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Recap

Discussed phase diagrams and Euler’s method.

The method of variation of parameters to solve second-order
linear inhomogeneous ODE with constant coefficients.
Discussed the Wronskian along the way.

A simpler method when the RHS is p(x) or p(x)emx .

Ended with the formulation of a damped forced oscillator:
y ′′ + 2cy ′ + k2y = F (t) where c > 0, k ∈ R.
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A damped oscillator

When the forcing term F (t) = 0, we have a damped oscillator
y ′′ + 2cy ′ + k2y = 0.

To solve this ODE consider D2 + 2cD + k2 = 0. The roots
are −c ±

√
c2 − k2.

If c > k (overdamped), the roots are real, distinct, and
negative. Thus y = aeλ1t + beλ2t is the solution. Hence as
t →∞, y → 0.

If c = k (critically damped), the roots are real and equal to
−c. In this case y = e−ct(a + bt) is the solution. These
solutions also go to 0 as t →∞.
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A damped oscillator

If c < k (underdamped), the roots are complex and distinct.
Thus y = e−ct(a cos(

√
k2 − c2t) + b sin(

√
k2 − c2t)). The

solution oscillates with ever decreasing amplitude and goes to
0 as t →∞.

Of course, if c > 0 (a boost as opposed to resistance), these
solution fly away to infinity.

A similar ODE appears in RLC circuits:
LI ′ + RI + 1

C

∫
I = V (t), i.e., LI ′′ + RI ′ + 1

C I = V ′. We can
simply copy the solution from above. It is also a damped
oscillator with the damping provided by R. It is in fact a
forced damped oscillator.

Vamsi Pritham Pingali Lecture 20 4/10



A damped oscillator

If c < k (underdamped),

the roots are complex and distinct.
Thus y = e−ct(a cos(

√
k2 − c2t) + b sin(

√
k2 − c2t)). The

solution oscillates with ever decreasing amplitude and goes to
0 as t →∞.

Of course, if c > 0 (a boost as opposed to resistance), these
solution fly away to infinity.

A similar ODE appears in RLC circuits:
LI ′ + RI + 1

C

∫
I = V (t), i.e., LI ′′ + RI ′ + 1

C I = V ′. We can
simply copy the solution from above. It is also a damped
oscillator with the damping provided by R. It is in fact a
forced damped oscillator.

Vamsi Pritham Pingali Lecture 20 4/10



A damped oscillator

If c < k (underdamped), the roots are complex and distinct.

Thus y = e−ct(a cos(
√
k2 − c2t) + b sin(

√
k2 − c2t)). The

solution oscillates with ever decreasing amplitude and goes to
0 as t →∞.

Of course, if c > 0 (a boost as opposed to resistance), these
solution fly away to infinity.

A similar ODE appears in RLC circuits:
LI ′ + RI + 1

C

∫
I = V (t), i.e., LI ′′ + RI ′ + 1

C I = V ′. We can
simply copy the solution from above. It is also a damped
oscillator with the damping provided by R. It is in fact a
forced damped oscillator.

Vamsi Pritham Pingali Lecture 20 4/10



A damped oscillator

If c < k (underdamped), the roots are complex and distinct.
Thus y = e−ct(a cos(

√
k2 − c2t) + b sin(

√
k2 − c2t)).

The
solution oscillates with ever decreasing amplitude and goes to
0 as t →∞.

Of course, if c > 0 (a boost as opposed to resistance), these
solution fly away to infinity.

A similar ODE appears in RLC circuits:
LI ′ + RI + 1

C

∫
I = V (t), i.e., LI ′′ + RI ′ + 1

C I = V ′. We can
simply copy the solution from above. It is also a damped
oscillator with the damping provided by R. It is in fact a
forced damped oscillator.

Vamsi Pritham Pingali Lecture 20 4/10



A damped oscillator

If c < k (underdamped), the roots are complex and distinct.
Thus y = e−ct(a cos(

√
k2 − c2t) + b sin(

√
k2 − c2t)). The

solution oscillates

with ever decreasing amplitude and goes to
0 as t →∞.

Of course, if c > 0 (a boost as opposed to resistance), these
solution fly away to infinity.

A similar ODE appears in RLC circuits:
LI ′ + RI + 1

C

∫
I = V (t), i.e., LI ′′ + RI ′ + 1

C I = V ′. We can
simply copy the solution from above. It is also a damped
oscillator with the damping provided by R. It is in fact a
forced damped oscillator.

Vamsi Pritham Pingali Lecture 20 4/10



A damped oscillator

If c < k (underdamped), the roots are complex and distinct.
Thus y = e−ct(a cos(

√
k2 − c2t) + b sin(

√
k2 − c2t)). The

solution oscillates with ever decreasing amplitude

and goes to
0 as t →∞.

Of course, if c > 0 (a boost as opposed to resistance), these
solution fly away to infinity.

A similar ODE appears in RLC circuits:
LI ′ + RI + 1

C

∫
I = V (t), i.e., LI ′′ + RI ′ + 1

C I = V ′. We can
simply copy the solution from above. It is also a damped
oscillator with the damping provided by R. It is in fact a
forced damped oscillator.

Vamsi Pritham Pingali Lecture 20 4/10



A damped oscillator

If c < k (underdamped), the roots are complex and distinct.
Thus y = e−ct(a cos(

√
k2 − c2t) + b sin(

√
k2 − c2t)). The

solution oscillates with ever decreasing amplitude and goes to
0 as t →∞.

Of course, if c > 0 (a boost as opposed to resistance), these
solution fly away to infinity.

A similar ODE appears in RLC circuits:
LI ′ + RI + 1

C

∫
I = V (t), i.e., LI ′′ + RI ′ + 1

C I = V ′. We can
simply copy the solution from above. It is also a damped
oscillator with the damping provided by R. It is in fact a
forced damped oscillator.

Vamsi Pritham Pingali Lecture 20 4/10



A damped oscillator

If c < k (underdamped), the roots are complex and distinct.
Thus y = e−ct(a cos(

√
k2 − c2t) + b sin(

√
k2 − c2t)). The

solution oscillates with ever decreasing amplitude and goes to
0 as t →∞.

Of course,

if c > 0 (a boost as opposed to resistance), these
solution fly away to infinity.

A similar ODE appears in RLC circuits:
LI ′ + RI + 1

C

∫
I = V (t), i.e., LI ′′ + RI ′ + 1

C I = V ′. We can
simply copy the solution from above. It is also a damped
oscillator with the damping provided by R. It is in fact a
forced damped oscillator.

Vamsi Pritham Pingali Lecture 20 4/10



A damped oscillator

If c < k (underdamped), the roots are complex and distinct.
Thus y = e−ct(a cos(

√
k2 − c2t) + b sin(

√
k2 − c2t)). The

solution oscillates with ever decreasing amplitude and goes to
0 as t →∞.

Of course, if c > 0 (a boost as opposed to resistance),

these
solution fly away to infinity.

A similar ODE appears in RLC circuits:
LI ′ + RI + 1

C

∫
I = V (t), i.e., LI ′′ + RI ′ + 1

C I = V ′. We can
simply copy the solution from above. It is also a damped
oscillator with the damping provided by R. It is in fact a
forced damped oscillator.

Vamsi Pritham Pingali Lecture 20 4/10



A damped oscillator

If c < k (underdamped), the roots are complex and distinct.
Thus y = e−ct(a cos(

√
k2 − c2t) + b sin(

√
k2 − c2t)). The

solution oscillates with ever decreasing amplitude and goes to
0 as t →∞.

Of course, if c > 0 (a boost as opposed to resistance), these
solution fly away to infinity.

A similar ODE appears in RLC circuits:
LI ′ + RI + 1

C

∫
I = V (t), i.e., LI ′′ + RI ′ + 1

C I = V ′. We can
simply copy the solution from above. It is also a damped
oscillator with the damping provided by R. It is in fact a
forced damped oscillator.

Vamsi Pritham Pingali Lecture 20 4/10



A damped oscillator

If c < k (underdamped), the roots are complex and distinct.
Thus y = e−ct(a cos(

√
k2 − c2t) + b sin(

√
k2 − c2t)). The

solution oscillates with ever decreasing amplitude and goes to
0 as t →∞.

Of course, if c > 0 (a boost as opposed to resistance), these
solution fly away to infinity.

A similar ODE

appears in RLC circuits:
LI ′ + RI + 1

C

∫
I = V (t), i.e., LI ′′ + RI ′ + 1

C I = V ′. We can
simply copy the solution from above. It is also a damped
oscillator with the damping provided by R. It is in fact a
forced damped oscillator.

Vamsi Pritham Pingali Lecture 20 4/10



A damped oscillator

If c < k (underdamped), the roots are complex and distinct.
Thus y = e−ct(a cos(

√
k2 − c2t) + b sin(

√
k2 − c2t)). The

solution oscillates with ever decreasing amplitude and goes to
0 as t →∞.

Of course, if c > 0 (a boost as opposed to resistance), these
solution fly away to infinity.

A similar ODE appears in

RLC circuits:
LI ′ + RI + 1

C

∫
I = V (t), i.e., LI ′′ + RI ′ + 1

C I = V ′. We can
simply copy the solution from above. It is also a damped
oscillator with the damping provided by R. It is in fact a
forced damped oscillator.

Vamsi Pritham Pingali Lecture 20 4/10



A damped oscillator

If c < k (underdamped), the roots are complex and distinct.
Thus y = e−ct(a cos(

√
k2 − c2t) + b sin(

√
k2 − c2t)). The

solution oscillates with ever decreasing amplitude and goes to
0 as t →∞.

Of course, if c > 0 (a boost as opposed to resistance), these
solution fly away to infinity.

A similar ODE appears in RLC circuits:

LI ′ + RI + 1
C

∫
I = V (t), i.e., LI ′′ + RI ′ + 1

C I = V ′. We can
simply copy the solution from above. It is also a damped
oscillator with the damping provided by R. It is in fact a
forced damped oscillator.

Vamsi Pritham Pingali Lecture 20 4/10



A damped oscillator

If c < k (underdamped), the roots are complex and distinct.
Thus y = e−ct(a cos(

√
k2 − c2t) + b sin(

√
k2 − c2t)). The

solution oscillates with ever decreasing amplitude and goes to
0 as t →∞.

Of course, if c > 0 (a boost as opposed to resistance), these
solution fly away to infinity.

A similar ODE appears in RLC circuits:
LI ′ + RI + 1

C

∫
I = V (t), i.e.,

LI ′′ + RI ′ + 1
C I = V ′. We can

simply copy the solution from above. It is also a damped
oscillator with the damping provided by R. It is in fact a
forced damped oscillator.

Vamsi Pritham Pingali Lecture 20 4/10



A damped oscillator

If c < k (underdamped), the roots are complex and distinct.
Thus y = e−ct(a cos(

√
k2 − c2t) + b sin(

√
k2 − c2t)). The

solution oscillates with ever decreasing amplitude and goes to
0 as t →∞.

Of course, if c > 0 (a boost as opposed to resistance), these
solution fly away to infinity.

A similar ODE appears in RLC circuits:
LI ′ + RI + 1

C

∫
I = V (t), i.e., LI ′′ + RI ′ + 1

C I = V ′.

We can
simply copy the solution from above. It is also a damped
oscillator with the damping provided by R. It is in fact a
forced damped oscillator.

Vamsi Pritham Pingali Lecture 20 4/10



A damped oscillator

If c < k (underdamped), the roots are complex and distinct.
Thus y = e−ct(a cos(

√
k2 − c2t) + b sin(

√
k2 − c2t)). The

solution oscillates with ever decreasing amplitude and goes to
0 as t →∞.

Of course, if c > 0 (a boost as opposed to resistance), these
solution fly away to infinity.

A similar ODE appears in RLC circuits:
LI ′ + RI + 1

C

∫
I = V (t), i.e., LI ′′ + RI ′ + 1

C I = V ′. We can
simply copy

the solution from above. It is also a damped
oscillator with the damping provided by R. It is in fact a
forced damped oscillator.

Vamsi Pritham Pingali Lecture 20 4/10



A damped oscillator

If c < k (underdamped), the roots are complex and distinct.
Thus y = e−ct(a cos(

√
k2 − c2t) + b sin(

√
k2 − c2t)). The

solution oscillates with ever decreasing amplitude and goes to
0 as t →∞.

Of course, if c > 0 (a boost as opposed to resistance), these
solution fly away to infinity.

A similar ODE appears in RLC circuits:
LI ′ + RI + 1

C

∫
I = V (t), i.e., LI ′′ + RI ′ + 1

C I = V ′. We can
simply copy the solution from above.

It is also a damped
oscillator with the damping provided by R. It is in fact a
forced damped oscillator.

Vamsi Pritham Pingali Lecture 20 4/10



A damped oscillator

If c < k (underdamped), the roots are complex and distinct.
Thus y = e−ct(a cos(

√
k2 − c2t) + b sin(

√
k2 − c2t)). The

solution oscillates with ever decreasing amplitude and goes to
0 as t →∞.

Of course, if c > 0 (a boost as opposed to resistance), these
solution fly away to infinity.

A similar ODE appears in RLC circuits:
LI ′ + RI + 1

C

∫
I = V (t), i.e., LI ′′ + RI ′ + 1

C I = V ′. We can
simply copy the solution from above. It is also a

damped
oscillator with the damping provided by R. It is in fact a
forced damped oscillator.

Vamsi Pritham Pingali Lecture 20 4/10



A damped oscillator

If c < k (underdamped), the roots are complex and distinct.
Thus y = e−ct(a cos(

√
k2 − c2t) + b sin(

√
k2 − c2t)). The

solution oscillates with ever decreasing amplitude and goes to
0 as t →∞.

Of course, if c > 0 (a boost as opposed to resistance), these
solution fly away to infinity.

A similar ODE appears in RLC circuits:
LI ′ + RI + 1

C

∫
I = V (t), i.e., LI ′′ + RI ′ + 1

C I = V ′. We can
simply copy the solution from above. It is also a damped
oscillator

with the damping provided by R. It is in fact a
forced damped oscillator.

Vamsi Pritham Pingali Lecture 20 4/10



A damped oscillator

If c < k (underdamped), the roots are complex and distinct.
Thus y = e−ct(a cos(

√
k2 − c2t) + b sin(

√
k2 − c2t)). The

solution oscillates with ever decreasing amplitude and goes to
0 as t →∞.

Of course, if c > 0 (a boost as opposed to resistance), these
solution fly away to infinity.

A similar ODE appears in RLC circuits:
LI ′ + RI + 1

C

∫
I = V (t), i.e., LI ′′ + RI ′ + 1

C I = V ′. We can
simply copy the solution from above. It is also a damped
oscillator with the damping provided by R.

It is in fact a
forced damped oscillator.

Vamsi Pritham Pingali Lecture 20 4/10



A damped oscillator

If c < k (underdamped), the roots are complex and distinct.
Thus y = e−ct(a cos(

√
k2 − c2t) + b sin(

√
k2 − c2t)). The

solution oscillates with ever decreasing amplitude and goes to
0 as t →∞.

Of course, if c > 0 (a boost as opposed to resistance), these
solution fly away to infinity.

A similar ODE appears in RLC circuits:
LI ′ + RI + 1

C

∫
I = V (t), i.e., LI ′′ + RI ′ + 1

C I = V ′. We can
simply copy the solution from above. It is also a damped
oscillator with the damping provided by R. It is in fact

a
forced damped oscillator.

Vamsi Pritham Pingali Lecture 20 4/10



A damped oscillator

If c < k (underdamped), the roots are complex and distinct.
Thus y = e−ct(a cos(

√
k2 − c2t) + b sin(

√
k2 − c2t)). The

solution oscillates with ever decreasing amplitude and goes to
0 as t →∞.

Of course, if c > 0 (a boost as opposed to resistance), these
solution fly away to infinity.

A similar ODE appears in RLC circuits:
LI ′ + RI + 1

C

∫
I = V (t), i.e., LI ′′ + RI ′ + 1

C I = V ′. We can
simply copy the solution from above. It is also a damped
oscillator with the damping provided by R. It is in fact a
forced damped oscillator.

Vamsi Pritham Pingali Lecture 20 4/10



Multivariable calculus

So far, we looked at either functions f : U ⊂ R→ R and
studied their continuity, differentiability, integrability, etc or
linear functions f : Rn → Rm given by f (x) = Ax and
generalisations T : V →W to linear maps.

Most of life is nonlinear and multivariate (like the airflow
around an aeroplane, some aspects of the stock market, the
curvature of the earth, protein folding, Ricci flow for the
Poincaré conjecture, etc).

So we need to study the calculus of functions
f : U ⊂ Rm → Rn.

When n = 1, the function is called scalar-valued or a scalar
field and when n > 1 it is called vector-valued or a vector field.
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Open ball

Recall that a function f : U ⊂ R→ R is continuous at a ∈ U
if for every ε > 0 there exists a δε > 0 such that whenever
|x − a| < δ and x ∈ U, |f (x)− f (a)| < ε.

So to even define continuity of f : U ⊂ Rm → Rn, we need to
be able to measure distances.

To this end, we use the usual norm coming from the usual dot
product ~v .~w =

∑
i viwi and ‖v − w‖ =

√
(v1 − w1)2 + . . ..

The definition of continuity in one-variable is easiest to
visualise when U = (a, b). Therefore, we need to generalise
the notion of an open interval to higher-dimensions.

Open ball: An open ball B(~a, r) ⊂ Rm centred at ~a with
radius r > 0 is the set of all ~x ∈ Rm such that ‖~x − ~a‖ < r .
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Interior points

What is an open set in R? Ans: Whatever it is, it must be
natural/easy to do calculus on it!

In other words whenever x ∈ U it is helpful if x + h ∈ U for all
“small h”. Thus, an open set U ⊂ R is one where all points in
U are “inside” U, i.e., there is an open interval around each
point that is wholly contained in U.

Motivated by the above, let S ⊂ Rn and ~a ∈ S . ~a is called an
interior point of S if there exists r > 0 such that the open ball
B(a, r) is contained in S .

Examples: 0 is not an interior point of [0, 1]. On the other
hand, 1

2 is an interior point. The point ( 1√
2
, 1√

2
) is not an

interior point of the set ‖x‖ ≤ 1. (0, 12) is an interior point
though. No point is an interior point of the set
S = {(0, 0), (0, 1), (1, 2), (4, 6)}.
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interior point of S if there exists r > 0 such that the open ball
B(a, r) is contained in S .

Examples: 0 is not an interior point of [0, 1]. On the other
hand, 1

2 is an interior point. The point ( 1√
2
, 1√

2
) is not an

interior point of the set ‖x‖ ≤ 1. (0, 12) is an interior point
though. No point is an interior point of the set
S = {(0, 0), (0, 1), (1, 2), (4, 6)}.
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Open sets

A set U ⊂ Rm is said to be an open set if all points in U are
interior points, i.e., for every x ∈ U, there is an open ball
B(x , rx) ⊂ U.

Some more terminology: For a general set S ⊂ Rm the
interior is the collection of all interior points. So the interior
can potentially be empty or potentially all of S (in which case
S is an open set) or anything in between. For instance, the
interior of [0, 1] is (0, 1).

An open set containing a point ~a ∈ Rm is often called a
neighbourhood of ~a.

Vamsi Pritham Pingali Lecture 20 8/10



Open sets

A set U ⊂ Rm is

said to be an open set if all points in U are
interior points, i.e., for every x ∈ U, there is an open ball
B(x , rx) ⊂ U.

Some more terminology: For a general set S ⊂ Rm the
interior is the collection of all interior points. So the interior
can potentially be empty or potentially all of S (in which case
S is an open set) or anything in between. For instance, the
interior of [0, 1] is (0, 1).

An open set containing a point ~a ∈ Rm is often called a
neighbourhood of ~a.

Vamsi Pritham Pingali Lecture 20 8/10



Open sets

A set U ⊂ Rm is said to be an

open set if all points in U are
interior points, i.e., for every x ∈ U, there is an open ball
B(x , rx) ⊂ U.

Some more terminology: For a general set S ⊂ Rm the
interior is the collection of all interior points. So the interior
can potentially be empty or potentially all of S (in which case
S is an open set) or anything in between. For instance, the
interior of [0, 1] is (0, 1).

An open set containing a point ~a ∈ Rm is often called a
neighbourhood of ~a.

Vamsi Pritham Pingali Lecture 20 8/10



Open sets

A set U ⊂ Rm is said to be an open set if

all points in U are
interior points, i.e., for every x ∈ U, there is an open ball
B(x , rx) ⊂ U.

Some more terminology: For a general set S ⊂ Rm the
interior is the collection of all interior points. So the interior
can potentially be empty or potentially all of S (in which case
S is an open set) or anything in between. For instance, the
interior of [0, 1] is (0, 1).

An open set containing a point ~a ∈ Rm is often called a
neighbourhood of ~a.

Vamsi Pritham Pingali Lecture 20 8/10



Open sets

A set U ⊂ Rm is said to be an open set if all points in U

are
interior points, i.e., for every x ∈ U, there is an open ball
B(x , rx) ⊂ U.

Some more terminology: For a general set S ⊂ Rm the
interior is the collection of all interior points. So the interior
can potentially be empty or potentially all of S (in which case
S is an open set) or anything in between. For instance, the
interior of [0, 1] is (0, 1).

An open set containing a point ~a ∈ Rm is often called a
neighbourhood of ~a.

Vamsi Pritham Pingali Lecture 20 8/10



Open sets

A set U ⊂ Rm is said to be an open set if all points in U are
interior points, i.e.,

for every x ∈ U, there is an open ball
B(x , rx) ⊂ U.

Some more terminology: For a general set S ⊂ Rm the
interior is the collection of all interior points. So the interior
can potentially be empty or potentially all of S (in which case
S is an open set) or anything in between. For instance, the
interior of [0, 1] is (0, 1).

An open set containing a point ~a ∈ Rm is often called a
neighbourhood of ~a.

Vamsi Pritham Pingali Lecture 20 8/10



Open sets

A set U ⊂ Rm is said to be an open set if all points in U are
interior points, i.e., for every x ∈ U,

there is an open ball
B(x , rx) ⊂ U.

Some more terminology: For a general set S ⊂ Rm the
interior is the collection of all interior points. So the interior
can potentially be empty or potentially all of S (in which case
S is an open set) or anything in between. For instance, the
interior of [0, 1] is (0, 1).

An open set containing a point ~a ∈ Rm is often called a
neighbourhood of ~a.

Vamsi Pritham Pingali Lecture 20 8/10



Open sets

A set U ⊂ Rm is said to be an open set if all points in U are
interior points, i.e., for every x ∈ U, there is an open ball

B(x , rx) ⊂ U.

Some more terminology: For a general set S ⊂ Rm the
interior is the collection of all interior points. So the interior
can potentially be empty or potentially all of S (in which case
S is an open set) or anything in between. For instance, the
interior of [0, 1] is (0, 1).

An open set containing a point ~a ∈ Rm is often called a
neighbourhood of ~a.

Vamsi Pritham Pingali Lecture 20 8/10



Open sets

A set U ⊂ Rm is said to be an open set if all points in U are
interior points, i.e., for every x ∈ U, there is an open ball
B(x , rx) ⊂ U.

Some more terminology: For a general set S ⊂ Rm the
interior is the collection of all interior points. So the interior
can potentially be empty or potentially all of S (in which case
S is an open set) or anything in between. For instance, the
interior of [0, 1] is (0, 1).

An open set containing a point ~a ∈ Rm is often called a
neighbourhood of ~a.

Vamsi Pritham Pingali Lecture 20 8/10



Open sets

A set U ⊂ Rm is said to be an open set if all points in U are
interior points, i.e., for every x ∈ U, there is an open ball
B(x , rx) ⊂ U.

Some more terminology:

For a general set S ⊂ Rm the
interior is the collection of all interior points. So the interior
can potentially be empty or potentially all of S (in which case
S is an open set) or anything in between. For instance, the
interior of [0, 1] is (0, 1).

An open set containing a point ~a ∈ Rm is often called a
neighbourhood of ~a.

Vamsi Pritham Pingali Lecture 20 8/10



Open sets

A set U ⊂ Rm is said to be an open set if all points in U are
interior points, i.e., for every x ∈ U, there is an open ball
B(x , rx) ⊂ U.

Some more terminology: For a general set S ⊂ Rm

the
interior is the collection of all interior points. So the interior
can potentially be empty or potentially all of S (in which case
S is an open set) or anything in between. For instance, the
interior of [0, 1] is (0, 1).

An open set containing a point ~a ∈ Rm is often called a
neighbourhood of ~a.

Vamsi Pritham Pingali Lecture 20 8/10



Open sets

A set U ⊂ Rm is said to be an open set if all points in U are
interior points, i.e., for every x ∈ U, there is an open ball
B(x , rx) ⊂ U.

Some more terminology: For a general set S ⊂ Rm the
interior is

the collection of all interior points. So the interior
can potentially be empty or potentially all of S (in which case
S is an open set) or anything in between. For instance, the
interior of [0, 1] is (0, 1).

An open set containing a point ~a ∈ Rm is often called a
neighbourhood of ~a.

Vamsi Pritham Pingali Lecture 20 8/10



Open sets

A set U ⊂ Rm is said to be an open set if all points in U are
interior points, i.e., for every x ∈ U, there is an open ball
B(x , rx) ⊂ U.

Some more terminology: For a general set S ⊂ Rm the
interior is the collection of all interior points.

So the interior
can potentially be empty or potentially all of S (in which case
S is an open set) or anything in between. For instance, the
interior of [0, 1] is (0, 1).

An open set containing a point ~a ∈ Rm is often called a
neighbourhood of ~a.

Vamsi Pritham Pingali Lecture 20 8/10



Open sets

A set U ⊂ Rm is said to be an open set if all points in U are
interior points, i.e., for every x ∈ U, there is an open ball
B(x , rx) ⊂ U.

Some more terminology: For a general set S ⊂ Rm the
interior is the collection of all interior points. So the interior
can

potentially be empty or potentially all of S (in which case
S is an open set) or anything in between. For instance, the
interior of [0, 1] is (0, 1).

An open set containing a point ~a ∈ Rm is often called a
neighbourhood of ~a.

Vamsi Pritham Pingali Lecture 20 8/10



Open sets

A set U ⊂ Rm is said to be an open set if all points in U are
interior points, i.e., for every x ∈ U, there is an open ball
B(x , rx) ⊂ U.

Some more terminology: For a general set S ⊂ Rm the
interior is the collection of all interior points. So the interior
can potentially be empty

or potentially all of S (in which case
S is an open set) or anything in between. For instance, the
interior of [0, 1] is (0, 1).

An open set containing a point ~a ∈ Rm is often called a
neighbourhood of ~a.

Vamsi Pritham Pingali Lecture 20 8/10



Open sets

A set U ⊂ Rm is said to be an open set if all points in U are
interior points, i.e., for every x ∈ U, there is an open ball
B(x , rx) ⊂ U.

Some more terminology: For a general set S ⊂ Rm the
interior is the collection of all interior points. So the interior
can potentially be empty or potentially all of S (

in which case
S is an open set) or anything in between. For instance, the
interior of [0, 1] is (0, 1).

An open set containing a point ~a ∈ Rm is often called a
neighbourhood of ~a.

Vamsi Pritham Pingali Lecture 20 8/10



Open sets

A set U ⊂ Rm is said to be an open set if all points in U are
interior points, i.e., for every x ∈ U, there is an open ball
B(x , rx) ⊂ U.

Some more terminology: For a general set S ⊂ Rm the
interior is the collection of all interior points. So the interior
can potentially be empty or potentially all of S (in which case
S is an open set) or

anything in between. For instance, the
interior of [0, 1] is (0, 1).

An open set containing a point ~a ∈ Rm is often called a
neighbourhood of ~a.

Vamsi Pritham Pingali Lecture 20 8/10



Open sets

A set U ⊂ Rm is said to be an open set if all points in U are
interior points, i.e., for every x ∈ U, there is an open ball
B(x , rx) ⊂ U.

Some more terminology: For a general set S ⊂ Rm the
interior is the collection of all interior points. So the interior
can potentially be empty or potentially all of S (in which case
S is an open set) or anything in between.

For instance, the
interior of [0, 1] is (0, 1).

An open set containing a point ~a ∈ Rm is often called a
neighbourhood of ~a.

Vamsi Pritham Pingali Lecture 20 8/10



Open sets

A set U ⊂ Rm is said to be an open set if all points in U are
interior points, i.e., for every x ∈ U, there is an open ball
B(x , rx) ⊂ U.

Some more terminology: For a general set S ⊂ Rm the
interior is the collection of all interior points. So the interior
can potentially be empty or potentially all of S (in which case
S is an open set) or anything in between. For instance,

the
interior of [0, 1] is (0, 1).

An open set containing a point ~a ∈ Rm is often called a
neighbourhood of ~a.

Vamsi Pritham Pingali Lecture 20 8/10



Open sets

A set U ⊂ Rm is said to be an open set if all points in U are
interior points, i.e., for every x ∈ U, there is an open ball
B(x , rx) ⊂ U.

Some more terminology: For a general set S ⊂ Rm the
interior is the collection of all interior points. So the interior
can potentially be empty or potentially all of S (in which case
S is an open set) or anything in between. For instance, the
interior of [0, 1] is

(0, 1).

An open set containing a point ~a ∈ Rm is often called a
neighbourhood of ~a.

Vamsi Pritham Pingali Lecture 20 8/10



Open sets

A set U ⊂ Rm is said to be an open set if all points in U are
interior points, i.e., for every x ∈ U, there is an open ball
B(x , rx) ⊂ U.

Some more terminology: For a general set S ⊂ Rm the
interior is the collection of all interior points. So the interior
can potentially be empty or potentially all of S (in which case
S is an open set) or anything in between. For instance, the
interior of [0, 1] is (0, 1).

An open set containing a point ~a ∈ Rm is often called a
neighbourhood of ~a.

Vamsi Pritham Pingali Lecture 20 8/10



Open sets

A set U ⊂ Rm is said to be an open set if all points in U are
interior points, i.e., for every x ∈ U, there is an open ball
B(x , rx) ⊂ U.

Some more terminology: For a general set S ⊂ Rm the
interior is the collection of all interior points. So the interior
can potentially be empty or potentially all of S (in which case
S is an open set) or anything in between. For instance, the
interior of [0, 1] is (0, 1).

An open set

containing a point ~a ∈ Rm is often called a
neighbourhood of ~a.

Vamsi Pritham Pingali Lecture 20 8/10



Open sets

A set U ⊂ Rm is said to be an open set if all points in U are
interior points, i.e., for every x ∈ U, there is an open ball
B(x , rx) ⊂ U.

Some more terminology: For a general set S ⊂ Rm the
interior is the collection of all interior points. So the interior
can potentially be empty or potentially all of S (in which case
S is an open set) or anything in between. For instance, the
interior of [0, 1] is (0, 1).

An open set containing a point ~a ∈ Rm

is often called a
neighbourhood of ~a.

Vamsi Pritham Pingali Lecture 20 8/10



Open sets

A set U ⊂ Rm is said to be an open set if all points in U are
interior points, i.e., for every x ∈ U, there is an open ball
B(x , rx) ⊂ U.

Some more terminology: For a general set S ⊂ Rm the
interior is the collection of all interior points. So the interior
can potentially be empty or potentially all of S (in which case
S is an open set) or anything in between. For instance, the
interior of [0, 1] is (0, 1).

An open set containing a point ~a ∈ Rm is often called

a
neighbourhood of ~a.

Vamsi Pritham Pingali Lecture 20 8/10



Open sets

A set U ⊂ Rm is said to be an open set if all points in U are
interior points, i.e., for every x ∈ U, there is an open ball
B(x , rx) ⊂ U.

Some more terminology: For a general set S ⊂ Rm the
interior is the collection of all interior points. So the interior
can potentially be empty or potentially all of S (in which case
S is an open set) or anything in between. For instance, the
interior of [0, 1] is (0, 1).

An open set containing a point ~a ∈ Rm is often called a
neighbourhood of ~a.

Vamsi Pritham Pingali Lecture 20 8/10



Examples/Non-examples of open sets

An open ball B(~a, r) is an open set: If ~x ∈ B(~a, r), then

‖~x − ~a‖ < r . Now whenever ‖~y − ~x‖ < r−‖~x−~a‖
2 , we see that

‖|y − ~a‖ ≤ ‖~y − ~x‖+ ‖~x − ~a‖ by the triangle inequality. So

‖~y − ~a‖ ≤ r+‖~x−~a‖
2 < r .

The set 0 < x < 1, 0 < y < 2 is open set in R2: If (a, b) is in
the set then 0 < a < 1, 0 < b < 2. Thus whenever
‖(x , y)− (a, b)‖ < min(a,1−a,b,2−b)

2 , then |x − a| < min(a,1−a)
2

and hence 0 < x < 1 (why?) and likewise for y . Note that
this set is (0, 1)× (0, 2).

More generally, (HW) if U ⊂ Rn is open and V ⊂ Rm is open
then U × V ⊂ Rn × Rm is open.

The set [0, 1)× (0, 2) is not open because 0 is not an interior
point (why?)

The set (0, 1)× (0, 2) ∪ {(5, 6)} is not open because (5, 6) is
not an interior point.
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