interval to higher-dimensions.
- Open ball: An open ball $B(\vec{a}, r) \subset \mathbb{R}^{m}$

Open ball

- Recall that a function $f: U \subset \mathbb{R} \rightarrow \mathbb{R}$ is continuous at $a \in U$ if for every $\epsilon>0$ there exists a $\delta_{\epsilon}>0$ such that whenever $|x-a|<\delta$ and $x \in U,|f(x)-f(a)|<\epsilon$.
- So to even define continuity of $f: U \subset \mathbb{R}^{m} \rightarrow \mathbb{R}^{n}$, we need to be able to measure distances.
- To this end, we use the usual norm coming from the usual dot product $\vec{v} \cdot \vec{w}=\sum_{i} v_{i} w_{i}$ and $\|v-w\|=\sqrt{\left(v_{1}-w_{1}\right)^{2}+\ldots}$.
- The definition of continuity in one-variable is easiest to visualise when $U=(a, b)$. Therefore, we need to generalise the notion of an open interval to higher-dimensions.
- Open ball: An open ball $B(\vec{a}, r) \subset \mathbb{R}^{m}$ centred at \vec{a} with radius $r>0$

Open ball

- Recall that a function $f: U \subset \mathbb{R} \rightarrow \mathbb{R}$ is continuous at $a \in U$ if for every $\epsilon>0$ there exists a $\delta_{\epsilon}>0$ such that whenever $|x-a|<\delta$ and $x \in U,|f(x)-f(a)|<\epsilon$.
- So to even define continuity of $f: U \subset \mathbb{R}^{m} \rightarrow \mathbb{R}^{n}$, we need to be able to measure distances.
- To this end, we use the usual norm coming from the usual dot product $\vec{v} \cdot \vec{w}=\sum_{i} v_{i} w_{i}$ and $\|v-w\|=\sqrt{\left(v_{1}-w_{1}\right)^{2}+\ldots}$.
- The definition of continuity in one-variable is easiest to visualise when $U=(a, b)$. Therefore, we need to generalise the notion of an open interval to higher-dimensions.
- Open ball: An open ball $B(\vec{a}, r) \subset \mathbb{R}^{m}$ centred at \vec{a} with radius $r>0$ is the set of all $\vec{x} \in \mathbb{R}^{m}$ such that

Open ball

- Recall that a function $f: U \subset \mathbb{R} \rightarrow \mathbb{R}$ is continuous at $a \in U$ if for every $\epsilon>0$ there exists a $\delta_{\epsilon}>0$ such that whenever $|x-a|<\delta$ and $x \in U,|f(x)-f(a)|<\epsilon$.
- So to even define continuity of $f: U \subset \mathbb{R}^{m} \rightarrow \mathbb{R}^{n}$, we need to be able to measure distances.
- To this end, we use the usual norm coming from the usual dot product $\vec{v} \cdot \vec{w}=\sum_{i} v_{i} w_{i}$ and $\|v-w\|=\sqrt{\left(v_{1}-w_{1}\right)^{2}+\ldots}$
- The definition of continuity in one-variable is easiest to visualise when $U=(a, b)$. Therefore, we need to generalise the notion of an open interval to higher-dimensions.
- Open ball: An open ball $B(\vec{a}, r) \subset \mathbb{R}^{m}$ centred at \vec{a} with radius $r>0$ is the set of all $\vec{x} \in \mathbb{R}^{m}$ such that $\|\vec{x}-\vec{a}\|<r$.

Interior points

Interior points

- What is an

Interior points

- What is an open set in \mathbb{R} ?

Interior points

- What is an open set in \mathbb{R} ? Ans: Whatever it is,

Interior points

- What is an open set in \mathbb{R} ? Ans: Whatever it is, it must be natural/easy to

Interior points

- What is an open set in \mathbb{R} ? Ans: Whatever it is, it must be natural/easy to do calculus on it!

Interior points

- What is an open set in \mathbb{R} ? Ans: Whatever it is, it must be natural/easy to do calculus on it!
- In other words

Interior points

- What is an open set in \mathbb{R} ? Ans: Whatever it is, it must be natural/easy to do calculus on it!
- In other words whenever $x \in U$

Interior points

- What is an open set in \mathbb{R} ? Ans: Whatever it is, it must be natural/easy to do calculus on it!
- In other words whenever $x \in U$ it is helpful if

Interior points

- What is an open set in \mathbb{R} ? Ans: Whatever it is, it must be natural/easy to do calculus on it!
- In other words whenever $x \in U$ it is helpful if $x+h \in U$ for

Interior points

- What is an open set in \mathbb{R} ? Ans: Whatever it is, it must be natural/easy to do calculus on it!
- In other words whenever $x \in U$ it is helpful if $x+h \in U$ for all "small h ".

Interior points

- What is an open set in \mathbb{R} ? Ans: Whatever it is, it must be natural/easy to do calculus on it!
- In other words whenever $x \in U$ it is helpful if $x+h \in U$ for all "small h ". Thus, an open set $U \subset \mathbb{R}$

Interior points

- What is an open set in \mathbb{R} ? Ans: Whatever it is, it must be natural/easy to do calculus on it!
- In other words whenever $x \in U$ it is helpful if $x+h \in U$ for all "small h ". Thus, an open set $U \subset \mathbb{R}$ is one where all

Interior points

- What is an open set in \mathbb{R} ? Ans: Whatever it is, it must be natural/easy to do calculus on it!
- In other words whenever $x \in U$ it is helpful if $x+h \in U$ for all "small h ". Thus, an open set $U \subset \mathbb{R}$ is one where all points in U are

Interior points

- What is an open set in \mathbb{R} ? Ans: Whatever it is, it must be natural/easy to do calculus on it!
- In other words whenever $x \in U$ it is helpful if $x+h \in U$ for all "small h ". Thus, an open set $U \subset \mathbb{R}$ is one where all points in U are "inside" U, i.e.,

Interior points

- What is an open set in \mathbb{R} ? Ans: Whatever it is, it must be natural/easy to do calculus on it!
- In other words whenever $x \in U$ it is helpful if $x+h \in U$ for all "small h ". Thus, an open set $U \subset \mathbb{R}$ is one where all points in U are "inside" U, i.e., there is an open interval

Interior points

- What is an open set in \mathbb{R} ? Ans: Whatever it is, it must be natural/easy to do calculus on it!
- In other words whenever $x \in U$ it is helpful if $x+h \in U$ for all "small h ". Thus, an open set $U \subset \mathbb{R}$ is one where all points in U are "inside" U, i.e., there is an open interval around each point

Interior points

- What is an open set in \mathbb{R} ? Ans: Whatever it is, it must be natural/easy to do calculus on it!
- In other words whenever $x \in U$ it is helpful if $x+h \in U$ for all "small h ". Thus, an open set $U \subset \mathbb{R}$ is one where all points in U are "inside" U, i.e., there is an open interval around each point that is wholly

Interior points

- What is an open set in \mathbb{R} ? Ans: Whatever it is, it must be natural/easy to do calculus on it!
- In other words whenever $x \in U$ it is helpful if $x+h \in U$ for all "small h ". Thus, an open set $U \subset \mathbb{R}$ is one where all points in U are "inside" U, i.e., there is an open interval around each point that is wholly contained in U.

Interior points

- What is an open set in \mathbb{R} ? Ans: Whatever it is, it must be natural/easy to do calculus on it!
- In other words whenever $x \in U$ it is helpful if $x+h \in U$ for all "small h ". Thus, an open set $U \subset \mathbb{R}$ is one where all points in U are "inside" U, i.e., there is an open interval around each point that is wholly contained in U.
- Motivated by the above,

Interior points

- What is an open set in \mathbb{R} ? Ans: Whatever it is, it must be natural/easy to do calculus on it!
- In other words whenever $x \in U$ it is helpful if $x+h \in U$ for all "small h ". Thus, an open set $U \subset \mathbb{R}$ is one where all points in U are "inside" U, i.e., there is an open interval around each point that is wholly contained in U.
- Motivated by the above, let $S \subset \mathbb{R}^{n}$ and $\vec{a} \in S$.

Interior points

- What is an open set in \mathbb{R} ? Ans: Whatever it is, it must be natural/easy to do calculus on it!
- In other words whenever $x \in U$ it is helpful if $x+h \in U$ for all "small h ". Thus, an open set $U \subset \mathbb{R}$ is one where all points in U are "inside" U, i.e., there is an open interval around each point that is wholly contained in U.
- Motivated by the above, let $S \subset \mathbb{R}^{n}$ and $\vec{a} \in S$. \vec{a} is called

Interior points

- What is an open set in \mathbb{R} ? Ans: Whatever it is, it must be natural/easy to do calculus on it!
- In other words whenever $x \in U$ it is helpful if $x+h \in U$ for all "small h ". Thus, an open set $U \subset \mathbb{R}$ is one where all points in U are "inside" U, i.e., there is an open interval around each point that is wholly contained in U.
- Motivated by the above, let $S \subset \mathbb{R}^{n}$ and $\vec{a} \in S$. \vec{a} is called an interior point of S

Interior points

- What is an open set in \mathbb{R} ? Ans: Whatever it is, it must be natural/easy to do calculus on it!
- In other words whenever $x \in U$ it is helpful if $x+h \in U$ for all "small h ". Thus, an open set $U \subset \mathbb{R}$ is one where all points in U are "inside" U, i.e., there is an open interval around each point that is wholly contained in U.
- Motivated by the above, let $S \subset \mathbb{R}^{n}$ and $\vec{a} \in S$. \vec{a} is called an interior point of S if there exists $r>0$

Interior points

- What is an open set in \mathbb{R} ? Ans: Whatever it is, it must be natural/easy to do calculus on it!
- In other words whenever $x \in U$ it is helpful if $x+h \in U$ for all "small h ". Thus, an open set $U \subset \mathbb{R}$ is one where all points in U are "inside" U, i.e., there is an open interval around each point that is wholly contained in U.
- Motivated by the above, let $S \subset \mathbb{R}^{n}$ and $\vec{a} \in S$. \vec{a} is called an interior point of S if there exists $r>0$ such that the open ball $B(a, r)$ is

Interior points

- What is an open set in \mathbb{R} ? Ans: Whatever it is, it must be natural/easy to do calculus on it!
- In other words whenever $x \in U$ it is helpful if $x+h \in U$ for all "small h ". Thus, an open set $U \subset \mathbb{R}$ is one where all points in U are "inside" U, i.e., there is an open interval around each point that is wholly contained in U.
- Motivated by the above, let $S \subset \mathbb{R}^{n}$ and $\vec{a} \in S$. \vec{a} is called an interior point of S if there exists $r>0$ such that the open ball $B(a, r)$ is contained in S.

Interior points

- What is an open set in \mathbb{R} ? Ans: Whatever it is, it must be natural/easy to do calculus on it!
- In other words whenever $x \in U$ it is helpful if $x+h \in U$ for all "small h ". Thus, an open set $U \subset \mathbb{R}$ is one where all points in U are "inside" U, i.e., there is an open interval around each point that is wholly contained in U.
- Motivated by the above, let $S \subset \mathbb{R}^{n}$ and $\vec{a} \in S$. \vec{a} is called an interior point of S if there exists $r>0$ such that the open ball $B(a, r)$ is contained in S.
- Examples:

Interior points

- What is an open set in \mathbb{R} ? Ans: Whatever it is, it must be natural/easy to do calculus on it!
- In other words whenever $x \in U$ it is helpful if $x+h \in U$ for all "small h ". Thus, an open set $U \subset \mathbb{R}$ is one where all points in U are "inside" U, i.e., there is an open interval around each point that is wholly contained in U.
- Motivated by the above, let $S \subset \mathbb{R}^{n}$ and $\vec{a} \in S$. \vec{a} is called an interior point of S if there exists $r>0$ such that the open ball $B(a, r)$ is contained in S.
- Examples: 0 is not an interior point

Interior points

- What is an open set in \mathbb{R} ? Ans: Whatever it is, it must be natural/easy to do calculus on it!
- In other words whenever $x \in U$ it is helpful if $x+h \in U$ for all "small h ". Thus, an open set $U \subset \mathbb{R}$ is one where all points in U are "inside" U, i.e., there is an open interval around each point that is wholly contained in U.
- Motivated by the above, let $S \subset \mathbb{R}^{n}$ and $\vec{a} \in S$. \vec{a} is called an interior point of S if there exists $r>0$ such that the open ball $B(a, r)$ is contained in S.
- Examples: 0 is not an interior point of $[0,1]$.

Interior points

- What is an open set in \mathbb{R} ? Ans: Whatever it is, it must be natural/easy to do calculus on it!
- In other words whenever $x \in U$ it is helpful if $x+h \in U$ for all "small h ". Thus, an open set $U \subset \mathbb{R}$ is one where all points in U are "inside" U, i.e., there is an open interval around each point that is wholly contained in U.
- Motivated by the above, let $S \subset \mathbb{R}^{n}$ and $\vec{a} \in S$. \vec{a} is called an interior point of S if there exists $r>0$ such that the open ball $B(a, r)$ is contained in S.
- Examples: 0 is not an interior point of $[0,1]$. On the other hand,

Interior points

- What is an open set in \mathbb{R} ? Ans: Whatever it is, it must be natural/easy to do calculus on it!
- In other words whenever $x \in U$ it is helpful if $x+h \in U$ for all "small h ". Thus, an open set $U \subset \mathbb{R}$ is one where all points in U are "inside" U, i.e., there is an open interval around each point that is wholly contained in U.
- Motivated by the above, let $S \subset \mathbb{R}^{n}$ and $\vec{a} \in S$. \vec{a} is called an interior point of S if there exists $r>0$ such that the open ball $B(a, r)$ is contained in S.
- Examples: 0 is not an interior point of $[0,1]$. On the other hand, $\frac{1}{2}$ is an interior point.

Interior points

- What is an open set in \mathbb{R} ? Ans: Whatever it is, it must be natural/easy to do calculus on it!
- In other words whenever $x \in U$ it is helpful if $x+h \in U$ for all "small h ". Thus, an open set $U \subset \mathbb{R}$ is one where all points in U are "inside" U, i.e., there is an open interval around each point that is wholly contained in U.
- Motivated by the above, let $S \subset \mathbb{R}^{n}$ and $\vec{a} \in S$. \vec{a} is called an interior point of S if there exists $r>0$ such that the open ball $B(a, r)$ is contained in S.
- Examples: 0 is not an interior point of $[0,1]$. On the other hand, $\frac{1}{2}$ is an interior point. The point $\left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)$ is

Interior points

- What is an open set in \mathbb{R} ? Ans: Whatever it is, it must be natural/easy to do calculus on it!
- In other words whenever $x \in U$ it is helpful if $x+h \in U$ for all "small h ". Thus, an open set $U \subset \mathbb{R}$ is one where all points in U are "inside" U, i.e., there is an open interval around each point that is wholly contained in U.
- Motivated by the above, let $S \subset \mathbb{R}^{n}$ and $\vec{a} \in S$. \vec{a} is called an interior point of S if there exists $r>0$ such that the open ball $B(a, r)$ is contained in S.
- Examples: 0 is not an interior point of $[0,1]$. On the other hand, $\frac{1}{2}$ is an interior point. The point $\left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)$ is not an interior point of

Interior points

- What is an open set in \mathbb{R} ? Ans: Whatever it is, it must be natural/easy to do calculus on it!
- In other words whenever $x \in U$ it is helpful if $x+h \in U$ for all "small h ". Thus, an open set $U \subset \mathbb{R}$ is one where all points in U are "inside" U, i.e., there is an open interval around each point that is wholly contained in U.
- Motivated by the above, let $S \subset \mathbb{R}^{n}$ and $\vec{a} \in S$. \vec{a} is called an interior point of S if there exists $r>0$ such that the open ball $B(a, r)$ is contained in S.
- Examples: 0 is not an interior point of $[0,1]$. On the other hand, $\frac{1}{2}$ is an interior point. The point $\left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)$ is not an interior point of the set $\|x\| \leq 1$.

Interior points

- What is an open set in \mathbb{R} ? Ans: Whatever it is, it must be natural/easy to do calculus on it!
- In other words whenever $x \in U$ it is helpful if $x+h \in U$ for all "small h ". Thus, an open set $U \subset \mathbb{R}$ is one where all points in U are "inside" U, i.e., there is an open interval around each point that is wholly contained in U.
- Motivated by the above, let $S \subset \mathbb{R}^{n}$ and $\vec{a} \in S$. \vec{a} is called an interior point of S if there exists $r>0$ such that the open ball $B(a, r)$ is contained in S.
- Examples: 0 is not an interior point of $[0,1]$. On the other hand, $\frac{1}{2}$ is an interior point. The point $\left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)$ is not an interior point of the set $\|x\| \leq 1$. $\left(0, \frac{1}{2}\right)$ is an interior point though.

Interior points

- What is an open set in \mathbb{R} ? Ans: Whatever it is, it must be natural/easy to do calculus on it!
- In other words whenever $x \in U$ it is helpful if $x+h \in U$ for all "small h ". Thus, an open set $U \subset \mathbb{R}$ is one where all points in U are "inside" U, i.e., there is an open interval around each point that is wholly contained in U.
- Motivated by the above, let $S \subset \mathbb{R}^{n}$ and $\vec{a} \in S$. \vec{a} is called an interior point of S if there exists $r>0$ such that the open ball $B(a, r)$ is contained in S.
- Examples: 0 is not an interior point of $[0,1]$. On the other hand, $\frac{1}{2}$ is an interior point. The point $\left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)$ is not an interior point of the set $\|x\| \leq 1$. $\left(0, \frac{1}{2}\right)$ is an interior point though. No point is

Interior points

- What is an open set in \mathbb{R} ? Ans: Whatever it is, it must be natural/easy to do calculus on it!
- In other words whenever $x \in U$ it is helpful if $x+h \in U$ for all "small h ". Thus, an open set $U \subset \mathbb{R}$ is one where all points in U are "inside" U, i.e., there is an open interval around each point that is wholly contained in U.
- Motivated by the above, let $S \subset \mathbb{R}^{n}$ and $\vec{a} \in S$. \vec{a} is called an interior point of S if there exists $r>0$ such that the open ball $B(a, r)$ is contained in S.
- Examples: 0 is not an interior point of $[0,1]$. On the other hand, $\frac{1}{2}$ is an interior point. The point $\left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)$ is not an interior point of the set $\|x\| \leq 1$. $\left(0, \frac{1}{2}\right)$ is an interior point though. No point is an interior point of

Interior points

- What is an open set in \mathbb{R} ? Ans: Whatever it is, it must be natural/easy to do calculus on it!
- In other words whenever $x \in U$ it is helpful if $x+h \in U$ for all "small h ". Thus, an open set $U \subset \mathbb{R}$ is one where all points in U are "inside" U, i.e., there is an open interval around each point that is wholly contained in U.
- Motivated by the above, let $S \subset \mathbb{R}^{n}$ and $\vec{a} \in S$. \vec{a} is called an interior point of S if there exists $r>0$ such that the open ball $B(a, r)$ is contained in S.
- Examples: 0 is not an interior point of $[0,1]$. On the other hand, $\frac{1}{2}$ is an interior point. The point $\left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)$ is not an interior point of the set $\|x\| \leq 1$. $\left(0, \frac{1}{2}\right)$ is an interior point though. No point is an interior point of the set $S=\{(0,0),(0,1),(1,2),(4,6)\}$.

Open sets

Open sets

- A set $U \subset \mathbb{R}^{m}$ is

Open sets

- A set $U \subset \mathbb{R}^{m}$ is said to be an

Open sets

- A set $U \subset \mathbb{R}^{m}$ is said to be an open set if

Open sets

- A set $U \subset \mathbb{R}^{m}$ is said to be an open set if all points in U

Open sets

- A set $U \subset \mathbb{R}^{m}$ is said to be an open set if all points in U are interior points, i.e.,

Open sets

- A set $U \subset \mathbb{R}^{m}$ is said to be an open set if all points in U are interior points, i.e., for every $x \in U$,

Open sets

- A set $U \subset \mathbb{R}^{m}$ is said to be an open set if all points in U are interior points, i.e., for every $x \in U$, there is an open ball

Open sets

- A set $U \subset \mathbb{R}^{m}$ is said to be an open set if all points in U are interior points, i.e., for every $x \in U$, there is an open ball $B\left(x, r_{x}\right) \subset U$.

Open sets

- A set $U \subset \mathbb{R}^{m}$ is said to be an open set if all points in U are interior points, i.e., for every $x \in U$, there is an open ball $B\left(x, r_{x}\right) \subset U$.
- Some more terminology:

Open sets

- A set $U \subset \mathbb{R}^{m}$ is said to be an open set if all points in U are interior points, i.e., for every $x \in U$, there is an open ball $B\left(x, r_{x}\right) \subset U$.
- Some more terminology: For a general set $S \subset \mathbb{R}^{m}$

Open sets

- A set $U \subset \mathbb{R}^{m}$ is said to be an open set if all points in U are interior points, i.e., for every $x \in U$, there is an open ball $B\left(x, r_{x}\right) \subset U$.
- Some more terminology: For a general set $S \subset \mathbb{R}^{m}$ the interior is

Open sets

- A set $U \subset \mathbb{R}^{m}$ is said to be an open set if all points in U are interior points, i.e., for every $x \in U$, there is an open ball $B\left(x, r_{x}\right) \subset U$.
- Some more terminology: For a general set $S \subset \mathbb{R}^{m}$ the interior is the collection of all interior points.

Open sets

- A set $U \subset \mathbb{R}^{m}$ is said to be an open set if all points in U are interior points, i.e., for every $x \in U$, there is an open ball $B\left(x, r_{x}\right) \subset U$.
- Some more terminology: For a general set $S \subset \mathbb{R}^{m}$ the interior is the collection of all interior points. So the interior can

Open sets

- A set $U \subset \mathbb{R}^{m}$ is said to be an open set if all points in U are interior points, i.e., for every $x \in U$, there is an open ball $B\left(x, r_{x}\right) \subset U$.
- Some more terminology: For a general set $S \subset \mathbb{R}^{m}$ the interior is the collection of all interior points. So the interior can potentially be empty

Open sets

- A set $U \subset \mathbb{R}^{m}$ is said to be an open set if all points in U are interior points, i.e., for every $x \in U$, there is an open ball $B\left(x, r_{x}\right) \subset U$.
- Some more terminology: For a general set $S \subset \mathbb{R}^{m}$ the interior is the collection of all interior points. So the interior can potentially be empty or potentially all of S (

Open sets

- A set $U \subset \mathbb{R}^{m}$ is said to be an open set if all points in U are interior points, i.e., for every $x \in U$, there is an open ball $B\left(x, r_{x}\right) \subset U$.
- Some more terminology: For a general set $S \subset \mathbb{R}^{m}$ the interior is the collection of all interior points. So the interior can potentially be empty or potentially all of S (in which case S is an open set) or

Open sets

- A set $U \subset \mathbb{R}^{m}$ is said to be an open set if all points in U are interior points, i.e., for every $x \in U$, there is an open ball $B\left(x, r_{x}\right) \subset U$.
- Some more terminology: For a general set $S \subset \mathbb{R}^{m}$ the interior is the collection of all interior points. So the interior can potentially be empty or potentially all of S (in which case S is an open set) or anything in between.

Open sets

- A set $U \subset \mathbb{R}^{m}$ is said to be an open set if all points in U are interior points, i.e., for every $x \in U$, there is an open ball $B\left(x, r_{x}\right) \subset U$.
- Some more terminology: For a general set $S \subset \mathbb{R}^{m}$ the interior is the collection of all interior points. So the interior can potentially be empty or potentially all of S (in which case S is an open set) or anything in between. For instance,

Open sets

- A set $U \subset \mathbb{R}^{m}$ is said to be an open set if all points in U are interior points, i.e., for every $x \in U$, there is an open ball $B\left(x, r_{x}\right) \subset U$.
- Some more terminology: For a general set $S \subset \mathbb{R}^{m}$ the interior is the collection of all interior points. So the interior can potentially be empty or potentially all of S (in which case S is an open set) or anything in between. For instance, the interior of $[0,1]$ is

Open sets

- A set $U \subset \mathbb{R}^{m}$ is said to be an open set if all points in U are interior points, i.e., for every $x \in U$, there is an open ball $B\left(x, r_{x}\right) \subset U$.
- Some more terminology: For a general set $S \subset \mathbb{R}^{m}$ the interior is the collection of all interior points. So the interior can potentially be empty or potentially all of S (in which case S is an open set) or anything in between. For instance, the interior of $[0,1]$ is $(0,1)$.

Open sets

- A set $U \subset \mathbb{R}^{m}$ is said to be an open set if all points in U are interior points, i.e., for every $x \in U$, there is an open ball $B\left(x, r_{x}\right) \subset U$.
- Some more terminology: For a general set $S \subset \mathbb{R}^{m}$ the interior is the collection of all interior points. So the interior can potentially be empty or potentially all of S (in which case S is an open set) or anything in between. For instance, the interior of $[0,1]$ is $(0,1)$.
- An open set

Open sets

- A set $U \subset \mathbb{R}^{m}$ is said to be an open set if all points in U are interior points, i.e., for every $x \in U$, there is an open ball $B\left(x, r_{x}\right) \subset U$.
- Some more terminology: For a general set $S \subset \mathbb{R}^{m}$ the interior is the collection of all interior points. So the interior can potentially be empty or potentially all of S (in which case S is an open set) or anything in between. For instance, the interior of $[0,1]$ is $(0,1)$.
- An open set containing a point $\vec{a} \in \mathbb{R}^{m}$

Open sets

- A set $U \subset \mathbb{R}^{m}$ is said to be an open set if all points in U are interior points, i.e., for every $x \in U$, there is an open ball $B\left(x, r_{x}\right) \subset U$.
- Some more terminology: For a general set $S \subset \mathbb{R}^{m}$ the interior is the collection of all interior points. So the interior can potentially be empty or potentially all of S (in which case S is an open set) or anything in between. For instance, the interior of $[0,1]$ is $(0,1)$.
- An open set containing a point $\vec{a} \in \mathbb{R}^{m}$ is often called

Open sets

- A set $U \subset \mathbb{R}^{m}$ is said to be an open set if all points in U are interior points, i.e., for every $x \in U$, there is an open ball $B\left(x, r_{x}\right) \subset U$.
- Some more terminology: For a general set $S \subset \mathbb{R}^{m}$ the interior is the collection of all interior points. So the interior can potentially be empty or potentially all of S (in which case S is an open set) or anything in between. For instance, the interior of $[0,1]$ is $(0,1)$.
- An open set containing a point $\vec{a} \in \mathbb{R}^{m}$ is often called a neighbourhood of \vec{a}.

Examples/Non-examples of open sets

Examples/Non-examples of open sets

- An open ball $B(\vec{a}, r)$

Examples/Non-examples of open sets

- An open ball $B(\vec{a}, r)$ is an open set:

Examples/Non-examples of open sets

- An open ball $B(\vec{a}, r)$ is an open set: If $\vec{x} \in B(\vec{a}, r)$,

Examples/Non-examples of open sets

- An open ball $B(\vec{a}, r)$ is an open set: If $\vec{x} \in B(\vec{a}, r)$, then $\|\vec{x}-\vec{a}\|<r$. Now

Examples/Non-examples of open sets

- An open ball $B(\vec{a}, r)$ is an open set: If $\vec{x} \in B(\vec{a}, r)$, then $\|\vec{x}-\vec{a}\|<r$. Now whenever $\|\vec{y}-\vec{x}\|<\frac{r-\|\vec{x}-\vec{a}\|}{2}$,

Examples/Non-examples of open sets

- An open ball $B(\vec{a}, r)$ is an open set: If $\vec{x} \in B(\vec{a}, r)$, then $\|\vec{x}-\vec{a}\|<r$. Now whenever $\|\vec{y}-\vec{x}\|<\frac{r-\|\vec{x}-\vec{a}\|}{2}$, we see that $\|\mid y-\vec{a}\| \leq\|\vec{y}-\vec{x}\|+\|\vec{x}-\vec{a}\|$ by the triangle inequality.

Examples/Non-examples of open sets

- An open ball $B(\vec{a}, r)$ is an open set: If $\vec{x} \in B(\vec{a}, r)$, then $\|\vec{x}-\vec{a}\|<r$. Now whenever $\|\vec{y}-\vec{x}\|<\frac{r-\|\vec{x}-\vec{a}\|}{2}$, we see that $\|\mid y-\vec{a}\| \leq\|\vec{y}-\vec{x}\|+\|\vec{x}-\vec{a}\|$ by the triangle inequality. So $\|\vec{y}-\vec{a}\| \leq \frac{r+\|\vec{x}-\vec{a}\|}{2}<r$.

Examples/Non-examples of open sets

- An open ball $B(\vec{a}, r)$ is an open set: If $\vec{x} \in B(\vec{a}, r)$, then $\|\vec{x}-\vec{a}\|<r$. Now whenever $\|\vec{y}-\vec{x}\|<\frac{r-\|\vec{x}-\vec{a}\|}{2}$, we see that $\|\mid y-\vec{a}\| \leq\|\vec{y}-\vec{x}\|+\|\vec{x}-\vec{a}\|$ by the triangle inequality. So $\|\vec{y}-\vec{a}\| \leq \frac{r+\|\vec{x}-\vec{a}\|}{2}<r$.
- The set $0<x<1,0<y<2$ is

Examples/Non-examples of open sets

- An open ball $B(\vec{a}, r)$ is an open set: If $\vec{x} \in B(\vec{a}, r)$, then $\|\vec{x}-\vec{a}\|<r$. Now whenever $\|\vec{y}-\vec{x}\|<\frac{r-\|\vec{x}-\vec{a}\|}{2}$, we see that $\|\mid y-\vec{a}\| \leq\|\vec{y}-\vec{x}\|+\|\vec{x}-\vec{a}\|$ by the triangle inequality. So $\|\vec{y}-\vec{a}\| \leq \frac{r+\|\vec{x}-\vec{a}\|}{2}<r$.
- The set $0<x<1,0<y<2$ is open set in \mathbb{R}^{2} :

Examples/Non-examples of open sets

- An open ball $B(\vec{a}, r)$ is an open set: If $\vec{x} \in B(\vec{a}, r)$, then $\|\vec{x}-\vec{a}\|<r$. Now whenever $\|\vec{y}-\vec{x}\|<\frac{r-\|\vec{x}-\vec{a}\|}{2}$, we see that $\|\mid y-\vec{a}\| \leq\|\vec{y}-\vec{x}\|+\|\vec{x}-\vec{a}\|$ by the triangle inequality. So $\|\vec{y}-\vec{a}\| \leq \frac{r+\|\vec{x}-\vec{a}\|}{2}<r$.
- The set $0<x<1,0<y<2$ is open set in \mathbb{R}^{2} : If (a, b) is in the set

Examples/Non-examples of open sets

- An open ball $B(\vec{a}, r)$ is an open set: If $\vec{x} \in B(\vec{a}, r)$, then $\|\vec{x}-\vec{a}\|<r$. Now whenever $\|\vec{y}-\vec{x}\|<\frac{r-\|\vec{x}-\vec{a}\|}{2}$, we see that $\|\mid y-\vec{a}\| \leq\|\vec{y}-\vec{x}\|+\|\vec{x}-\vec{a}\|$ by the triangle inequality. So $\|\vec{y}-\vec{a}\| \leq \frac{r+\|\vec{x}-\vec{a}\|}{2}<r$.
- The set $0<x<1,0<y<2$ is open set in \mathbb{R}^{2} : If (a, b) is in the set then $0<a<1,0<b<2$.

Examples/Non-examples of open sets

- An open ball $B(\vec{a}, r)$ is an open set: If $\vec{x} \in B(\vec{a}, r)$, then $\|\vec{x}-\vec{a}\|<r$. Now whenever $\|\vec{y}-\vec{x}\|<\frac{r-\|\vec{x}-\vec{a}\|}{2}$, we see that $\|\mid y-\vec{a}\| \leq\|\vec{y}-\vec{x}\|+\|\vec{x}-\vec{a}\|$ by the triangle inequality. So $\|\vec{y}-\vec{a}\| \leq \frac{r+\|\vec{x}-\vec{a}\|}{2}<r$.
- The set $0<x<1,0<y<2$ is open set in \mathbb{R}^{2} : If (a, b) is in the set then $0<a<1,0<b<2$. Thus whenever $\|(x, y)-(a, b)\|<\frac{\min (a, 1-a, b, 2-b)}{2}$,

Examples/Non-examples of open sets

- An open ball $B(\vec{a}, r)$ is an open set: If $\vec{x} \in B(\vec{a}, r)$, then $\|\vec{x}-\vec{a}\|<r$. Now whenever $\|\vec{y}-\vec{x}\|<\frac{r-\|\vec{x}-\vec{a}\|}{2}$, we see that $\|\mid y-\vec{a}\| \leq\|\vec{y}-\vec{x}\|+\|\vec{x}-\vec{a}\|$ by the triangle inequality. So $\|\vec{y}-\vec{a}\| \leq \frac{r+\|\vec{x}-\vec{a}\|}{2}<r$.
- The set $0<x<1,0<y<2$ is open set in \mathbb{R}^{2} : If (a, b) is in the set then $0<a<1,0<b<2$. Thus whenever $\|(x, y)-(a, b)\|<\frac{\min (a, 1-a, b, 2-b)}{2}$, then $|x-a|<\frac{\min (a, 1-a)}{2}$ and hence

Examples/Non-examples of open sets

- An open ball $B(\vec{a}, r)$ is an open set: If $\vec{x} \in B(\vec{a}, r)$, then $\|\vec{x}-\vec{a}\|<r$. Now whenever $\|\vec{y}-\vec{x}\|<\frac{r-\|\vec{x}-\vec{a}\|}{2}$, we see that $\|\mid y-\vec{a}\| \leq\|\vec{y}-\vec{x}\|+\|\vec{x}-\vec{a}\|$ by the triangle inequality. So $\|\vec{y}-\vec{a}\| \leq \frac{r+\|\vec{x}-\vec{a}\|}{2}<r$.
- The set $0<x<1,0<y<2$ is open set in \mathbb{R}^{2} : If (a, b) is in the set then $0<a<1,0<b<2$. Thus whenever $\|(x, y)-(a, b)\|<\frac{\min (a, 1-a, b, 2-b)}{2}$, then $|x-a|<\frac{\min (a, 1-a)}{2}$ and hence $0<x<1$ (why?) and

Examples/Non-examples of open sets

- An open ball $B(\vec{a}, r)$ is an open set: If $\vec{x} \in B(\vec{a}, r)$, then $\|\vec{x}-\vec{a}\|<r$. Now whenever $\|\vec{y}-\vec{x}\|<\frac{r-\|\vec{x}-\vec{a}\|}{2}$, we see that $\|\mid y-\vec{a}\| \leq\|\vec{y}-\vec{x}\|+\|\vec{x}-\vec{a}\|$ by the triangle inequality. So $\|\vec{y}-\vec{a}\| \leq \frac{r+\|\vec{x}-\vec{a}\|}{2}<r$.
- The set $0<x<1,0<y<2$ is open set in \mathbb{R}^{2} : If (a, b) is in the set then $0<a<1,0<b<2$. Thus whenever $\|(x, y)-(a, b)\|<\frac{\min (a, 1-a, b, 2-b)}{2}$, then $|x-a|<\frac{\min (a, 1-a)}{2}$ and hence $0<x<1$ (why?) and likewise for y.

Examples/Non-examples of open sets

- An open ball $B(\vec{a}, r)$ is an open set: If $\vec{x} \in B(\vec{a}, r)$, then $\|\vec{x}-\vec{a}\|<r$. Now whenever $\|\vec{y}-\vec{x}\|<\frac{r-\|\vec{x}-\vec{a}\|}{2}$, we see that $\|\mid y-\vec{a}\| \leq\|\vec{y}-\vec{x}\|+\|\vec{x}-\vec{a}\|$ by the triangle inequality. So $\|\vec{y}-\vec{a}\| \leq \frac{r+\|\vec{x}-\vec{a}\|}{2}<r$.
- The set $0<x<1,0<y<2$ is open set in \mathbb{R}^{2} : If (a, b) is in the set then $0<a<1,0<b<2$. Thus whenever $\|(x, y)-(a, b)\|<\frac{\min (a, 1-a, b, 2-b)}{2}$, then $|x-a|<\frac{\min (a, 1-a)}{2}$ and hence $0<x<1$ (why?) and likewise for y. Note that

Examples/Non-examples of open sets

- An open ball $B(\vec{a}, r)$ is an open set: If $\vec{x} \in B(\vec{a}, r)$, then $\|\vec{x}-\vec{a}\|<r$. Now whenever $\|\vec{y}-\vec{x}\|<\frac{r-\|\vec{x}-\vec{a}\|}{2}$, we see that $\|\mid y-\vec{a}\| \leq\|\vec{y}-\vec{x}\|+\|\vec{x}-\vec{a}\|$ by the triangle inequality. So $\|\vec{y}-\vec{a}\| \leq \frac{r+\|\vec{x}-\vec{a}\|}{2}<r$.
- The set $0<x<1,0<y<2$ is open set in \mathbb{R}^{2} : If (a, b) is in the set then $0<a<1,0<b<2$. Thus whenever $\|(x, y)-(a, b)\|<\frac{\min (a, 1-a, b, 2-b)}{2}$, then $|x-a|<\frac{\min (a, 1-a)}{2}$ and hence $0<x<1$ (why?) and likewise for y. Note that this set is

Examples/Non-examples of open sets

- An open ball $B(\vec{a}, r)$ is an open set: If $\vec{x} \in B(\vec{a}, r)$, then $\|\vec{x}-\vec{a}\|<r$. Now whenever $\|\vec{y}-\vec{x}\|<\frac{r-\|\vec{x}-\vec{a}\|}{2}$, we see that $\|\mid y-\vec{a}\| \leq\|\vec{y}-\vec{x}\|+\|\vec{x}-\vec{a}\|$ by the triangle inequality. So $\|\vec{y}-\vec{a}\| \leq \frac{r+\|\vec{x}-\vec{a}\|}{2}<r$.
- The set $0<x<1,0<y<2$ is open set in \mathbb{R}^{2} : If (a, b) is in the set then $0<a<1,0<b<2$. Thus whenever $\|(x, y)-(a, b)\|<\frac{\min (a, 1-a, b, 2-b)}{2}$, then $|x-a|<\frac{\min (a, 1-a)}{2}$ and hence $0<x<1$ (why?) and likewise for y. Note that this set is $(0,1) \times(0,2)$.

Examples/Non-examples of open sets

- An open ball $B(\vec{a}, r)$ is an open set: If $\vec{x} \in B(\vec{a}, r)$, then $\|\vec{x}-\vec{a}\|<r$. Now whenever $\|\vec{y}-\vec{x}\|<\frac{r-\|\vec{x}-\vec{a}\|}{2}$, we see that $\|\mid y-\vec{a}\| \leq\|\vec{y}-\vec{x}\|+\|\vec{x}-\vec{a}\|$ by the triangle inequality. So $\|\vec{y}-\vec{a}\| \leq \frac{r+\|\vec{x}-\vec{a}\|}{2}<r$.
- The set $0<x<1,0<y<2$ is open set in \mathbb{R}^{2} : If (a, b) is in the set then $0<a<1,0<b<2$. Thus whenever $\|(x, y)-(a, b)\|<\frac{\min (a, 1-a, b, 2-b)}{2}$, then $|x-a|<\frac{\min (a, 1-a)}{2}$ and hence $0<x<1$ (why?) and likewise for y. Note that this set is $(0,1) \times(0,2)$.
- More generally,
- An open ball $B(\vec{a}, r)$ is an open set: If $\vec{x} \in B(\vec{a}, r)$, then $\|\vec{x}-\vec{a}\|<r$. Now whenever $\|\vec{y}-\vec{x}\|<\frac{r-\|\vec{x}-\vec{a}\|}{2}$, we see that $\|\mid y-\vec{a}\| \leq\|\vec{y}-\vec{x}\|+\|\vec{x}-\vec{a}\|$ by the triangle inequality. So $\|\vec{y}-\vec{a}\| \leq \frac{r+\|\vec{x}-\vec{a}\|}{2}<r$.
- The set $0<x<1,0<y<2$ is open set in \mathbb{R}^{2} : If (a, b) is in the set then $0<a<1,0<b<2$. Thus whenever $\|(x, y)-(a, b)\|<\frac{\min (a, 1-a, b, 2-b)}{2}$, then $|x-a|<\frac{\min (a, 1-a)}{2}$ and hence $0<x<1$ (why?) and likewise for y. Note that this set is $(0,1) \times(0,2)$.
- More generally, (HW) if $U \subset \mathbb{R}^{n}$ is open

Examples/Non-examples of open sets

- An open ball $B(\vec{a}, r)$ is an open set: If $\vec{x} \in B(\vec{a}, r)$, then $\|\vec{x}-\vec{a}\|<r$. Now whenever $\|\vec{y}-\vec{x}\|<\frac{r-\|\vec{x}-\vec{a}\|}{2}$, we see that $\|\mid y-\vec{a}\| \leq\|\vec{y}-\vec{x}\|+\|\vec{x}-\vec{a}\|$ by the triangle inequality. So $\|\vec{y}-\vec{a}\| \leq \frac{r+\|\vec{x}-\vec{a}\|}{2}<r$.
- The set $0<x<1,0<y<2$ is open set in \mathbb{R}^{2} : If (a, b) is in the set then $0<a<1,0<b<2$. Thus whenever $\|(x, y)-(a, b)\|<\frac{\min (a, 1-a, b, 2-b)}{2}$, then $|x-a|<\frac{\min (a, 1-a)}{2}$ and hence $0<x<1$ (why?) and likewise for y. Note that this set is $(0,1) \times(0,2)$.
- More generally, (HW) if $U \subset \mathbb{R}^{n}$ is open and $V \subset \mathbb{R}^{m}$ is open
- An open ball $B(\vec{a}, r)$ is an open set: If $\vec{x} \in B(\vec{a}, r)$, then $\|\vec{x}-\vec{a}\|<r$. Now whenever $\|\vec{y}-\vec{x}\|<\frac{r-\|\vec{x}-\vec{a}\|}{2}$, we see that $\|\mid y-\vec{a}\| \leq\|\vec{y}-\vec{x}\|+\|\vec{x}-\vec{a}\|$ by the triangle inequality. So $\|\vec{y}-\vec{a}\| \leq \frac{r+\|\vec{x}-\vec{a}\|}{2}<r$.
- The set $0<x<1,0<y<2$ is open set in \mathbb{R}^{2} : If (a, b) is in the set then $0<a<1,0<b<2$. Thus whenever $\|(x, y)-(a, b)\|<\frac{\min (a, 1-a, b, 2-b)}{2}$, then $|x-a|<\frac{\min (a, 1-a)}{2}$ and hence $0<x<1$ (why?) and likewise for y. Note that this set is $(0,1) \times(0,2)$.
- More generally, (HW) if $U \subset \mathbb{R}^{n}$ is open and $V \subset \mathbb{R}^{m}$ is open then $U \times V \subset \mathbb{R}^{n} \times \mathbb{R}^{m}$ is open.

Examples/Non-examples of open sets

- An open ball $B(\vec{a}, r)$ is an open set: If $\vec{x} \in B(\vec{a}, r)$, then $\|\vec{x}-\vec{a}\|<r$. Now whenever $\|\vec{y}-\vec{x}\|<\frac{r-\|\vec{x}-\vec{a}\|}{2}$, we see that $\|\mid y-\vec{a}\| \leq\|\vec{y}-\vec{x}\|+\|\vec{x}-\vec{a}\|$ by the triangle inequality. So $\|\vec{y}-\vec{a}\| \leq \frac{r+\|\vec{x}-\vec{a}\|}{2}<r$.
- The set $0<x<1,0<y<2$ is open set in \mathbb{R}^{2} : If (a, b) is in the set then $0<a<1,0<b<2$. Thus whenever $\|(x, y)-(a, b)\|<\frac{\min (a, 1-a, b, 2-b)}{2}$, then $|x-a|<\frac{\min (a, 1-a)}{2}$ and hence $0<x<1$ (why?) and likewise for y. Note that this set is $(0,1) \times(0,2)$.
- More generally, (HW) if $U \subset \mathbb{R}^{n}$ is open and $V \subset \mathbb{R}^{m}$ is open then $U \times V \subset \mathbb{R}^{n} \times \mathbb{R}^{m}$ is open.
- The set $[0,1) \times(0,2)$ is

Examples/Non-examples of open sets

- An open ball $B(\vec{a}, r)$ is an open set: If $\vec{x} \in B(\vec{a}, r)$, then $\|\vec{x}-\vec{a}\|<r$. Now whenever $\|\vec{y}-\vec{x}\|<\frac{r-\|\vec{x}-\vec{a}\|}{2}$, we see that $\|\mid y-\vec{a}\| \leq\|\vec{y}-\vec{x}\|+\|\vec{x}-\vec{a}\|$ by the triangle inequality. So $\|\vec{y}-\vec{a}\| \leq \frac{r+\|\vec{x}-\vec{a}\|}{2}<r$.
- The set $0<x<1,0<y<2$ is open set in \mathbb{R}^{2} : If (a, b) is in the set then $0<a<1,0<b<2$. Thus whenever $\|(x, y)-(a, b)\|<\frac{\min (a, 1-a, b, 2-b)}{2}$, then $|x-a|<\frac{\min (a, 1-a)}{2}$ and hence $0<x<1$ (why?) and likewise for y. Note that this set is $(0,1) \times(0,2)$.
- More generally, (HW) if $U \subset \mathbb{R}^{n}$ is open and $V \subset \mathbb{R}^{m}$ is open then $U \times V \subset \mathbb{R}^{n} \times \mathbb{R}^{m}$ is open.
- The set $[0,1) \times(0,2)$ is not open

Examples/Non-examples of open sets

- An open ball $B(\vec{a}, r)$ is an open set: If $\vec{x} \in B(\vec{a}, r)$, then $\|\vec{x}-\vec{a}\|<r$. Now whenever $\|\vec{y}-\vec{x}\|<\frac{r-\|\vec{x}-\vec{a}\|}{2}$, we see that $\|\mid y-\vec{a}\| \leq\|\vec{y}-\vec{x}\|+\|\vec{x}-\vec{a}\|$ by the triangle inequality. So $\|\vec{y}-\vec{a}\| \leq \frac{r+\|\vec{x}-\vec{a}\|}{2}<r$.
- The set $0<x<1,0<y<2$ is open set in \mathbb{R}^{2} : If (a, b) is in the set then $0<a<1,0<b<2$. Thus whenever $\|(x, y)-(a, b)\|<\frac{\min (a, 1-a, b, 2-b)}{2}$, then $|x-a|<\frac{\min (a, 1-a)}{2}$ and hence $0<x<1$ (why?) and likewise for y. Note that this set is $(0,1) \times(0,2)$.
- More generally, (HW) if $U \subset \mathbb{R}^{n}$ is open and $V \subset \mathbb{R}^{m}$ is open then $U \times V \subset \mathbb{R}^{n} \times \mathbb{R}^{m}$ is open.
- The set $[0,1) \times(0,2)$ is not open because 0 is not an interior point (why?)

Examples/Non-examples of open sets

- An open ball $B(\vec{a}, r)$ is an open set: If $\vec{x} \in B(\vec{a}, r)$, then $\|\vec{x}-\vec{a}\|<r$. Now whenever $\|\vec{y}-\vec{x}\|<\frac{r-\|\vec{x}-\vec{a}\|}{2}$, we see that $\|\mid y-\vec{a}\| \leq\|\vec{y}-\vec{x}\|+\|\vec{x}-\vec{a}\|$ by the triangle inequality. So $\|\vec{y}-\vec{a}\| \leq \frac{r+\|\vec{x}-\vec{a}\|}{2}<r$.
- The set $0<x<1,0<y<2$ is open set in \mathbb{R}^{2} : If (a, b) is in the set then $0<a<1,0<b<2$. Thus whenever $\|(x, y)-(a, b)\|<\frac{\min (a, 1-a, b, 2-b)}{2}$, then $|x-a|<\frac{\min (a, 1-a)}{2}$ and hence $0<x<1$ (why?) and likewise for y. Note that this set is $(0,1) \times(0,2)$.
- More generally, (HW) if $U \subset \mathbb{R}^{n}$ is open and $V \subset \mathbb{R}^{m}$ is open then $U \times V \subset \mathbb{R}^{n} \times \mathbb{R}^{m}$ is open.
- The set $[0,1) \times(0,2)$ is not open because 0 is not an interior point (why?)
- The set $(0,1) \times(0,2) \cup\{(5,6)\}$ is

Examples/Non-examples of open sets

- An open ball $B(\vec{a}, r)$ is an open set: If $\vec{x} \in B(\vec{a}, r)$, then $\|\vec{x}-\vec{a}\|<r$. Now whenever $\|\vec{y}-\vec{x}\|<\frac{r-\|\vec{x}-\vec{a}\|}{2}$, we see that $\|\mid y-\vec{a}\| \leq\|\vec{y}-\vec{x}\|+\|\vec{x}-\vec{a}\|$ by the triangle inequality. So $\|\vec{y}-\vec{a}\| \leq \frac{r+\|\vec{x}-\vec{a}\|}{2}<r$.
- The set $0<x<1,0<y<2$ is open set in \mathbb{R}^{2} : If (a, b) is in the set then $0<a<1,0<b<2$. Thus whenever $\|(x, y)-(a, b)\|<\frac{\min (a, 1-a, b, 2-b)}{2}$, then $|x-a|<\frac{\min (a, 1-a)}{2}$ and hence $0<x<1$ (why?) and likewise for y. Note that this set is $(0,1) \times(0,2)$.
- More generally, (HW) if $U \subset \mathbb{R}^{n}$ is open and $V \subset \mathbb{R}^{m}$ is open then $U \times V \subset \mathbb{R}^{n} \times \mathbb{R}^{m}$ is open.
- The set $[0,1) \times(0,2)$ is not open because 0 is not an interior point (why?)
- The set $(0,1) \times(0,2) \cup\{(5,6)\}$ is not open

Examples/Non-examples of open sets

- An open ball $B(\vec{a}, r)$ is an open set: If $\vec{x} \in B(\vec{a}, r)$, then $\|\vec{x}-\vec{a}\|<r$. Now whenever $\|\vec{y}-\vec{x}\|<\frac{r-\|\vec{x}-\vec{a}\|}{2}$, we see that $\|\mid y-\vec{a}\| \leq\|\vec{y}-\vec{x}\|+\|\vec{x}-\vec{a}\|$ by the triangle inequality. So $\|\vec{y}-\vec{a}\| \leq \frac{r+\|\vec{x}-\vec{a}\|}{2}<r$.
- The set $0<x<1,0<y<2$ is open set in \mathbb{R}^{2} : If (a, b) is in the set then $0<a<1,0<b<2$. Thus whenever $\|(x, y)-(a, b)\|<\frac{\min (a, 1-a, b, 2-b)}{2}$, then $|x-a|<\frac{\min (a, 1-a)}{2}$ and hence $0<x<1$ (why?) and likewise for y. Note that this set is $(0,1) \times(0,2)$.
- More generally, (HW) if $U \subset \mathbb{R}^{n}$ is open and $V \subset \mathbb{R}^{m}$ is open then $U \times V \subset \mathbb{R}^{n} \times \mathbb{R}^{m}$ is open.
- The set $[0,1) \times(0,2)$ is not open because 0 is not an interior point (why?)
- The set $(0,1) \times(0,2) \cup\{(5,6)\}$ is not open because $(5,6)$ is not an interior point.

