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Recap

Solved the damped oscillator and RLC circuits.

Defined open balls, interior points, and open sets. Gave
examples and non-examples.
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Exterior points, boundary points, and closed sets

A point ~a ∈ Rn is said to be exterior to S if it is interior to the
complement of S , i.e., there is an open ball around ~a
containing no points of S . For instance, (1, 2) is exterior to
B((0, 0), 1).

A point ~a that is neither interior nor exterior to S is called a
boundary point. The set of all boundary points is called the
boundary of S and is denoted as ∂S . For instance, the same
rectangle is the boundary of [0, 1)× (0, 2) and of
(0, 1)× (0, 2).

A closed set is one whose complement is open. For instance,
[0, 1]× [0, 2] is closed (why?). A set can neither be open nor
closed! It can be both too! (For instance, R ⊂ R is both!).

One can prove (HW) that a set S ⊂ Rn is closed iff
S = int(S) ∪ ∂S .
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Limits

Let S ⊂ Rn and ~f : S → Rm be a function. Let ~a ∈ Rn and
~b ∈ Rm.

We say that lim~x→~a ~f (~x) = ~b iff for every ε > 0 there exists a
δ > 0 such that whenever 0 < ‖~x − ~a‖ < δ and ~x ∈ S
‖~f (~x)− ~b‖ < ε. Informally, lim‖~x−~a‖→0 ‖~f (~x)− ~b‖ = 0 in the
one-variable sense.

Just as in one-variable calculus f need not be defined at ~a for
the limit to make sense.

We can convert these definitions to ~h = ~x − ~a for convenience.

A function is continuous at ~x = ~a ∈ S if lim~x→~a ~f (~x) = ~f (~a).

Proposition:The limit lim~x→~a ~f (~x) = ~b iff each of the limits
lim~x→~a fi (~x) exists and equals bi : It follows from
|fj(~x)− bj | ≤ ‖~f (~x)− ~b‖ ≤

∑
i |fi (~x)− bi | for every j

(why?)

Sandwich law: If ‖~f (~x)‖ ≤ ‖~g(~x)‖ and as ~x → ~a the limit of
~g(~x) exists and equals ~0, then ~f (~x)→ ~0: Indeed, this follows
from the definition.
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Examples

Suppose limx1→a1 g(x1) = b where g : R→ R is a function
then lim~x→~a g(x1) exists and equals b. Now |g(x1)− b| < ε
whenever 0 < |x1 − a1| < δ. Thus |g(~x)− b| < ε whenever
0 < |x1 − a1| ≤ |~x − ~a| < δ. So lim(x ,y)→(0,0) x

2 = 0.

The limit lim(x ,y)→(0,0)
xy

x2+y2 does NOT exist: Indeed,
suppose it does and equals L.This means that
|f (x , y)− L| < 1

100 when 0 < ‖(x , y)‖ < δ. Thus if y = x or

y = 2x and 0 < |x | < δ√
5

, then |f (x , y)− L| < 1
100 . This

means that |12 − L| < 1
100 and |25 − L| < 1

100 which is a
contradiction. Note that individually, if y is fixed and x → 0
or vice-versa, the limits exist and equal 0. So one way to
prove that the limit does not exist is to compute it along two
different paths and get different answers.

The limit lim(x ,y)→(0,0)
x2y2

x2+y2 exists and equals 0: Indeed,

| x
2y2

x2+y2 | ≤ x2 which goes to 0.
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