Lecture 21 - UM 102 (Spring 2021)

Vamsi Pritham Pingali

IISc

Recap

Vamsi Pritham Pingali
 Lecture 21
 $2 / 5$

Recap

- Solved the damped oscillator

Recap

- Solved the damped oscillator and RLC circuits.

Recap

- Solved the damped oscillator and RLC circuits.
- Defined open balls,

Recap

- Solved the damped oscillator and RLC circuits.
- Defined open balls, interior points, and

Recap

- Solved the damped oscillator and RLC circuits.
- Defined open balls, interior points, and open sets.
- Solved the damped oscillator and RLC circuits.
- Defined open balls, interior points, and open sets. Gave examples and non-examples.

Exterior points, boundary points, and closed sets

Exterior points, boundary points, and closed sets

- A point $\vec{a} \in \mathbb{R}^{n}$

Exterior points, boundary points, and closed sets

- A point $\vec{a} \in \mathbb{R}^{n}$ is said to be

Exterior points, boundary points, and closed sets

- A point $\vec{a} \in \mathbb{R}^{n}$ is said to be exterior to S

Exterior points, boundary points, and closed sets

- A point $\vec{a} \in \mathbb{R}^{n}$ is said to be exterior to S if it is

Exterior points, boundary points, and closed sets

- A point $\vec{a} \in \mathbb{R}^{n}$ is said to be exterior to S if it is interior to

Exterior points, boundary points, and closed sets

- A point $\vec{a} \in \mathbb{R}^{n}$ is said to be exterior to S if it is interior to the complement of S, i.e.,

Exterior points, boundary points, and closed sets

- A point $\vec{a} \in \mathbb{R}^{n}$ is said to be exterior to S if it is interior to the complement of S, i.e., there is an open ball

Exterior points, boundary points, and closed sets

- A point $\vec{a} \in \mathbb{R}^{n}$ is said to be exterior to S if it is interior to the complement of S, i.e., there is an open ball around \vec{a}

Exterior points, boundary points, and closed sets

- A point $\vec{a} \in \mathbb{R}^{n}$ is said to be exterior to S if it is interior to the complement of S, i.e., there is an open ball around \vec{a} containing no points of S.

Exterior points, boundary points, and closed sets

- A point $\vec{a} \in \mathbb{R}^{n}$ is said to be exterior to S if it is interior to the complement of S, i.e., there is an open ball around \vec{a} containing no points of S. For instance, $(1,2)$ is exterior to

Exterior points, boundary points, and closed sets

- A point $\vec{a} \in \mathbb{R}^{n}$ is said to be exterior to S if it is interior to the complement of S, i.e., there is an open ball around \vec{a} containing no points of S. For instance, $(1,2)$ is exterior to $B((0,0), 1)$.

Exterior points, boundary points, and closed sets

- A point $\vec{a} \in \mathbb{R}^{n}$ is said to be exterior to S if it is interior to the complement of S, i.e., there is an open ball around \vec{a} containing no points of S. For instance, $(1,2)$ is exterior to $B((0,0), 1)$.
- A point \vec{a} that

Exterior points, boundary points, and closed sets

- A point $\vec{a} \in \mathbb{R}^{n}$ is said to be exterior to S if it is interior to the complement of S, i.e., there is an open ball around \vec{a} containing no points of S. For instance, $(1,2)$ is exterior to $B((0,0), 1)$.
- A point \vec{a} that is neither interior

Exterior points, boundary points, and closed sets

- A point $\vec{a} \in \mathbb{R}^{n}$ is said to be exterior to S if it is interior to the complement of S, i.e., there is an open ball around \vec{a} containing no points of S. For instance, $(1,2)$ is exterior to $B((0,0), 1)$.
- A point \vec{a} that is neither interior nor exterior to

Exterior points, boundary points, and closed sets

- A point $\vec{a} \in \mathbb{R}^{n}$ is said to be exterior to S if it is interior to the complement of S, i.e., there is an open ball around \vec{a} containing no points of S. For instance, $(1,2)$ is exterior to $B((0,0), 1)$.
- A point \vec{a} that is neither interior nor exterior to S is called a

Exterior points, boundary points, and closed sets

- A point $\vec{a} \in \mathbb{R}^{n}$ is said to be exterior to S if it is interior to the complement of S, i.e., there is an open ball around \vec{a} containing no points of S. For instance, $(1,2)$ is exterior to $B((0,0), 1)$.
- A point \vec{a} that is neither interior nor exterior to S is called a boundary point.

Exterior points, boundary points, and closed sets

- A point $\vec{a} \in \mathbb{R}^{n}$ is said to be exterior to S if it is interior to the complement of S, i.e., there is an open ball around \vec{a} containing no points of S. For instance, $(1,2)$ is exterior to $B((0,0), 1)$.
- A point \vec{a} that is neither interior nor exterior to S is called a boundary point. The set of all

Exterior points, boundary points, and closed sets

- A point $\vec{a} \in \mathbb{R}^{n}$ is said to be exterior to S if it is interior to the complement of S, i.e., there is an open ball around \vec{a} containing no points of S. For instance, $(1,2)$ is exterior to $B((0,0), 1)$.
- A point \vec{a} that is neither interior nor exterior to S is called a boundary point. The set of all boundary points is

Exterior points, boundary points, and closed sets

- A point $\vec{a} \in \mathbb{R}^{n}$ is said to be exterior to S if it is interior to the complement of S, i.e., there is an open ball around \vec{a} containing no points of S. For instance, $(1,2)$ is exterior to $B((0,0), 1)$.
- A point \vec{a} that is neither interior nor exterior to S is called a boundary point. The set of all boundary points is called the boundary of S

Exterior points, boundary points, and closed sets

- A point $\vec{a} \in \mathbb{R}^{n}$ is said to be exterior to S if it is interior to the complement of S, i.e., there is an open ball around \vec{a} containing no points of S. For instance, $(1,2)$ is exterior to $B((0,0), 1)$.
- A point \vec{a} that is neither interior nor exterior to S is called a boundary point. The set of all boundary points is called the boundary of S and is denoted as ∂S.

Exterior points, boundary points, and closed sets

- A point $\vec{a} \in \mathbb{R}^{n}$ is said to be exterior to S if it is interior to the complement of S, i.e., there is an open ball around \vec{a} containing no points of S. For instance, $(1,2)$ is exterior to $B((0,0), 1)$.
- A point \vec{a} that is neither interior nor exterior to S is called a boundary point. The set of all boundary points is called the boundary of S and is denoted as ∂S. For instance,

Exterior points, boundary points, and closed sets

- A point $\vec{a} \in \mathbb{R}^{n}$ is said to be exterior to S if it is interior to the complement of S, i.e., there is an open ball around \vec{a} containing no points of S. For instance, $(1,2)$ is exterior to $B((0,0), 1)$.
- A point \vec{a} that is neither interior nor exterior to S is called a boundary point. The set of all boundary points is called the boundary of S and is denoted as ∂S. For instance, the same rectangle

Exterior points, boundary points, and closed sets

- A point $\vec{a} \in \mathbb{R}^{n}$ is said to be exterior to S if it is interior to the complement of S, i.e., there is an open ball around \vec{a} containing no points of S. For instance, $(1,2)$ is exterior to $B((0,0), 1)$.
- A point \vec{a} that is neither interior nor exterior to S is called a boundary point. The set of all boundary points is called the boundary of S and is denoted as ∂S. For instance, the same rectangle is the boundary of

Exterior points, boundary points, and closed sets

- A point $\vec{a} \in \mathbb{R}^{n}$ is said to be exterior to S if it is interior to the complement of S, i.e., there is an open ball around \vec{a} containing no points of S. For instance, $(1,2)$ is exterior to $B((0,0), 1)$.
- A point \vec{a} that is neither interior nor exterior to S is called a boundary point. The set of all boundary points is called the boundary of S and is denoted as ∂S. For instance, the same rectangle is the boundary of $[0,1) \times(0,2)$ and of

Exterior points, boundary points, and closed sets

- A point $\vec{a} \in \mathbb{R}^{n}$ is said to be exterior to S if it is interior to the complement of S, i.e., there is an open ball around \vec{a} containing no points of S. For instance, $(1,2)$ is exterior to $B((0,0), 1)$.
- A point \vec{a} that is neither interior nor exterior to S is called a boundary point. The set of all boundary points is called the boundary of S and is denoted as ∂S. For instance, the same rectangle is the boundary of $[0,1) \times(0,2)$ and of $(0,1) \times(0,2)$.
- A point $\vec{a} \in \mathbb{R}^{n}$ is said to be exterior to S if it is interior to the complement of S, i.e., there is an open ball around \vec{a} containing no points of S. For instance, $(1,2)$ is exterior to $B((0,0), 1)$.
- A point \vec{a} that is neither interior nor exterior to S is called a boundary point. The set of all boundary points is called the boundary of S and is denoted as ∂S. For instance, the same rectangle is the boundary of $[0,1) \times(0,2)$ and of $(0,1) \times(0,2)$.
- A closed set

Exterior points, boundary points, and closed sets

- A point $\vec{a} \in \mathbb{R}^{n}$ is said to be exterior to S if it is interior to the complement of S, i.e., there is an open ball around \vec{a} containing no points of S. For instance, $(1,2)$ is exterior to $B((0,0), 1)$.
- A point \vec{a} that is neither interior nor exterior to S is called a boundary point. The set of all boundary points is called the boundary of S and is denoted as ∂S. For instance, the same rectangle is the boundary of $[0,1) \times(0,2)$ and of $(0,1) \times(0,2)$.
- A closed set is one whose

Exterior points, boundary points, and closed sets

- A point $\vec{a} \in \mathbb{R}^{n}$ is said to be exterior to S if it is interior to the complement of S, i.e., there is an open ball around \vec{a} containing no points of S. For instance, $(1,2)$ is exterior to $B((0,0), 1)$.
- A point \vec{a} that is neither interior nor exterior to S is called a boundary point. The set of all boundary points is called the boundary of S and is denoted as ∂S. For instance, the same rectangle is the boundary of $[0,1) \times(0,2)$ and of $(0,1) \times(0,2)$.
- A closed set is one whose complement is open.

Exterior points, boundary points, and closed sets

- A point $\vec{a} \in \mathbb{R}^{n}$ is said to be exterior to S if it is interior to the complement of S, i.e., there is an open ball around \vec{a} containing no points of S. For instance, $(1,2)$ is exterior to $B((0,0), 1)$.
- A point \vec{a} that is neither interior nor exterior to S is called a boundary point. The set of all boundary points is called the boundary of S and is denoted as ∂S. For instance, the same rectangle is the boundary of $[0,1) \times(0,2)$ and of $(0,1) \times(0,2)$.
- A closed set is one whose complement is open. For instance, $[0,1] \times[0,2]$ is closed (why?).
- A point $\vec{a} \in \mathbb{R}^{n}$ is said to be exterior to S if it is interior to the complement of S, i.e., there is an open ball around \vec{a} containing no points of S. For instance, $(1,2)$ is exterior to $B((0,0), 1)$.
- A point \vec{a} that is neither interior nor exterior to S is called a boundary point. The set of all boundary points is called the boundary of S and is denoted as ∂S. For instance, the same rectangle is the boundary of $[0,1) \times(0,2)$ and of $(0,1) \times(0,2)$.
- A closed set is one whose complement is open. For instance, $[0,1] \times[0,2]$ is closed (why?). A set can

Exterior points, boundary points, and closed sets

- A point $\vec{a} \in \mathbb{R}^{n}$ is said to be exterior to S if it is interior to the complement of S, i.e., there is an open ball around \vec{a} containing no points of S. For instance, $(1,2)$ is exterior to $B((0,0), 1)$.
- A point \vec{a} that is neither interior nor exterior to S is called a boundary point. The set of all boundary points is called the boundary of S and is denoted as ∂S. For instance, the same rectangle is the boundary of $[0,1) \times(0,2)$ and of $(0,1) \times(0,2)$.
- A closed set is one whose complement is open. For instance, $[0,1] \times[0,2]$ is closed (why?). A set can neither be
- A point $\vec{a} \in \mathbb{R}^{n}$ is said to be exterior to S if it is interior to the complement of S, i.e., there is an open ball around \vec{a} containing no points of S. For instance, $(1,2)$ is exterior to $B((0,0), 1)$.
- A point \vec{a} that is neither interior nor exterior to S is called a boundary point. The set of all boundary points is called the boundary of S and is denoted as ∂S. For instance, the same rectangle is the boundary of $[0,1) \times(0,2)$ and of $(0,1) \times(0,2)$.
- A closed set is one whose complement is open. For instance, $[0,1] \times[0,2]$ is closed (why?). A set can neither be open nor closed!
- A point $\vec{a} \in \mathbb{R}^{n}$ is said to be exterior to S if it is interior to the complement of S, i.e., there is an open ball around \vec{a} containing no points of S. For instance, $(1,2)$ is exterior to $B((0,0), 1)$.
- A point \vec{a} that is neither interior nor exterior to S is called a boundary point. The set of all boundary points is called the boundary of S and is denoted as ∂S. For instance, the same rectangle is the boundary of $[0,1) \times(0,2)$ and of $(0,1) \times(0,2)$.
- A closed set is one whose complement is open. For instance, $[0,1] \times[0,2]$ is closed (why?). A set can neither be open nor closed! It can be both too! (
- A point $\vec{a} \in \mathbb{R}^{n}$ is said to be exterior to S if it is interior to the complement of S, i.e., there is an open ball around \vec{a} containing no points of S. For instance, $(1,2)$ is exterior to $B((0,0), 1)$.
- A point \vec{a} that is neither interior nor exterior to S is called a boundary point. The set of all boundary points is called the boundary of S and is denoted as ∂S. For instance, the same rectangle is the boundary of $[0,1) \times(0,2)$ and of $(0,1) \times(0,2)$.
- A closed set is one whose complement is open. For instance, $[0,1] \times[0,2]$ is closed (why?). A set can neither be open nor closed! It can be both too! (For instance, $\mathbb{R} \subset \mathbb{R}$ is both!).
- A point $\vec{a} \in \mathbb{R}^{n}$ is said to be exterior to S if it is interior to the complement of S, i.e., there is an open ball around \vec{a} containing no points of S. For instance, $(1,2)$ is exterior to $B((0,0), 1)$.
- A point \vec{a} that is neither interior nor exterior to S is called a boundary point. The set of all boundary points is called the boundary of S and is denoted as ∂S. For instance, the same rectangle is the boundary of $[0,1) \times(0,2)$ and of $(0,1) \times(0,2)$.
- A closed set is one whose complement is open. For instance, $[0,1] \times[0,2]$ is closed (why?). A set can neither be open nor closed! It can be both too! (For instance, $\mathbb{R} \subset \mathbb{R}$ is both!).
- One can prove (HW)
- A point $\vec{a} \in \mathbb{R}^{n}$ is said to be exterior to S if it is interior to the complement of S, i.e., there is an open ball around \vec{a} containing no points of S. For instance, $(1,2)$ is exterior to $B((0,0), 1)$.
- A point \vec{a} that is neither interior nor exterior to S is called a boundary point. The set of all boundary points is called the boundary of S and is denoted as ∂S. For instance, the same rectangle is the boundary of $[0,1) \times(0,2)$ and of $(0,1) \times(0,2)$.
- A closed set is one whose complement is open. For instance, $[0,1] \times[0,2]$ is closed (why?). A set can neither be open nor closed! It can be both too! (For instance, $\mathbb{R} \subset \mathbb{R}$ is both!).
- One can prove (HW) that a set $S \subset \mathbb{R}^{n}$
- A point $\vec{a} \in \mathbb{R}^{n}$ is said to be exterior to S if it is interior to the complement of S, i.e., there is an open ball around \vec{a} containing no points of S. For instance, $(1,2)$ is exterior to $B((0,0), 1)$.
- A point \vec{a} that is neither interior nor exterior to S is called a boundary point. The set of all boundary points is called the boundary of S and is denoted as ∂S. For instance, the same rectangle is the boundary of $[0,1) \times(0,2)$ and of $(0,1) \times(0,2)$.
- A closed set is one whose complement is open. For instance, $[0,1] \times[0,2]$ is closed (why?). A set can neither be open nor closed! It can be both too! (For instance, $\mathbb{R} \subset \mathbb{R}$ is both!).
- One can prove (HW) that a set $S \subset \mathbb{R}^{n}$ is closed iff
- A point $\vec{a} \in \mathbb{R}^{n}$ is said to be exterior to S if it is interior to the complement of S, i.e., there is an open ball around \vec{a} containing no points of S. For instance, $(1,2)$ is exterior to $B((0,0), 1)$.
- A point \vec{a} that is neither interior nor exterior to S is called a boundary point. The set of all boundary points is called the boundary of S and is denoted as ∂S. For instance, the same rectangle is the boundary of $[0,1) \times(0,2)$ and of $(0,1) \times(0,2)$.
- A closed set is one whose complement is open. For instance, $[0,1] \times[0,2]$ is closed (why?). A set can neither be open nor closed! It can be both too! (For instance, $\mathbb{R} \subset \mathbb{R}$ is both!).
- One can prove (HW) that a set $S \subset \mathbb{R}^{n}$ is closed iff $S=\operatorname{int}(S) \cup \partial S$.

Limits

- Let $S \subset \mathbb{R}^{n}$ and
- Let $S \subset \mathbb{R}^{n}$ and $\vec{f}: S \rightarrow \mathbb{R}^{m}$ be a function.
- Let $S \subset \mathbb{R}^{n}$ and $\vec{f}: S \rightarrow \mathbb{R}^{m}$ be a function. Let $\vec{a} \in \mathbb{R}^{n}$ and $\vec{b} \in \mathbb{R}^{m}$.

Limits

- Let $S \subset \mathbb{R}^{n}$ and $\vec{f}: S \rightarrow \mathbb{R}^{m}$ be a function. Let $\vec{a} \in \mathbb{R}^{n}$ and $\vec{b} \in \mathbb{R}^{m}$.
- We say that $\lim _{\vec{x} \rightarrow \vec{a}} \vec{f}(\vec{x})=\vec{b}$ iff
- Let $S \subset \mathbb{R}^{n}$ and $\vec{f}: S \rightarrow \mathbb{R}^{m}$ be a function. Let $\vec{a} \in \mathbb{R}^{n}$ and $\vec{b} \in \mathbb{R}^{m}$.
- We say that $\lim _{\vec{x} \rightarrow \vec{a}} \vec{f}(\vec{x})=\vec{b}$ iff for every $\epsilon>0$ there exists a $\delta>0$
- Let $S \subset \mathbb{R}^{n}$ and $\vec{f}: S \rightarrow \mathbb{R}^{m}$ be a function. Let $\vec{a} \in \mathbb{R}^{n}$ and $\vec{b} \in \mathbb{R}^{m}$.
- We say that $\lim _{\vec{x} \rightarrow \vec{a}} \vec{f}(\vec{x})=\vec{b}$ iff for every $\epsilon>0$ there exists a $\delta>0$ such that

Limits

- Let $S \subset \mathbb{R}^{n}$ and $\vec{f}: S \rightarrow \mathbb{R}^{m}$ be a function. Let $\vec{a} \in \mathbb{R}^{n}$ and $\vec{b} \in \mathbb{R}^{m}$.
- We say that $\lim _{\vec{x} \rightarrow \vec{a}} \vec{f}(\vec{x})=\vec{b}$ iff for every $\epsilon>0$ there exists a $\delta>0$ such that whenever $0<\|\vec{x}-\vec{a}\|<\delta$ and $\vec{x} \in S$

Limits

- Let $S \subset \mathbb{R}^{n}$ and $\vec{f}: S \rightarrow \mathbb{R}^{m}$ be a function. Let $\vec{a} \in \mathbb{R}^{n}$ and $\vec{b} \in \mathbb{R}^{m}$.
- We say that $\lim _{\vec{x} \rightarrow \vec{a}} \vec{f}(\vec{x})=\vec{b}$ iff for every $\epsilon>0$ there exists a $\delta>0$ such that whenever $0<\|\vec{x}-\vec{a}\|<\delta$ and $\vec{x} \in S$ $\|\vec{f}(\vec{x})-\vec{b}\|<\epsilon$.

Limits

- Let $S \subset \mathbb{R}^{n}$ and $\vec{f}: S \rightarrow \mathbb{R}^{m}$ be a function. Let $\vec{a} \in \mathbb{R}^{n}$ and $\vec{b} \in \mathbb{R}^{m}$.
- We say that $\lim _{\vec{x} \rightarrow \vec{a}} \vec{f}(\vec{x})=\vec{b}$ iff for every $\epsilon>0$ there exists a $\delta>0$ such that whenever $0<\|\vec{x}-\vec{a}\|<\delta$ and $\vec{x} \in S$ $\|\vec{f}(\vec{x})-\vec{b}\|<\epsilon$. Informally, $\lim _{\|\vec{x}-\vec{a}\| \rightarrow 0}\|\vec{f}(\vec{x})-\vec{b}\|=0$ in the one-variable sense.

Limits

- Let $S \subset \mathbb{R}^{n}$ and $\vec{f}: S \rightarrow \mathbb{R}^{m}$ be a function. Let $\vec{a} \in \mathbb{R}^{n}$ and $\vec{b} \in \mathbb{R}^{m}$.
- We say that $\lim _{\vec{x} \rightarrow \vec{a}} \vec{f}(\vec{x})=\vec{b}$ iff for every $\epsilon>0$ there exists a $\delta>0$ such that whenever $0<\|\vec{x}-\vec{a}\|<\delta$ and $\vec{x} \in S$ $\|\vec{f}(\vec{x})-\vec{b}\|<\epsilon$. Informally, $\lim _{\|\vec{x}-\vec{a}\| \rightarrow 0}\|\vec{f}(\vec{x})-\vec{b}\|=0$ in the one-variable sense.
- Just as in

Limits

- Let $S \subset \mathbb{R}^{n}$ and $\vec{f}: S \rightarrow \mathbb{R}^{m}$ be a function. Let $\vec{a} \in \mathbb{R}^{n}$ and $\vec{b} \in \mathbb{R}^{m}$.
- We say that $\lim _{\vec{x} \rightarrow \vec{a}} \vec{f}(\vec{x})=\vec{b}$ iff for every $\epsilon>0$ there exists a $\delta>0$ such that whenever $0<\|\vec{x}-\vec{a}\|<\delta$ and $\vec{x} \in S$ $\|\vec{f}(\vec{x})-\vec{b}\|<\epsilon$. Informally, $\lim _{\|\vec{x}-\vec{a}\| \rightarrow 0}\|\vec{f}(\vec{x})-\vec{b}\|=0$ in the one-variable sense.
- Just as in one-variable calculus

Limits

- Let $S \subset \mathbb{R}^{n}$ and $\vec{f}: S \rightarrow \mathbb{R}^{m}$ be a function. Let $\vec{a} \in \mathbb{R}^{n}$ and $\vec{b} \in \mathbb{R}^{m}$.
- We say that $\lim _{\vec{x} \rightarrow \vec{a}} \vec{f}(\vec{x})=\vec{b}$ iff for every $\epsilon>0$ there exists a $\delta>0$ such that whenever $0<\|\vec{x}-\vec{a}\|<\delta$ and $\vec{x} \in S$ $\|\vec{f}(\vec{x})-\vec{b}\|<\epsilon$. Informally, $\lim _{\|\vec{x}-\vec{a}\| \rightarrow 0}\|\vec{f}(\vec{x})-\vec{b}\|=0$ in the one-variable sense.
- Just as in one-variable calculus f need not be defined

Limits

- Let $S \subset \mathbb{R}^{n}$ and $\vec{f}: S \rightarrow \mathbb{R}^{m}$ be a function. Let $\vec{a} \in \mathbb{R}^{n}$ and $\vec{b} \in \mathbb{R}^{m}$.
- We say that $\lim _{\vec{x} \rightarrow \vec{a}} \vec{f}(\vec{x})=\vec{b}$ iff for every $\epsilon>0$ there exists a $\delta>0$ such that whenever $0<\|\vec{x}-\vec{a}\|<\delta$ and $\vec{x} \in S$ $\|\vec{f}(\vec{x})-\vec{b}\|<\epsilon$. Informally, $\lim _{\|\vec{x}-\vec{a}\| \rightarrow 0}\|\vec{f}(\vec{x})-\vec{b}\|=0$ in the one-variable sense.
- Just as in one-variable calculus f need not be defined at \vec{a} for
- Let $S \subset \mathbb{R}^{n}$ and $\vec{f}: S \rightarrow \mathbb{R}^{m}$ be a function. Let $\vec{a} \in \mathbb{R}^{n}$ and $\vec{b} \in \mathbb{R}^{m}$.
- We say that $\lim _{\vec{x} \rightarrow \vec{a}} \vec{f}(\vec{x})=\vec{b}$ iff for every $\epsilon>0$ there exists a $\delta>0$ such that whenever $0<\|\vec{x}-\vec{a}\|<\delta$ and $\vec{x} \in S$ $\|\vec{f}(\vec{x})-\vec{b}\|<\epsilon$. Informally, $\lim _{\|\vec{x}-\vec{a}\| \rightarrow 0}\|\vec{f}(\vec{x})-\vec{b}\|=0$ in the one-variable sense.
- Just as in one-variable calculus f need not be defined at \vec{a} for the limit to make sense.

Limits

- Let $S \subset \mathbb{R}^{n}$ and $\vec{f}: S \rightarrow \mathbb{R}^{m}$ be a function. Let $\vec{a} \in \mathbb{R}^{n}$ and $\vec{b} \in \mathbb{R}^{m}$.
- We say that $\lim _{\vec{x} \rightarrow \vec{a}} \vec{f}(\vec{x})=\vec{b}$ iff for every $\epsilon>0$ there exists a $\delta>0$ such that whenever $0<\|\vec{x}-\vec{a}\|<\delta$ and $\vec{x} \in S$ $\|\vec{f}(\vec{x})-\vec{b}\|<\epsilon$. Informally, $\lim _{\|\vec{x}-\vec{a}\| \rightarrow 0}\|\vec{f}(\vec{x})-\vec{b}\|=0$ in the one-variable sense.
- Just as in one-variable calculus f need not be defined at \vec{a} for the limit to make sense.
- We can convert

Limits

- Let $S \subset \mathbb{R}^{n}$ and $\vec{f}: S \rightarrow \mathbb{R}^{m}$ be a function. Let $\vec{a} \in \mathbb{R}^{n}$ and $\vec{b} \in \mathbb{R}^{m}$.
- We say that $\lim _{\vec{x} \rightarrow \vec{a}} \vec{f}(\vec{x})=\vec{b}$ iff for every $\epsilon>0$ there exists a $\delta>0$ such that whenever $0<\|\vec{x}-\vec{a}\|<\delta$ and $\vec{x} \in S$ $\|\vec{f}(\vec{x})-\vec{b}\|<\epsilon$. Informally, $\lim _{\|\vec{x}-\vec{a}\| \rightarrow 0}\|\vec{f}(\vec{x})-\vec{b}\|=0$ in the one-variable sense.
- Just as in one-variable calculus f need not be defined at \vec{a} for the limit to make sense.
- We can convert these definitions to $\vec{h}=\vec{x}-\vec{a}$
- Let $S \subset \mathbb{R}^{n}$ and $\vec{f}: S \rightarrow \mathbb{R}^{m}$ be a function. Let $\vec{a} \in \mathbb{R}^{n}$ and $\vec{b} \in \mathbb{R}^{m}$.
- We say that $\lim _{\vec{x} \rightarrow \vec{a}} \vec{f}(\vec{x})=\vec{b}$ iff for every $\epsilon>0$ there exists a $\delta>0$ such that whenever $0<\|\vec{x}-\vec{a}\|<\delta$ and $\vec{x} \in S$ $\|\vec{f}(\vec{x})-\vec{b}\|<\epsilon$. Informally, $\lim _{\|\vec{x}-\vec{a}\| \rightarrow 0}\|\vec{f}(\vec{x})-\vec{b}\|=0$ in the one-variable sense.
- Just as in one-variable calculus f need not be defined at \vec{a} for the limit to make sense.
- We can convert these definitions to $\vec{h}=\vec{x}-\vec{a}$ for convenience.
- Let $S \subset \mathbb{R}^{n}$ and $\vec{f}: S \rightarrow \mathbb{R}^{m}$ be a function. Let $\vec{a} \in \mathbb{R}^{n}$ and $\vec{b} \in \mathbb{R}^{m}$.
- We say that $\lim _{\vec{x} \rightarrow \vec{a}} \vec{f}(\vec{x})=\vec{b}$ iff for every $\epsilon>0$ there exists a $\delta>0$ such that whenever $0<\|\vec{x}-\vec{a}\|<\delta$ and $\vec{x} \in S$ $\|\vec{f}(\vec{x})-\vec{b}\|<\epsilon$. Informally, $\lim _{\|\vec{x}-\vec{a}\| \rightarrow 0}\|\vec{f}(\vec{x})-\vec{b}\|=0$ in the one-variable sense.
- Just as in one-variable calculus f need not be defined at \vec{a} for the limit to make sense.
- We can convert these definitions to $\vec{h}=\vec{x}-\vec{a}$ for convenience.
- A function is

Limits

- Let $S \subset \mathbb{R}^{n}$ and $\vec{f}: S \rightarrow \mathbb{R}^{m}$ be a function. Let $\vec{a} \in \mathbb{R}^{n}$ and $\vec{b} \in \mathbb{R}^{m}$.
- We say that $\lim _{\vec{x} \rightarrow \vec{a}} \vec{f}(\vec{x})=\vec{b}$ iff for every $\epsilon>0$ there exists a $\delta>0$ such that whenever $0<\|\vec{x}-\vec{a}\|<\delta$ and $\vec{x} \in S$ $\|\vec{f}(\vec{x})-\vec{b}\|<\epsilon$. Informally, $\lim _{\|\vec{x}-\vec{a}\| \rightarrow 0}\|\vec{f}(\vec{x})-\vec{b}\|=0$ in the one-variable sense.
- Just as in one-variable calculus f need not be defined at \vec{a} for the limit to make sense.
- We can convert these definitions to $\vec{h}=\vec{x}-\vec{a}$ for convenience.
- A function is continuous at $\vec{x}=\vec{a} \in S$ if

Limits

- Let $S \subset \mathbb{R}^{n}$ and $\vec{f}: S \rightarrow \mathbb{R}^{m}$ be a function. Let $\vec{a} \in \mathbb{R}^{n}$ and $\vec{b} \in \mathbb{R}^{m}$.
- We say that $\lim _{\vec{x} \rightarrow \vec{a}} \vec{f}(\vec{x})=\vec{b}$ iff for every $\epsilon>0$ there exists a $\delta>0$ such that whenever $0<\|\vec{x}-\vec{a}\|<\delta$ and $\vec{x} \in S$ $\|\vec{f}(\vec{x})-\vec{b}\|<\epsilon$. Informally, $\lim _{\|\vec{x}-\vec{a}\| \rightarrow 0}\|\vec{f}(\vec{x})-\vec{b}\|=0$ in the one-variable sense.
- Just as in one-variable calculus f need not be defined at \vec{a} for the limit to make sense.
- We can convert these definitions to $\vec{h}=\vec{x}-\vec{a}$ for convenience.
- A function is continuous at $\vec{x}=\vec{a} \in S$ if $\lim _{\vec{x} \rightarrow \vec{a}} \vec{f}(\vec{x})=\vec{f}(\vec{a})$.
- Let $S \subset \mathbb{R}^{n}$ and $\vec{f}: S \rightarrow \mathbb{R}^{m}$ be a function. Let $\vec{a} \in \mathbb{R}^{n}$ and $\vec{b} \in \mathbb{R}^{m}$.
- We say that $\lim _{\vec{x} \rightarrow \vec{a}} \vec{f}(\vec{x})=\vec{b}$ iff for every $\epsilon>0$ there exists a $\delta>0$ such that whenever $0<\|\vec{x}-\vec{a}\|<\delta$ and $\vec{x} \in S$ $\|\vec{f}(\vec{x})-\vec{b}\|<\epsilon$. Informally, $\lim _{\|\vec{x}-\vec{a}\| \rightarrow 0}\|\vec{f}(\vec{x})-\vec{b}\|=0$ in the one-variable sense.
- Just as in one-variable calculus f need not be defined at \vec{a} for the limit to make sense.
- We can convert these definitions to $\vec{h}=\vec{x}-\vec{a}$ for convenience.
- A function is continuous at $\vec{x}=\vec{a} \in S$ if $\lim _{\vec{x} \rightarrow \vec{a}} \vec{f}(\vec{x})=\vec{f}(\vec{a})$.
- Proposition:
- Let $S \subset \mathbb{R}^{n}$ and $\vec{f}: S \rightarrow \mathbb{R}^{m}$ be a function. Let $\vec{a} \in \mathbb{R}^{n}$ and $\vec{b} \in \mathbb{R}^{m}$.
- We say that $\lim _{\vec{x} \rightarrow \vec{a}} \vec{f}(\vec{x})=\vec{b}$ iff for every $\epsilon>0$ there exists a $\delta>0$ such that whenever $0<\|\vec{x}-\vec{a}\|<\delta$ and $\vec{x} \in S$ $\|\vec{f}(\vec{x})-\vec{b}\|<\epsilon$. Informally, $\lim _{\|\vec{x}-\vec{a}\| \rightarrow 0}\|\vec{f}(\vec{x})-\vec{b}\|=0$ in the one-variable sense.
- Just as in one-variable calculus f need not be defined at \vec{a} for the limit to make sense.
- We can convert these definitions to $\vec{h}=\vec{x}-\vec{a}$ for convenience.
- A function is continuous at $\vec{x}=\vec{a} \in S$ if $\lim _{\vec{x} \rightarrow \vec{a}} \vec{f}(\vec{x})=\vec{f}(\vec{a})$.
- Proposition:The limit $\lim _{\vec{x} \rightarrow \vec{a}} \vec{f}(\vec{x})=\vec{b}$

Limits

- Let $S \subset \mathbb{R}^{n}$ and $\vec{f}: S \rightarrow \mathbb{R}^{m}$ be a function. Let $\vec{a} \in \mathbb{R}^{n}$ and $\vec{b} \in \mathbb{R}^{m}$.
- We say that $\lim _{\vec{x} \rightarrow \vec{a}} \vec{f}(\vec{x})=\vec{b}$ iff for every $\epsilon>0$ there exists a $\delta>0$ such that whenever $0<\|\vec{x}-\vec{a}\|<\delta$ and $\vec{x} \in S$ $\|\vec{f}(\vec{x})-\vec{b}\|<\epsilon$. Informally, $\lim _{\|\vec{x}-\vec{a}\| \rightarrow 0}\|\vec{f}(\vec{x})-\vec{b}\|=0$ in the one-variable sense.
- Just as in one-variable calculus f need not be defined at \vec{a} for the limit to make sense.
- We can convert these definitions to $\vec{h}=\vec{x}-\vec{a}$ for convenience.
- A function is continuous at $\vec{x}=\vec{a} \in S$ if $\lim _{\vec{x} \rightarrow \vec{a}} \vec{f}(\vec{x})=\vec{f}(\vec{a})$.
- Proposition:The limit $\lim _{\vec{x} \rightarrow \vec{a}} \vec{f}(\vec{x})=\vec{b}$ iff each of the limits
- Let $S \subset \mathbb{R}^{n}$ and $\vec{f}: S \rightarrow \mathbb{R}^{m}$ be a function. Let $\vec{a} \in \mathbb{R}^{n}$ and $\vec{b} \in \mathbb{R}^{m}$.
- We say that $\lim _{\vec{x} \rightarrow \vec{a}} \vec{f}(\vec{x})=\vec{b}$ iff for every $\epsilon>0$ there exists a $\delta>0$ such that whenever $0<\|\vec{x}-\vec{a}\|<\delta$ and $\vec{x} \in S$ $\|\vec{f}(\vec{x})-\vec{b}\|<\epsilon$. Informally, $\lim _{\|\vec{x}-\vec{a}\| \rightarrow 0}\|\vec{f}(\vec{x})-\vec{b}\|=0$ in the one-variable sense.
- Just as in one-variable calculus f need not be defined at \vec{a} for the limit to make sense.
- We can convert these definitions to $\vec{h}=\vec{x}-\vec{a}$ for convenience.
- A function is continuous at $\vec{x}=\vec{a} \in S$ if $\lim _{\vec{x} \rightarrow \vec{a}} \vec{f}(\vec{x})=\vec{f}(\vec{a})$.
- Proposition:The limit $\lim _{\vec{x} \rightarrow \vec{a}} \vec{f}(\vec{x})=\vec{b}$ iff each of the limits $\lim _{\vec{x} \rightarrow \vec{a}} f_{i}(\vec{x})$ exists and equals b_{i} :
- Let $S \subset \mathbb{R}^{n}$ and $\vec{f}: S \rightarrow \mathbb{R}^{m}$ be a function. Let $\vec{a} \in \mathbb{R}^{n}$ and $\vec{b} \in \mathbb{R}^{m}$.
- We say that $\lim _{\vec{x} \rightarrow \vec{a}} \vec{f}(\vec{x})=\vec{b}$ iff for every $\epsilon>0$ there exists a $\delta>0$ such that whenever $0<\|\vec{x}-\vec{a}\|<\delta$ and $\vec{x} \in S$ $\|\vec{f}(\vec{x})-\vec{b}\|<\epsilon$. Informally, $\lim _{\|\vec{x}-\vec{a}\| \rightarrow 0}\|\vec{f}(\vec{x})-\vec{b}\|=0$ in the one-variable sense.
- Just as in one-variable calculus f need not be defined at \vec{a} for the limit to make sense.
- We can convert these definitions to $\vec{h}=\vec{x}-\vec{a}$ for convenience.
- A function is continuous at $\vec{x}=\vec{a} \in S$ if $\lim _{\vec{x} \rightarrow \vec{a}} \vec{f}(\vec{x})=\vec{f}(\vec{a})$.
- Proposition:The limit $\lim _{\vec{x} \rightarrow \vec{a}} \vec{f}(\vec{x})=\vec{b}$ iff each of the limits $\lim _{\vec{x} \rightarrow \vec{a}} f_{i}(\vec{x})$ exists and equals b_{i} : It follows from
- Let $S \subset \mathbb{R}^{n}$ and $\vec{f}: S \rightarrow \mathbb{R}^{m}$ be a function. Let $\vec{a} \in \mathbb{R}^{n}$ and $\vec{b} \in \mathbb{R}^{m}$.
- We say that $\lim _{\vec{x} \rightarrow \vec{a}} \vec{f}(\vec{x})=\vec{b}$ iff for every $\epsilon>0$ there exists a $\delta>0$ such that whenever $0<\|\vec{x}-\vec{a}\|<\delta$ and $\vec{x} \in S$ $\|\vec{f}(\vec{x})-\vec{b}\|<\epsilon$. Informally, $\lim _{\|\vec{x}-\vec{a}\| \rightarrow 0}\|\vec{f}(\vec{x})-\vec{b}\|=0$ in the one-variable sense.
- Just as in one-variable calculus f need not be defined at \vec{a} for the limit to make sense.
- We can convert these definitions to $\vec{h}=\vec{x}-\vec{a}$ for convenience.
- A function is continuous at $\vec{x}=\vec{a} \in S$ if $\lim _{\vec{x} \rightarrow \vec{a}} \vec{f}(\vec{x})=\vec{f}(\vec{a})$.
- Proposition:The limit $\lim _{\vec{x} \rightarrow \vec{a}} \vec{f}(\vec{x})=\vec{b}$ iff each of the limits $\lim _{\vec{x} \rightarrow \vec{a}} f_{i}(\vec{x})$ exists and equals b_{i} : It follows from $\left|f_{j}(\vec{x})-b_{j}\right| \leq\|\vec{f}(\vec{x})-\vec{b}\| \leq \sum_{i}\left|f_{i}(\vec{x})-b_{i}\right|$ for every j (why?)
- Let $S \subset \mathbb{R}^{n}$ and $\vec{f}: S \rightarrow \mathbb{R}^{m}$ be a function. Let $\vec{a} \in \mathbb{R}^{n}$ and $\vec{b} \in \mathbb{R}^{m}$.
- We say that $\lim _{\vec{x} \rightarrow \vec{a}} \vec{f}(\vec{x})=\vec{b}$ iff for every $\epsilon>0$ there exists a $\delta>0$ such that whenever $0<\|\vec{x}-\vec{a}\|<\delta$ and $\vec{x} \in S$ $\|\vec{f}(\vec{x})-\vec{b}\|<\epsilon$. Informally, $\lim _{\|\vec{x}-\vec{a}\| \rightarrow 0}\|\vec{f}(\vec{x})-\vec{b}\|=0$ in the one-variable sense.
- Just as in one-variable calculus f need not be defined at \vec{a} for the limit to make sense.
- We can convert these definitions to $\vec{h}=\vec{x}-\vec{a}$ for convenience.
- A function is continuous at $\vec{x}=\vec{a} \in S$ if $\lim _{\vec{x} \rightarrow \vec{a}} \vec{f}(\vec{x})=\vec{f}(\vec{a})$.
- Proposition:The limit $\lim _{\vec{x} \rightarrow \vec{a}} \vec{f}(\vec{x})=\vec{b}$ iff each of the limits $\lim _{\vec{x} \rightarrow \vec{a}} f_{i}(\vec{x})$ exists and equals b_{i} : It follows from $\left|f_{j}(\vec{x})-b_{j}\right| \leq\|\vec{f}(\vec{x})-\vec{b}\| \leq \sum_{i}\left|f_{i}(\vec{x})-b_{i}\right|$ for every j (why?)
- Sandwich law:
- Let $S \subset \mathbb{R}^{n}$ and $\vec{f}: S \rightarrow \mathbb{R}^{m}$ be a function. Let $\vec{a} \in \mathbb{R}^{n}$ and $\vec{b} \in \mathbb{R}^{m}$.
- We say that $\lim _{\vec{x} \rightarrow \vec{a}} \vec{f}(\vec{x})=\vec{b}$ iff for every $\epsilon>0$ there exists a $\delta>0$ such that whenever $0<\|\vec{x}-\vec{a}\|<\delta$ and $\vec{x} \in S$ $\|\vec{f}(\vec{x})-\vec{b}\|<\epsilon$. Informally, $\lim _{\|\vec{x}-\vec{a}\| \rightarrow 0}\|\vec{f}(\vec{x})-\vec{b}\|=0$ in the one-variable sense.
- Just as in one-variable calculus f need not be defined at \vec{a} for the limit to make sense.
- We can convert these definitions to $\vec{h}=\vec{x}-\vec{a}$ for convenience.
- A function is continuous at $\vec{x}=\vec{a} \in S$ if $\lim _{\vec{x} \rightarrow \vec{a}} \vec{f}(\vec{x})=\vec{f}(\vec{a})$.
- Proposition:The limit $\lim _{\vec{x} \rightarrow \vec{a}} \vec{f}(\vec{x})=\vec{b}$ iff each of the limits $\lim _{\vec{x} \rightarrow \vec{a}} f_{i}(\vec{x})$ exists and equals b_{i} : It follows from $\left|f_{j}(\vec{x})-b_{j}\right| \leq\|\vec{f}(\vec{x})-\vec{b}\| \leq \sum_{i}\left|f_{i}(\vec{x})-b_{i}\right|$ for every j (why?)
- Sandwich law: If $\|\vec{f}(\vec{x})\| \leq\|\vec{g}(\vec{x})\|$ and
- Let $S \subset \mathbb{R}^{n}$ and $\vec{f}: S \rightarrow \mathbb{R}^{m}$ be a function. Let $\vec{a} \in \mathbb{R}^{n}$ and $\vec{b} \in \mathbb{R}^{m}$.
- We say that $\lim _{\vec{x} \rightarrow \vec{a}} \vec{f}(\vec{x})=\vec{b}$ iff for every $\epsilon>0$ there exists a $\delta>0$ such that whenever $0<\|\vec{x}-\vec{a}\|<\delta$ and $\vec{x} \in S$ $\|\vec{f}(\vec{x})-\vec{b}\|<\epsilon$. Informally, $\lim _{\|\vec{x}-\vec{a}\| \rightarrow 0}\|\vec{f}(\vec{x})-\vec{b}\|=0$ in the one-variable sense.
- Just as in one-variable calculus f need not be defined at \vec{a} for the limit to make sense.
- We can convert these definitions to $\vec{h}=\vec{x}-\vec{a}$ for convenience.
- A function is continuous at $\vec{x}=\vec{a} \in S$ if $\lim _{\vec{x} \rightarrow \vec{a}} \vec{f}(\vec{x})=\vec{f}(\vec{a})$.
- Proposition:The limit $\lim _{\vec{x} \rightarrow \vec{a}} \vec{f}(\vec{x})=\vec{b}$ iff each of the limits $\lim _{\vec{x} \rightarrow \vec{a}} f_{i}(\vec{x})$ exists and equals b_{i} : It follows from $\left|f_{j}(\vec{x})-b_{j}\right| \leq\|\vec{f}(\vec{x})-\vec{b}\| \leq \sum_{i}\left|f_{i}(\vec{x})-b_{i}\right|$ for every j (why?)
- Sandwich law: If $\|\vec{f}(\vec{x})\| \leq\|\vec{g}(\vec{x})\|$ and as $\vec{x} \rightarrow \vec{a}$ the limit of $\vec{g}(\vec{x})$ exists and equals $\overrightarrow{0}$,
- Let $S \subset \mathbb{R}^{n}$ and $\vec{f}: S \rightarrow \mathbb{R}^{m}$ be a function. Let $\vec{a} \in \mathbb{R}^{n}$ and $\vec{b} \in \mathbb{R}^{m}$.
- We say that $\lim _{\vec{x} \rightarrow \vec{a}} \vec{f}(\vec{x})=\vec{b}$ iff for every $\epsilon>0$ there exists a $\delta>0$ such that whenever $0<\|\vec{x}-\vec{a}\|<\delta$ and $\vec{x} \in S$ $\|\vec{f}(\vec{x})-\vec{b}\|<\epsilon$. Informally, $\lim _{\|\vec{x}-\vec{a}\| \rightarrow 0}\|\vec{f}(\vec{x})-\vec{b}\|=0$ in the one-variable sense.
- Just as in one-variable calculus f need not be defined at \vec{a} for the limit to make sense.
- We can convert these definitions to $\vec{h}=\vec{x}-\vec{a}$ for convenience.
- A function is continuous at $\vec{x}=\vec{a} \in S$ if $\lim _{\vec{x} \rightarrow \vec{a}} \vec{f}(\vec{x})=\vec{f}(\vec{a})$.
- Proposition:The limit $\lim _{\vec{x} \rightarrow \vec{a}} \vec{f}(\vec{x})=\vec{b}$ iff each of the limits $\lim _{\vec{x} \rightarrow \vec{a}} f_{i}(\vec{x})$ exists and equals b_{i} : It follows from $\left|f_{j}(\vec{x})-b_{j}\right| \leq\|\vec{f}(\vec{x})-\vec{b}\| \leq \sum_{i}\left|f_{i}(\vec{x})-b_{i}\right|$ for every j (why?)
- Sandwich law: If $\|\vec{f}(\vec{x})\| \leq\|\vec{g}(\vec{x})\|$ and as $\vec{x} \rightarrow \vec{a}$ the limit of $\vec{g}(\vec{x})$ exists and equals $\overrightarrow{0}$, then $\vec{f}(\vec{x}) \rightarrow \overrightarrow{0}$:
- Let $S \subset \mathbb{R}^{n}$ and $\vec{f}: S \rightarrow \mathbb{R}^{m}$ be a function. Let $\vec{a} \in \mathbb{R}^{n}$ and $\vec{b} \in \mathbb{R}^{m}$.
- We say that $\lim _{\vec{x} \rightarrow \vec{a}} \vec{f}(\vec{x})=\vec{b}$ iff for every $\epsilon>0$ there exists a $\delta>0$ such that whenever $0<\|\vec{x}-\vec{a}\|<\delta$ and $\vec{x} \in S$ $\|\vec{f}(\vec{x})-\vec{b}\|<\epsilon$. Informally, $\lim _{\|\vec{x}-\vec{a}\| \rightarrow 0}\|\vec{f}(\vec{x})-\vec{b}\|=0$ in the one-variable sense.
- Just as in one-variable calculus f need not be defined at \vec{a} for the limit to make sense.
- We can convert these definitions to $\vec{h}=\vec{x}-\vec{a}$ for convenience.
- A function is continuous at $\vec{x}=\vec{a} \in S$ if $\lim _{\vec{x} \rightarrow \vec{a}} \vec{f}(\vec{x})=\vec{f}(\vec{a})$.
- Proposition:The limit $\lim _{\vec{x} \rightarrow \vec{a}} \vec{f}(\vec{x})=\vec{b}$ iff each of the limits $\lim _{\vec{x} \rightarrow \vec{a}} f_{i}(\vec{x})$ exists and equals b_{i} : It follows from $\left|f_{j}(\vec{x})-b_{j}\right| \leq\|\vec{f}(\vec{x})-\vec{b}\| \leq \sum_{i}\left|f_{i}(\vec{x})-b_{i}\right|$ for every j (why?)
- Sandwich law: If $\|\vec{f}(\vec{x})\| \leq\|\vec{g}(\vec{x})\|$ and as $\vec{x} \rightarrow \vec{a}$ the limit of $\vec{g}(\vec{x})$ exists and equals $\overrightarrow{0}$, then $\vec{f}(\vec{x}) \rightarrow \overrightarrow{0}$: Indeed, this follows from the definition.

Examples

Examples

- Suppose $\lim _{x_{1} \rightarrow a_{1}} g\left(x_{1}\right)=b$ where

Examples

- Suppose $\lim _{x_{1} \rightarrow a_{1}} g\left(x_{1}\right)=b$ where $g: \mathbb{R} \rightarrow \mathbb{R}$ is a function

Examples

- Suppose $\lim _{x_{1} \rightarrow a_{1}} g\left(x_{1}\right)=b$ where $g: \mathbb{R} \rightarrow \mathbb{R}$ is a function then $\lim _{\vec{x} \rightarrow \vec{a}} g\left(x_{1}\right)$ exists and equals b.

Examples

- Suppose $\lim _{x_{1} \rightarrow a_{1}} g\left(x_{1}\right)=b$ where $g: \mathbb{R} \rightarrow \mathbb{R}$ is a function then $\lim _{\vec{x} \rightarrow \vec{a}} g\left(x_{1}\right)$ exists and equals b. Now $\left|g\left(x_{1}\right)-b\right|<\epsilon$ whenever $0<\left|x_{1}-a_{1}\right|<\delta$.

Examples

- Suppose $\lim _{x_{1} \rightarrow a_{1}} g\left(x_{1}\right)=b$ where $g: \mathbb{R} \rightarrow \mathbb{R}$ is a function then $\lim _{\vec{x} \rightarrow \vec{a}} g\left(x_{1}\right)$ exists and equals b. Now $\left|g\left(x_{1}\right)-b\right|<\epsilon$ whenever $0<\left|x_{1}-a_{1}\right|<\delta$. Thus $|g(\vec{x})-b|<\epsilon$ whenever $0<\left|x_{1}-a_{1}\right| \leq|\vec{x}-\vec{a}|<\delta$.

Examples

- Suppose $\lim _{x_{1} \rightarrow a_{1}} g\left(x_{1}\right)=b$ where $g: \mathbb{R} \rightarrow \mathbb{R}$ is a function then $\lim _{\vec{x} \rightarrow \vec{a}} g\left(x_{1}\right)$ exists and equals b. Now $\left|g\left(x_{1}\right)-b\right|<\epsilon$ whenever $0<\left|x_{1}-a_{1}\right|<\delta$. Thus $|g(\vec{x})-b|<\epsilon$ whenever $0<\left|x_{1}-a_{1}\right| \leq|\vec{x}-\vec{a}|<\delta$. So $\lim _{(x, y) \rightarrow(0,0)} x^{2}=0$.

Examples

- Suppose $\lim _{x_{1} \rightarrow a_{1}} g\left(x_{1}\right)=b$ where $g: \mathbb{R} \rightarrow \mathbb{R}$ is a function then $\lim _{\vec{x} \rightarrow \vec{a}} g\left(x_{1}\right)$ exists and equals b. Now $\left|g\left(x_{1}\right)-b\right|<\epsilon$ whenever $0<\left|x_{1}-a_{1}\right|<\delta$. Thus $|g(\vec{x})-b|<\epsilon$ whenever $0<\left|x_{1}-a_{1}\right| \leq|\vec{x}-\vec{a}|<\delta$. So $\lim _{(x, y) \rightarrow(0,0)} x^{2}=0$.
- The limit $\lim _{(x, y) \rightarrow(0,0)} \frac{x y}{x^{2}+y^{2}}$

Examples

- Suppose $\lim _{x_{1} \rightarrow a_{1}} g\left(x_{1}\right)=b$ where $g: \mathbb{R} \rightarrow \mathbb{R}$ is a function then $\lim _{\vec{x} \rightarrow \vec{a}} g\left(x_{1}\right)$ exists and equals b. Now $\left|g\left(x_{1}\right)-b\right|<\epsilon$ whenever $0<\left|x_{1}-a_{1}\right|<\delta$. Thus $|g(\vec{x})-b|<\epsilon$ whenever $0<\left|x_{1}-a_{1}\right| \leq|\vec{x}-\vec{a}|<\delta$. So $\lim _{(x, y) \rightarrow(0,0)} x^{2}=0$.
- The limit $\lim _{(x, y) \rightarrow(0,0)} \frac{x y}{x^{2}+y^{2}}$ does NOT exist:

Examples

- Suppose $\lim _{x_{1} \rightarrow a_{1}} g\left(x_{1}\right)=b$ where $g: \mathbb{R} \rightarrow \mathbb{R}$ is a function then $\lim _{\vec{x} \rightarrow \vec{a}} g\left(x_{1}\right)$ exists and equals b. Now $\left|g\left(x_{1}\right)-b\right|<\epsilon$ whenever $0<\left|x_{1}-a_{1}\right|<\delta$. Thus $|g(\vec{x})-b|<\epsilon$ whenever $0<\left|x_{1}-a_{1}\right| \leq|\vec{x}-\vec{a}|<\delta$. So $\lim _{(x, y) \rightarrow(0,0)} x^{2}=0$.
- The limit $\lim _{(x, y) \rightarrow(0,0)} \frac{x y}{x^{2}+y^{2}}$ does NOT exist: Indeed, suppose it does

Examples

- Suppose $\lim _{x_{1} \rightarrow a_{1}} g\left(x_{1}\right)=b$ where $g: \mathbb{R} \rightarrow \mathbb{R}$ is a function then $\lim _{\vec{x} \rightarrow \vec{a}} g\left(x_{1}\right)$ exists and equals b. Now $\left|g\left(x_{1}\right)-b\right|<\epsilon$ whenever $0<\left|x_{1}-a_{1}\right|<\delta$. Thus $|g(\vec{x})-b|<\epsilon$ whenever $0<\left|x_{1}-a_{1}\right| \leq|\vec{x}-\vec{a}|<\delta$. So $\lim _{(x, y) \rightarrow(0,0)} x^{2}=0$.
- The limit $\lim _{(x, y) \rightarrow(0,0)} \frac{x y}{x^{2}+y^{2}}$ does NOT exist: Indeed, suppose it does and equals L.

Examples

- Suppose $\lim _{x_{1} \rightarrow a_{1}} g\left(x_{1}\right)=b$ where $g: \mathbb{R} \rightarrow \mathbb{R}$ is a function then $\lim _{\vec{x} \rightarrow \vec{a}} g\left(x_{1}\right)$ exists and equals b. Now $\left|g\left(x_{1}\right)-b\right|<\epsilon$ whenever $0<\left|x_{1}-a_{1}\right|<\delta$. Thus $|g(\vec{x})-b|<\epsilon$ whenever $0<\left|x_{1}-a_{1}\right| \leq|\vec{x}-\vec{a}|<\delta$. So $\lim _{(x, y) \rightarrow(0,0)} x^{2}=0$.
- The limit $\lim _{(x, y) \rightarrow(0,0)} \frac{x y}{x^{2}+y^{2}}$ does NOT exist: Indeed, suppose it does and equals L. This means that

Examples

- Suppose $\lim _{x_{1} \rightarrow a_{1}} g\left(x_{1}\right)=b$ where $g: \mathbb{R} \rightarrow \mathbb{R}$ is a function then $\lim _{\vec{x} \rightarrow \vec{a}} g\left(x_{1}\right)$ exists and equals b. Now $\left|g\left(x_{1}\right)-b\right|<\epsilon$ whenever $0<\left|x_{1}-a_{1}\right|<\delta$. Thus $|g(\vec{x})-b|<\epsilon$ whenever $0<\left|x_{1}-a_{1}\right| \leq|\vec{x}-\vec{a}|<\delta$. So $\lim _{(x, y) \rightarrow(0,0)} x^{2}=0$.
- The limit $\lim _{(x, y) \rightarrow(0,0)} \frac{x y}{x^{2}+y^{2}}$ does NOT exist: Indeed, suppose it does and equals L. This means that $|f(x, y)-L|<\frac{1}{100}$ when $0<\|(x, y)\|<\delta$.

Examples

- Suppose $\lim _{x_{1} \rightarrow a_{1}} g\left(x_{1}\right)=b$ where $g: \mathbb{R} \rightarrow \mathbb{R}$ is a function then $\lim _{\vec{x} \rightarrow \vec{a}} g\left(x_{1}\right)$ exists and equals b. Now $\left|g\left(x_{1}\right)-b\right|<\epsilon$ whenever $0<\left|x_{1}-a_{1}\right|<\delta$. Thus $|g(\vec{x})-b|<\epsilon$ whenever $0<\left|x_{1}-a_{1}\right| \leq|\vec{x}-\vec{a}|<\delta$. So $\lim _{(x, y) \rightarrow(0,0)} x^{2}=0$.
- The limit $\lim _{(x, y) \rightarrow(0,0)} \frac{x y}{x^{2}+y^{2}}$ does NOT exist: Indeed, suppose it does and equals L. This means that

$$
\begin{aligned}
& |f(x, y)-L|<\frac{1}{100} \text { when } 0<\|(x, y)\|<\delta \text {. Thus if } y=x \text { or } \\
& y=2 x \text { and } 0<|x|<\frac{\delta}{\sqrt{5}} \text {, then }|f(x, y)-L|<\frac{1}{100} \text {. }
\end{aligned}
$$

Examples

- Suppose $\lim _{x_{1} \rightarrow a_{1}} g\left(x_{1}\right)=b$ where $g: \mathbb{R} \rightarrow \mathbb{R}$ is a function then $\lim _{\vec{x} \rightarrow \vec{a}} g\left(x_{1}\right)$ exists and equals b. Now $\left|g\left(x_{1}\right)-b\right|<\epsilon$ whenever $0<\left|x_{1}-a_{1}\right|<\delta$. Thus $|g(\vec{x})-b|<\epsilon$ whenever $0<\left|x_{1}-a_{1}\right| \leq|\vec{x}-\vec{a}|<\delta$. So $\lim _{(x, y) \rightarrow(0,0)} x^{2}=0$.
- The limit $\lim _{(x, y) \rightarrow(0,0)} \frac{x y}{x^{2}+y^{2}}$ does NOT exist: Indeed, suppose it does and equals L. This means that $|f(x, y)-L|<\frac{1}{100}$ when $0<\|(x, y)\|<\delta$. Thus if $y=x$ or $y=2 x$ and $0<|x|<\frac{\delta}{\sqrt{5}}$, then $|f(x, y)-L|<\frac{1}{100}$. This means that
- Suppose $\lim _{x_{1} \rightarrow a_{1}} g\left(x_{1}\right)=b$ where $g: \mathbb{R} \rightarrow \mathbb{R}$ is a function then $\lim _{\vec{x} \rightarrow \vec{a}} g\left(x_{1}\right)$ exists and equals b. Now $\left|g\left(x_{1}\right)-b\right|<\epsilon$ whenever $0<\left|x_{1}-a_{1}\right|<\delta$. Thus $|g(\vec{x})-b|<\epsilon$ whenever $0<\left|x_{1}-a_{1}\right| \leq|\vec{x}-\vec{a}|<\delta$. So $\lim _{(x, y) \rightarrow(0,0)} x^{2}=0$.
- The limit $\lim _{(x, y) \rightarrow(0,0)} \frac{x y}{x^{2}+y^{2}}$ does NOT exist: Indeed, suppose it does and equals L. This means that $|f(x, y)-L|<\frac{1}{100}$ when $0<\|(x, y)\|<\delta$. Thus if $y=x$ or $y=2 x$ and $0<|x|<\frac{\delta}{\sqrt{5}}$, then $|f(x, y)-L|<\frac{1}{100}$. This means that $\left|\frac{1}{2}-L\right|<\frac{1}{100}$ and
- Suppose $\lim _{x_{1} \rightarrow a_{1}} g\left(x_{1}\right)=b$ where $g: \mathbb{R} \rightarrow \mathbb{R}$ is a function then $\lim _{\vec{x} \rightarrow \vec{a}} g\left(x_{1}\right)$ exists and equals b. Now $\left|g\left(x_{1}\right)-b\right|<\epsilon$ whenever $0<\left|x_{1}-a_{1}\right|<\delta$. Thus $|g(\vec{x})-b|<\epsilon$ whenever $0<\left|x_{1}-a_{1}\right| \leq|\vec{x}-\vec{a}|<\delta$. So $\lim _{(x, y) \rightarrow(0,0)} x^{2}=0$.
- The limit $\lim _{(x, y) \rightarrow(0,0)} \frac{x y}{x^{2}+y^{2}}$ does NOT exist: Indeed, suppose it does and equals L. This means that $|f(x, y)-L|<\frac{1}{100}$ when $0<\|(x, y)\|<\delta$. Thus if $y=x$ or $y=2 x$ and $0<|x|<\frac{\delta}{\sqrt{5}}$, then $|f(x, y)-L|<\frac{1}{100}$. This means that $\left|\frac{1}{2}-L\right|<\frac{1}{100}$ and $\left|\frac{2}{5}-L\right|<\frac{1}{100}$
- Suppose $\lim _{x_{1} \rightarrow a_{1}} g\left(x_{1}\right)=b$ where $g: \mathbb{R} \rightarrow \mathbb{R}$ is a function then $\lim _{\vec{x} \rightarrow \vec{a}} g\left(x_{1}\right)$ exists and equals b. Now $\left|g\left(x_{1}\right)-b\right|<\epsilon$ whenever $0<\left|x_{1}-a_{1}\right|<\delta$. Thus $|g(\vec{x})-b|<\epsilon$ whenever $0<\left|x_{1}-a_{1}\right| \leq|\vec{x}-\vec{a}|<\delta$. So $\lim _{(x, y) \rightarrow(0,0)} x^{2}=0$.
- The limit $\lim _{(x, y) \rightarrow(0,0)} \frac{x y}{x^{2}+y^{2}}$ does NOT exist: Indeed, suppose it does and equals L. This means that $|f(x, y)-L|<\frac{1}{100}$ when $0<\|(x, y)\|<\delta$. Thus if $y=x$ or $y=2 x$ and $0<|x|<\frac{\delta}{\sqrt{5}}$, then $|f(x, y)-L|<\frac{1}{100}$. This means that $\left|\frac{1}{2}-L\right|<\frac{1}{100}$ and $\left|\frac{2}{5}-L\right|<\frac{1}{100}$ which is a contradiction.
- Suppose $\lim _{x_{1} \rightarrow a_{1}} g\left(x_{1}\right)=b$ where $g: \mathbb{R} \rightarrow \mathbb{R}$ is a function then $\lim _{\vec{x} \rightarrow \vec{a}} g\left(x_{1}\right)$ exists and equals b. Now $\left|g\left(x_{1}\right)-b\right|<\epsilon$ whenever $0<\left|x_{1}-a_{1}\right|<\delta$. Thus $|g(\vec{x})-b|<\epsilon$ whenever $0<\left|x_{1}-a_{1}\right| \leq|\vec{x}-\vec{a}|<\delta$. So $\lim _{(x, y) \rightarrow(0,0)} x^{2}=0$.
- The limit $\lim _{(x, y) \rightarrow(0,0)} \frac{x y}{x^{2}+y^{2}}$ does NOT exist: Indeed, suppose it does and equals L. This means that $|f(x, y)-L|<\frac{1}{100}$ when $0<\|(x, y)\|<\delta$. Thus if $y=x$ or $y=2 x$ and $0<|x|<\frac{\delta}{\sqrt{5}}$, then $|f(x, y)-L|<\frac{1}{100}$. This means that $\left|\frac{1}{2}-L\right|<\frac{1}{100}$ and $\left|\frac{2}{5}-L\right|<\frac{1}{100}$ which is a contradiction. Note that
- Suppose $\lim _{x_{1} \rightarrow a_{1}} g\left(x_{1}\right)=b$ where $g: \mathbb{R} \rightarrow \mathbb{R}$ is a function then $\lim _{\vec{x} \rightarrow \vec{a}} g\left(x_{1}\right)$ exists and equals b. Now $\left|g\left(x_{1}\right)-b\right|<\epsilon$ whenever $0<\left|x_{1}-a_{1}\right|<\delta$. Thus $|g(\vec{x})-b|<\epsilon$ whenever $0<\left|x_{1}-a_{1}\right| \leq|\vec{x}-\vec{a}|<\delta$. So $\lim _{(x, y) \rightarrow(0,0)} x^{2}=0$.
- The limit $\lim _{(x, y) \rightarrow(0,0)} \frac{x y}{x^{2}+y^{2}}$ does NOT exist: Indeed, suppose it does and equals L. This means that $|f(x, y)-L|<\frac{1}{100}$ when $0<\|(x, y)\|<\delta$. Thus if $y=x$ or $y=2 x$ and $0<|x|<\frac{\delta}{\sqrt{5}}$, then $|f(x, y)-L|<\frac{1}{100}$. This means that $\left|\frac{1}{2}-L\right|<\frac{1}{100}$ and $\left|\frac{2}{5}-L\right|<\frac{1}{100}$ which is a contradiction. Note that individually,
- Suppose $\lim _{x_{1} \rightarrow a_{1}} g\left(x_{1}\right)=b$ where $g: \mathbb{R} \rightarrow \mathbb{R}$ is a function then $\lim _{\vec{x} \rightarrow \vec{a}} g\left(x_{1}\right)$ exists and equals b. Now $\left|g\left(x_{1}\right)-b\right|<\epsilon$ whenever $0<\left|x_{1}-a_{1}\right|<\delta$. Thus $|g(\vec{x})-b|<\epsilon$ whenever $0<\left|x_{1}-a_{1}\right| \leq|\vec{x}-\vec{a}|<\delta$. So $\lim _{(x, y) \rightarrow(0,0)} x^{2}=0$.
- The limit $\lim _{(x, y) \rightarrow(0,0)} \frac{x y}{x^{2}+y^{2}}$ does NOT exist: Indeed, suppose it does and equals L. This means that $|f(x, y)-L|<\frac{1}{100}$ when $0<\|(x, y)\|<\delta$. Thus if $y=x$ or $y=2 x$ and $0<|x|<\frac{\delta}{\sqrt{5}}$, then $|f(x, y)-L|<\frac{1}{100}$. This means that $\left|\frac{1}{2}-L\right|<\frac{1}{100}$ and $\left|\frac{2}{5}-L\right|<\frac{1}{100}$ which is a contradiction. Note that individually, if y is fixed
- Suppose $\lim _{x_{1} \rightarrow a_{1}} g\left(x_{1}\right)=b$ where $g: \mathbb{R} \rightarrow \mathbb{R}$ is a function then $\lim _{\vec{x} \rightarrow \vec{a}} g\left(x_{1}\right)$ exists and equals b. Now $\left|g\left(x_{1}\right)-b\right|<\epsilon$ whenever $0<\left|x_{1}-a_{1}\right|<\delta$. Thus $|g(\vec{x})-b|<\epsilon$ whenever $0<\left|x_{1}-a_{1}\right| \leq|\vec{x}-\vec{a}|<\delta$. So $\lim _{(x, y) \rightarrow(0,0)} x^{2}=0$.
- The limit $\lim _{(x, y) \rightarrow(0,0)} \frac{x y}{x^{2}+y^{2}}$ does NOT exist: Indeed, suppose it does and equals L. This means that $|f(x, y)-L|<\frac{1}{100}$ when $0<\|(x, y)\|<\delta$. Thus if $y=x$ or $y=2 x$ and $0<|x|<\frac{\delta}{\sqrt{5}}$, then $|f(x, y)-L|<\frac{1}{100}$. This means that $\left|\frac{1}{2}-L\right|<\frac{1}{100}$ and $\left|\frac{2}{5}-L\right|<\frac{1}{100}$ which is a contradiction. Note that individually, if y is fixed and $x \rightarrow 0$ or
- Suppose $\lim _{x_{1} \rightarrow a_{1}} g\left(x_{1}\right)=b$ where $g: \mathbb{R} \rightarrow \mathbb{R}$ is a function then $\lim _{\vec{x} \rightarrow \vec{a}} g\left(x_{1}\right)$ exists and equals b. Now $\left|g\left(x_{1}\right)-b\right|<\epsilon$ whenever $0<\left|x_{1}-a_{1}\right|<\delta$. Thus $|g(\vec{x})-b|<\epsilon$ whenever $0<\left|x_{1}-a_{1}\right| \leq|\vec{x}-\vec{a}|<\delta$. So $\lim _{(x, y) \rightarrow(0,0)} x^{2}=0$.
- The limit $\lim _{(x, y) \rightarrow(0,0)} \frac{x y}{x^{2}+y^{2}}$ does NOT exist: Indeed, suppose it does and equals L. This means that $|f(x, y)-L|<\frac{1}{100}$ when $0<\|(x, y)\|<\delta$. Thus if $y=x$ or $y=2 x$ and $0<|x|<\frac{\delta}{\sqrt{5}}$, then $|f(x, y)-L|<\frac{1}{100}$. This means that $\left|\frac{1}{2}-L\right|<\frac{1}{100}$ and $\left|\frac{2}{5}-L\right|<\frac{1}{100}$ which is a contradiction. Note that individually, if y is fixed and $x \rightarrow 0$ or vice-versa,
- Suppose $\lim _{x_{1} \rightarrow a_{1}} g\left(x_{1}\right)=b$ where $g: \mathbb{R} \rightarrow \mathbb{R}$ is a function then $\lim _{\vec{x} \rightarrow \vec{a}} g\left(x_{1}\right)$ exists and equals b. Now $\left|g\left(x_{1}\right)-b\right|<\epsilon$ whenever $0<\left|x_{1}-a_{1}\right|<\delta$. Thus $|g(\vec{x})-b|<\epsilon$ whenever $0<\left|x_{1}-a_{1}\right| \leq|\vec{x}-\vec{a}|<\delta$. So $\lim _{(x, y) \rightarrow(0,0)} x^{2}=0$.
- The limit $\lim _{(x, y) \rightarrow(0,0)} \frac{x y}{x^{2}+y^{2}}$ does NOT exist: Indeed, suppose it does and equals L. This means that $|f(x, y)-L|<\frac{1}{100}$ when $0<\|(x, y)\|<\delta$. Thus if $y=x$ or $y=2 x$ and $0<|x|<\frac{\delta}{\sqrt{5}}$, then $|f(x, y)-L|<\frac{1}{100}$. This means that $\left|\frac{1}{2}-L\right|<\frac{1}{100}$ and $\left|\frac{2}{5}-L\right|<\frac{1}{100}$ which is a contradiction. Note that individually, if y is fixed and $x \rightarrow 0$ or vice-versa, the limits exist and equal 0 .
- Suppose $\lim _{x_{1} \rightarrow a_{1}} g\left(x_{1}\right)=b$ where $g: \mathbb{R} \rightarrow \mathbb{R}$ is a function then $\lim _{\vec{x} \rightarrow \vec{a}} g\left(x_{1}\right)$ exists and equals b. Now $\left|g\left(x_{1}\right)-b\right|<\epsilon$ whenever $0<\left|x_{1}-a_{1}\right|<\delta$. Thus $|g(\vec{x})-b|<\epsilon$ whenever $0<\left|x_{1}-a_{1}\right| \leq|\vec{x}-\vec{a}|<\delta$. So $\lim _{(x, y) \rightarrow(0,0)} x^{2}=0$.
- The limit $\lim _{(x, y) \rightarrow(0,0)} \frac{x y}{x^{2}+y^{2}}$ does NOT exist: Indeed, suppose it does and equals L. This means that $|f(x, y)-L|<\frac{1}{100}$ when $0<\|(x, y)\|<\delta$. Thus if $y=x$ or $y=2 x$ and $0<|x|<\frac{\delta}{\sqrt{5}}$, then $|f(x, y)-L|<\frac{1}{100}$. This means that $\left|\frac{1}{2}-L\right|<\frac{1}{100}$ and $\left|\frac{2}{5}-L\right|<\frac{1}{100}$ which is a contradiction. Note that individually, if y is fixed and $x \rightarrow 0$ or vice-versa, the limits exist and equal 0 . So one way to
- Suppose $\lim _{x_{1} \rightarrow a_{1}} g\left(x_{1}\right)=b$ where $g: \mathbb{R} \rightarrow \mathbb{R}$ is a function then $\lim _{\vec{x} \rightarrow \vec{a}} g\left(x_{1}\right)$ exists and equals b. Now $\left|g\left(x_{1}\right)-b\right|<\epsilon$ whenever $0<\left|x_{1}-a_{1}\right|<\delta$. Thus $|g(\vec{x})-b|<\epsilon$ whenever $0<\left|x_{1}-a_{1}\right| \leq|\vec{x}-\vec{a}|<\delta$. So $\lim _{(x, y) \rightarrow(0,0)} x^{2}=0$.
- The limit $\lim _{(x, y) \rightarrow(0,0)} \frac{x y}{x^{2}+y^{2}}$ does NOT exist: Indeed, suppose it does and equals L. This means that $|f(x, y)-L|<\frac{1}{100}$ when $0<\|(x, y)\|<\delta$. Thus if $y=x$ or $y=2 x$ and $0<|x|<\frac{\delta}{\sqrt{5}}$, then $|f(x, y)-L|<\frac{1}{100}$. This means that $\left|\frac{1}{2}-L\right|<\frac{1}{100}$ and $\left|\frac{2}{5}-L\right|<\frac{1}{100}$ which is a contradiction. Note that individually, if y is fixed and $x \rightarrow 0$ or vice-versa, the limits exist and equal 0 . So one way to prove that the limit
- Suppose $\lim _{x_{1} \rightarrow a_{1}} g\left(x_{1}\right)=b$ where $g: \mathbb{R} \rightarrow \mathbb{R}$ is a function then $\lim _{\vec{x} \rightarrow \vec{a}} g\left(x_{1}\right)$ exists and equals b. Now $\left|g\left(x_{1}\right)-b\right|<\epsilon$ whenever $0<\left|x_{1}-a_{1}\right|<\delta$. Thus $|g(\vec{x})-b|<\epsilon$ whenever $0<\left|x_{1}-a_{1}\right| \leq|\vec{x}-\vec{a}|<\delta$. So $\lim _{(x, y) \rightarrow(0,0)} x^{2}=0$.
- The limit $\lim _{(x, y) \rightarrow(0,0)} \frac{x y}{x^{2}+y^{2}}$ does NOT exist: Indeed, suppose it does and equals L. This means that $|f(x, y)-L|<\frac{1}{100}$ when $0<\|(x, y)\|<\delta$. Thus if $y=x$ or $y=2 x$ and $0<|x|<\frac{\delta}{\sqrt{5}}$, then $|f(x, y)-L|<\frac{1}{100}$. This means that $\left|\frac{1}{2}-L\right|<\frac{1}{100}$ and $\left|\frac{2}{5}-L\right|<\frac{1}{100}$ which is a contradiction. Note that individually, if y is fixed and $x \rightarrow 0$ or vice-versa, the limits exist and equal 0 . So one way to prove that the limit does not exist
- Suppose $\lim _{x_{1} \rightarrow a_{1}} g\left(x_{1}\right)=b$ where $g: \mathbb{R} \rightarrow \mathbb{R}$ is a function then $\lim _{\vec{x} \rightarrow \vec{a}} g\left(x_{1}\right)$ exists and equals b. Now $\left|g\left(x_{1}\right)-b\right|<\epsilon$ whenever $0<\left|x_{1}-a_{1}\right|<\delta$. Thus $|g(\vec{x})-b|<\epsilon$ whenever $0<\left|x_{1}-a_{1}\right| \leq|\vec{x}-\vec{a}|<\delta$. So $\lim _{(x, y) \rightarrow(0,0)} x^{2}=0$.
- The limit $\lim _{(x, y) \rightarrow(0,0)} \frac{x y}{x^{2}+y^{2}}$ does NOT exist: Indeed, suppose it does and equals L. This means that $|f(x, y)-L|<\frac{1}{100}$ when $0<\|(x, y)\|<\delta$. Thus if $y=x$ or $y=2 x$ and $0<|x|<\frac{\delta}{\sqrt{5}}$, then $|f(x, y)-L|<\frac{1}{100}$. This means that $\left|\frac{1}{2}-L\right|<\frac{1}{100}$ and $\left|\frac{2}{5}-L\right|<\frac{1}{100}$ which is a contradiction. Note that individually, if y is fixed and $x \rightarrow 0$ or vice-versa, the limits exist and equal 0 . So one way to prove that the limit does not exist is to compute it
- Suppose $\lim _{x_{1} \rightarrow a_{1}} g\left(x_{1}\right)=b$ where $g: \mathbb{R} \rightarrow \mathbb{R}$ is a function then $\lim _{\vec{x} \rightarrow \vec{a}} g\left(x_{1}\right)$ exists and equals b. Now $\left|g\left(x_{1}\right)-b\right|<\epsilon$ whenever $0<\left|x_{1}-a_{1}\right|<\delta$. Thus $|g(\vec{x})-b|<\epsilon$ whenever $0<\left|x_{1}-a_{1}\right| \leq|\vec{x}-\vec{a}|<\delta$. So $\lim _{(x, y) \rightarrow(0,0)} x^{2}=0$.
- The limit $\lim _{(x, y) \rightarrow(0,0)} \frac{x y}{x^{2}+y^{2}}$ does NOT exist: Indeed, suppose it does and equals L. This means that $|f(x, y)-L|<\frac{1}{100}$ when $0<\|(x, y)\|<\delta$. Thus if $y=x$ or $y=2 x$ and $0<|x|<\frac{\delta}{\sqrt{5}}$, then $|f(x, y)-L|<\frac{1}{100}$. This means that $\left|\frac{1}{2}-L\right|<\frac{1}{100}$ and $\left|\frac{2}{5}-L\right|<\frac{1}{100}$ which is a contradiction. Note that individually, if y is fixed and $x \rightarrow 0$ or vice-versa, the limits exist and equal 0 . So one way to prove that the limit does not exist is to compute it along two different paths
- Suppose $\lim _{x_{1} \rightarrow a_{1}} g\left(x_{1}\right)=b$ where $g: \mathbb{R} \rightarrow \mathbb{R}$ is a function then $\lim _{\vec{x} \rightarrow \vec{a}} g\left(x_{1}\right)$ exists and equals b. Now $\left|g\left(x_{1}\right)-b\right|<\epsilon$ whenever $0<\left|x_{1}-a_{1}\right|<\delta$. Thus $|g(\vec{x})-b|<\epsilon$ whenever $0<\left|x_{1}-a_{1}\right| \leq|\vec{x}-\vec{a}|<\delta$. So $\lim _{(x, y) \rightarrow(0,0)} x^{2}=0$.
- The limit $\lim _{(x, y) \rightarrow(0,0)} \frac{x y}{x^{2}+y^{2}}$ does NOT exist: Indeed, suppose it does and equals L. This means that $|f(x, y)-L|<\frac{1}{100}$ when $0<\|(x, y)\|<\delta$. Thus if $y=x$ or $y=2 x$ and $0<|x|<\frac{\delta}{\sqrt{5}}$, then $|f(x, y)-L|<\frac{1}{100}$. This means that $\left|\frac{1}{2}-L\right|<\frac{1}{100}$ and $\left|\frac{2}{5}-L\right|<\frac{1}{100}$ which is a contradiction. Note that individually, if y is fixed and $x \rightarrow 0$ or vice-versa, the limits exist and equal 0 . So one way to prove that the limit does not exist is to compute it along two different paths and get different answers.
- Suppose $\lim _{x_{1} \rightarrow a_{1}} g\left(x_{1}\right)=b$ where $g: \mathbb{R} \rightarrow \mathbb{R}$ is a function then $\lim _{\vec{x} \rightarrow \vec{a}} g\left(x_{1}\right)$ exists and equals b. Now $\left|g\left(x_{1}\right)-b\right|<\epsilon$ whenever $0<\left|x_{1}-a_{1}\right|<\delta$. Thus $|g(\vec{x})-b|<\epsilon$ whenever $0<\left|x_{1}-a_{1}\right| \leq|\vec{x}-\vec{a}|<\delta$. So $\lim _{(x, y) \rightarrow(0,0)} x^{2}=0$.
- The limit $\lim _{(x, y) \rightarrow(0,0)} \frac{x y}{x^{2}+y^{2}}$ does NOT exist: Indeed, suppose it does and equals L. This means that $|f(x, y)-L|<\frac{1}{100}$ when $0<\|(x, y)\|<\delta$. Thus if $y=x$ or $y=2 x$ and $0<|x|<\frac{\delta}{\sqrt{5}}$, then $|f(x, y)-L|<\frac{1}{100}$. This means that $\left|\frac{1}{2}-L\right|<\frac{1}{100}$ and $\left|\frac{2}{5}-L\right|<\frac{1}{100}$ which is a contradiction. Note that individually, if y is fixed and $x \rightarrow 0$ or vice-versa, the limits exist and equal 0 . So one way to prove that the limit does not exist is to compute it along two different paths and get different answers.
- The limit $\lim _{(x, y) \rightarrow(0,0)} \frac{x^{2} y^{2}}{x^{2}+y^{2}}$
- Suppose $\lim _{x_{1} \rightarrow a_{1}} g\left(x_{1}\right)=b$ where $g: \mathbb{R} \rightarrow \mathbb{R}$ is a function then $\lim _{\vec{x} \rightarrow \vec{a}} g\left(x_{1}\right)$ exists and equals b. Now $\left|g\left(x_{1}\right)-b\right|<\epsilon$ whenever $0<\left|x_{1}-a_{1}\right|<\delta$. Thus $|g(\vec{x})-b|<\epsilon$ whenever $0<\left|x_{1}-a_{1}\right| \leq|\vec{x}-\vec{a}|<\delta$. So $\lim _{(x, y) \rightarrow(0,0)} x^{2}=0$.
- The limit $\lim _{(x, y) \rightarrow(0,0)} \frac{x y}{x^{2}+y^{2}}$ does NOT exist: Indeed, suppose it does and equals L. This means that $|f(x, y)-L|<\frac{1}{100}$ when $0<\|(x, y)\|<\delta$. Thus if $y=x$ or $y=2 x$ and $0<|x|<\frac{\delta}{\sqrt{5}}$, then $|f(x, y)-L|<\frac{1}{100}$. This means that $\left|\frac{1}{2}-L\right|<\frac{1}{100}$ and $\left|\frac{2}{5}-L\right|<\frac{1}{100}$ which is a contradiction. Note that individually, if y is fixed and $x \rightarrow 0$ or vice-versa, the limits exist and equal 0 . So one way to prove that the limit does not exist is to compute it along two different paths and get different answers.
- The limit $\lim _{(x, y) \rightarrow(0,0)} \frac{x^{2} y^{2}}{x^{2}+y^{2}}$ exists and equals 0 :
- Suppose $\lim _{x_{1} \rightarrow a_{1}} g\left(x_{1}\right)=b$ where $g: \mathbb{R} \rightarrow \mathbb{R}$ is a function then $\lim _{\vec{x} \rightarrow \vec{a}} g\left(x_{1}\right)$ exists and equals b. Now $\left|g\left(x_{1}\right)-b\right|<\epsilon$ whenever $0<\left|x_{1}-a_{1}\right|<\delta$. Thus $|g(\vec{x})-b|<\epsilon$ whenever $0<\left|x_{1}-a_{1}\right| \leq|\vec{x}-\vec{a}|<\delta$. So $\lim _{(x, y) \rightarrow(0,0)} x^{2}=0$.
- The limit $\lim _{(x, y) \rightarrow(0,0)} \frac{x y}{x^{2}+y^{2}}$ does NOT exist: Indeed, suppose it does and equals L. This means that $|f(x, y)-L|<\frac{1}{100}$ when $0<\|(x, y)\|<\delta$. Thus if $y=x$ or $y=2 x$ and $0<|x|<\frac{\delta}{\sqrt{5}}$, then $|f(x, y)-L|<\frac{1}{100}$. This means that $\left|\frac{1}{2}-L\right|<\frac{1}{100}$ and $\left|\frac{2}{5}-L\right|<\frac{1}{100}$ which is a contradiction. Note that individually, if y is fixed and $x \rightarrow 0$ or vice-versa, the limits exist and equal 0 . So one way to prove that the limit does not exist is to compute it along two different paths and get different answers.
- The limit $\lim _{(x, y) \rightarrow(0,0)} \frac{x^{2} y^{2}}{x^{2}+y^{2}}$ exists and equals 0 : Indeed, $\left|\frac{x^{2} y^{2}}{x^{2}+y^{2}}\right| \leq x^{2}$ which goes to 0 .

