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Recap

Proved that det(A) = det(AT ) and hence that row operations
can be used,

Criterion for invertibility.

Product formula and block diagonal matrices.

Similar matrices and determinants of linear maps T : V → V .
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Fibonacci numbers

The Fibonacci sequences is F0 = 0 F1 = 1 F2 = 1 + 0 = 1
Fn = Fn−1 + Fn−2.

It was discovered by the Indians in the context of Sanskrit
poetry (!) much earlier. Fibonacci himself discovered them
whilst modelling rabbit populations. They turn up
unexpectedly in CS, maths (Hilbert’s tenth problem), and
supposedly in biology.

Is there a formula for Fn?
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Fibonacci numbers and matrices

Consider Fn = Fn−1 + Fn−2 and Fn−1 = Fn−1 (!). So Fn,Fn−1
are linear in Fn−1,Fn−2.

So

[
Fn
Fn−1

]
=

[
1 1
1 0

] [
Fn−1
Fn−2

]
.

Let vn =

[
Fn
Fn−1

]
, and M =

[
1 1
1 0

]
. Then vn = Mvn−1.

Thus vn = Mn−2v2. How does one write a formula for Mn−2?
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Weather prediction

Suppose the chance that it rains tomorrow if it rains today is
0.7 and the chance that it rains tomorrow if it does not rain
today is 0.5. What is the chance that it rains after 10 days
given that it rained today?

If the chance that it rains after n days is pn and qn = 1− pn is
the chance that it does not rain, then pn = 0.7pn−1 + 0.5qn−1
and qn = 0.3pn−1 + 0.5qn−1. Moreover, p0 = 1 = 1− q0
(because it rained today). We want p10.

As in the case of Fibonacci numbers if vn =

[
pn
qn

]
, then

vn = Mvn−1 where M =

[
0.7 0.5
0.3 0.5

]
.

So what is Mn? (This simple model is an example of a
Markov chain.)
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Similarity and powers

If A is an n × n matrix, when is it “easy” to calculate An? It
is so if A is diagonal. In that case, An = diag(an11, a

n
22, . . .).

Given an arbitrary n× n A is there a “natural” way to relate it
to a diagonal matrix?

One natural way to change matrices is through similarity, i.e.,
B = P−1AP. Note that Bn = P−1AnP, i.e., An = PBnP−1.

So if B is diagonal then we are in good shape.

In the language of linear maps, given a linear map
T : V → V , is there a basis e1, . . . , en such that the matrix
corresponding to T , i.e., [T ] is diagonal? That is,
T (e1) = λ1e1, T (e2) = λ2e2, etc?

Vamsi Pritham Pingali Lecture 13 6/10



Similarity and powers

If A is an n × n matrix,

when is it “easy” to calculate An? It
is so if A is diagonal. In that case, An = diag(an11, a

n
22, . . .).

Given an arbitrary n× n A is there a “natural” way to relate it
to a diagonal matrix?

One natural way to change matrices is through similarity, i.e.,
B = P−1AP. Note that Bn = P−1AnP, i.e., An = PBnP−1.

So if B is diagonal then we are in good shape.

In the language of linear maps, given a linear map
T : V → V , is there a basis e1, . . . , en such that the matrix
corresponding to T , i.e., [T ] is diagonal? That is,
T (e1) = λ1e1, T (e2) = λ2e2, etc?

Vamsi Pritham Pingali Lecture 13 6/10



Similarity and powers

If A is an n × n matrix, when is it “easy”

to calculate An? It
is so if A is diagonal. In that case, An = diag(an11, a

n
22, . . .).

Given an arbitrary n× n A is there a “natural” way to relate it
to a diagonal matrix?

One natural way to change matrices is through similarity, i.e.,
B = P−1AP. Note that Bn = P−1AnP, i.e., An = PBnP−1.

So if B is diagonal then we are in good shape.

In the language of linear maps, given a linear map
T : V → V , is there a basis e1, . . . , en such that the matrix
corresponding to T , i.e., [T ] is diagonal? That is,
T (e1) = λ1e1, T (e2) = λ2e2, etc?

Vamsi Pritham Pingali Lecture 13 6/10



Similarity and powers

If A is an n × n matrix, when is it “easy” to calculate An?

It
is so if A is diagonal. In that case, An = diag(an11, a

n
22, . . .).

Given an arbitrary n× n A is there a “natural” way to relate it
to a diagonal matrix?

One natural way to change matrices is through similarity, i.e.,
B = P−1AP. Note that Bn = P−1AnP, i.e., An = PBnP−1.

So if B is diagonal then we are in good shape.

In the language of linear maps, given a linear map
T : V → V , is there a basis e1, . . . , en such that the matrix
corresponding to T , i.e., [T ] is diagonal? That is,
T (e1) = λ1e1, T (e2) = λ2e2, etc?

Vamsi Pritham Pingali Lecture 13 6/10



Similarity and powers

If A is an n × n matrix, when is it “easy” to calculate An? It
is so if

A is diagonal. In that case, An = diag(an11, a
n
22, . . .).

Given an arbitrary n× n A is there a “natural” way to relate it
to a diagonal matrix?

One natural way to change matrices is through similarity, i.e.,
B = P−1AP. Note that Bn = P−1AnP, i.e., An = PBnP−1.

So if B is diagonal then we are in good shape.

In the language of linear maps, given a linear map
T : V → V , is there a basis e1, . . . , en such that the matrix
corresponding to T , i.e., [T ] is diagonal? That is,
T (e1) = λ1e1, T (e2) = λ2e2, etc?

Vamsi Pritham Pingali Lecture 13 6/10



Similarity and powers

If A is an n × n matrix, when is it “easy” to calculate An? It
is so if A is diagonal.

In that case, An = diag(an11, a
n
22, . . .).

Given an arbitrary n× n A is there a “natural” way to relate it
to a diagonal matrix?

One natural way to change matrices is through similarity, i.e.,
B = P−1AP. Note that Bn = P−1AnP, i.e., An = PBnP−1.

So if B is diagonal then we are in good shape.

In the language of linear maps, given a linear map
T : V → V , is there a basis e1, . . . , en such that the matrix
corresponding to T , i.e., [T ] is diagonal? That is,
T (e1) = λ1e1, T (e2) = λ2e2, etc?

Vamsi Pritham Pingali Lecture 13 6/10



Similarity and powers

If A is an n × n matrix, when is it “easy” to calculate An? It
is so if A is diagonal. In that case,

An = diag(an11, a
n
22, . . .).

Given an arbitrary n× n A is there a “natural” way to relate it
to a diagonal matrix?

One natural way to change matrices is through similarity, i.e.,
B = P−1AP. Note that Bn = P−1AnP, i.e., An = PBnP−1.

So if B is diagonal then we are in good shape.

In the language of linear maps, given a linear map
T : V → V , is there a basis e1, . . . , en such that the matrix
corresponding to T , i.e., [T ] is diagonal? That is,
T (e1) = λ1e1, T (e2) = λ2e2, etc?

Vamsi Pritham Pingali Lecture 13 6/10



Similarity and powers

If A is an n × n matrix, when is it “easy” to calculate An? It
is so if A is diagonal. In that case, An = diag(an11, a

n
22, . . .).

Given an arbitrary n× n A is there a “natural” way to relate it
to a diagonal matrix?

One natural way to change matrices is through similarity, i.e.,
B = P−1AP. Note that Bn = P−1AnP, i.e., An = PBnP−1.

So if B is diagonal then we are in good shape.

In the language of linear maps, given a linear map
T : V → V , is there a basis e1, . . . , en such that the matrix
corresponding to T , i.e., [T ] is diagonal? That is,
T (e1) = λ1e1, T (e2) = λ2e2, etc?

Vamsi Pritham Pingali Lecture 13 6/10



Similarity and powers

If A is an n × n matrix, when is it “easy” to calculate An? It
is so if A is diagonal. In that case, An = diag(an11, a

n
22, . . .).

Given an arbitrary n× n A

is there a “natural” way to relate it
to a diagonal matrix?

One natural way to change matrices is through similarity, i.e.,
B = P−1AP. Note that Bn = P−1AnP, i.e., An = PBnP−1.

So if B is diagonal then we are in good shape.

In the language of linear maps, given a linear map
T : V → V , is there a basis e1, . . . , en such that the matrix
corresponding to T , i.e., [T ] is diagonal? That is,
T (e1) = λ1e1, T (e2) = λ2e2, etc?

Vamsi Pritham Pingali Lecture 13 6/10



Similarity and powers

If A is an n × n matrix, when is it “easy” to calculate An? It
is so if A is diagonal. In that case, An = diag(an11, a

n
22, . . .).

Given an arbitrary n× n A is there a “natural” way

to relate it
to a diagonal matrix?

One natural way to change matrices is through similarity, i.e.,
B = P−1AP. Note that Bn = P−1AnP, i.e., An = PBnP−1.

So if B is diagonal then we are in good shape.

In the language of linear maps, given a linear map
T : V → V , is there a basis e1, . . . , en such that the matrix
corresponding to T , i.e., [T ] is diagonal? That is,
T (e1) = λ1e1, T (e2) = λ2e2, etc?

Vamsi Pritham Pingali Lecture 13 6/10



Similarity and powers

If A is an n × n matrix, when is it “easy” to calculate An? It
is so if A is diagonal. In that case, An = diag(an11, a

n
22, . . .).

Given an arbitrary n× n A is there a “natural” way to relate it
to a

diagonal matrix?

One natural way to change matrices is through similarity, i.e.,
B = P−1AP. Note that Bn = P−1AnP, i.e., An = PBnP−1.

So if B is diagonal then we are in good shape.

In the language of linear maps, given a linear map
T : V → V , is there a basis e1, . . . , en such that the matrix
corresponding to T , i.e., [T ] is diagonal? That is,
T (e1) = λ1e1, T (e2) = λ2e2, etc?

Vamsi Pritham Pingali Lecture 13 6/10



Similarity and powers

If A is an n × n matrix, when is it “easy” to calculate An? It
is so if A is diagonal. In that case, An = diag(an11, a

n
22, . . .).

Given an arbitrary n× n A is there a “natural” way to relate it
to a diagonal matrix?

One natural way to change matrices is through similarity, i.e.,
B = P−1AP. Note that Bn = P−1AnP, i.e., An = PBnP−1.

So if B is diagonal then we are in good shape.

In the language of linear maps, given a linear map
T : V → V , is there a basis e1, . . . , en such that the matrix
corresponding to T , i.e., [T ] is diagonal? That is,
T (e1) = λ1e1, T (e2) = λ2e2, etc?

Vamsi Pritham Pingali Lecture 13 6/10



Similarity and powers

If A is an n × n matrix, when is it “easy” to calculate An? It
is so if A is diagonal. In that case, An = diag(an11, a

n
22, . . .).

Given an arbitrary n× n A is there a “natural” way to relate it
to a diagonal matrix?

One natural way to

change matrices is through similarity, i.e.,
B = P−1AP. Note that Bn = P−1AnP, i.e., An = PBnP−1.

So if B is diagonal then we are in good shape.

In the language of linear maps, given a linear map
T : V → V , is there a basis e1, . . . , en such that the matrix
corresponding to T , i.e., [T ] is diagonal? That is,
T (e1) = λ1e1, T (e2) = λ2e2, etc?

Vamsi Pritham Pingali Lecture 13 6/10



Similarity and powers

If A is an n × n matrix, when is it “easy” to calculate An? It
is so if A is diagonal. In that case, An = diag(an11, a

n
22, . . .).

Given an arbitrary n× n A is there a “natural” way to relate it
to a diagonal matrix?

One natural way to change matrices

is through similarity, i.e.,
B = P−1AP. Note that Bn = P−1AnP, i.e., An = PBnP−1.

So if B is diagonal then we are in good shape.

In the language of linear maps, given a linear map
T : V → V , is there a basis e1, . . . , en such that the matrix
corresponding to T , i.e., [T ] is diagonal? That is,
T (e1) = λ1e1, T (e2) = λ2e2, etc?

Vamsi Pritham Pingali Lecture 13 6/10



Similarity and powers

If A is an n × n matrix, when is it “easy” to calculate An? It
is so if A is diagonal. In that case, An = diag(an11, a

n
22, . . .).

Given an arbitrary n× n A is there a “natural” way to relate it
to a diagonal matrix?

One natural way to change matrices is through similarity, i.e.,

B = P−1AP. Note that Bn = P−1AnP, i.e., An = PBnP−1.

So if B is diagonal then we are in good shape.

In the language of linear maps, given a linear map
T : V → V , is there a basis e1, . . . , en such that the matrix
corresponding to T , i.e., [T ] is diagonal? That is,
T (e1) = λ1e1, T (e2) = λ2e2, etc?

Vamsi Pritham Pingali Lecture 13 6/10



Similarity and powers

If A is an n × n matrix, when is it “easy” to calculate An? It
is so if A is diagonal. In that case, An = diag(an11, a

n
22, . . .).

Given an arbitrary n× n A is there a “natural” way to relate it
to a diagonal matrix?

One natural way to change matrices is through similarity, i.e.,
B = P−1AP.

Note that Bn = P−1AnP, i.e., An = PBnP−1.

So if B is diagonal then we are in good shape.

In the language of linear maps, given a linear map
T : V → V , is there a basis e1, . . . , en such that the matrix
corresponding to T , i.e., [T ] is diagonal? That is,
T (e1) = λ1e1, T (e2) = λ2e2, etc?

Vamsi Pritham Pingali Lecture 13 6/10



Similarity and powers

If A is an n × n matrix, when is it “easy” to calculate An? It
is so if A is diagonal. In that case, An = diag(an11, a

n
22, . . .).

Given an arbitrary n× n A is there a “natural” way to relate it
to a diagonal matrix?

One natural way to change matrices is through similarity, i.e.,
B = P−1AP. Note that Bn = P−1AnP, i.e.,

An = PBnP−1.

So if B is diagonal then we are in good shape.

In the language of linear maps, given a linear map
T : V → V , is there a basis e1, . . . , en such that the matrix
corresponding to T , i.e., [T ] is diagonal? That is,
T (e1) = λ1e1, T (e2) = λ2e2, etc?

Vamsi Pritham Pingali Lecture 13 6/10



Similarity and powers

If A is an n × n matrix, when is it “easy” to calculate An? It
is so if A is diagonal. In that case, An = diag(an11, a

n
22, . . .).

Given an arbitrary n× n A is there a “natural” way to relate it
to a diagonal matrix?

One natural way to change matrices is through similarity, i.e.,
B = P−1AP. Note that Bn = P−1AnP, i.e., An = PBnP−1.

So if B is diagonal then we are in good shape.

In the language of linear maps, given a linear map
T : V → V , is there a basis e1, . . . , en such that the matrix
corresponding to T , i.e., [T ] is diagonal? That is,
T (e1) = λ1e1, T (e2) = λ2e2, etc?

Vamsi Pritham Pingali Lecture 13 6/10



Similarity and powers

If A is an n × n matrix, when is it “easy” to calculate An? It
is so if A is diagonal. In that case, An = diag(an11, a

n
22, . . .).

Given an arbitrary n× n A is there a “natural” way to relate it
to a diagonal matrix?

One natural way to change matrices is through similarity, i.e.,
B = P−1AP. Note that Bn = P−1AnP, i.e., An = PBnP−1.

So if B is

diagonal then we are in good shape.

In the language of linear maps, given a linear map
T : V → V , is there a basis e1, . . . , en such that the matrix
corresponding to T , i.e., [T ] is diagonal? That is,
T (e1) = λ1e1, T (e2) = λ2e2, etc?

Vamsi Pritham Pingali Lecture 13 6/10



Similarity and powers

If A is an n × n matrix, when is it “easy” to calculate An? It
is so if A is diagonal. In that case, An = diag(an11, a

n
22, . . .).

Given an arbitrary n× n A is there a “natural” way to relate it
to a diagonal matrix?

One natural way to change matrices is through similarity, i.e.,
B = P−1AP. Note that Bn = P−1AnP, i.e., An = PBnP−1.

So if B is diagonal then

we are in good shape.

In the language of linear maps, given a linear map
T : V → V , is there a basis e1, . . . , en such that the matrix
corresponding to T , i.e., [T ] is diagonal? That is,
T (e1) = λ1e1, T (e2) = λ2e2, etc?

Vamsi Pritham Pingali Lecture 13 6/10



Similarity and powers

If A is an n × n matrix, when is it “easy” to calculate An? It
is so if A is diagonal. In that case, An = diag(an11, a

n
22, . . .).

Given an arbitrary n× n A is there a “natural” way to relate it
to a diagonal matrix?

One natural way to change matrices is through similarity, i.e.,
B = P−1AP. Note that Bn = P−1AnP, i.e., An = PBnP−1.

So if B is diagonal then we are in good shape.

In the language of linear maps, given a linear map
T : V → V , is there a basis e1, . . . , en such that the matrix
corresponding to T , i.e., [T ] is diagonal? That is,
T (e1) = λ1e1, T (e2) = λ2e2, etc?

Vamsi Pritham Pingali Lecture 13 6/10



Similarity and powers

If A is an n × n matrix, when is it “easy” to calculate An? It
is so if A is diagonal. In that case, An = diag(an11, a

n
22, . . .).

Given an arbitrary n× n A is there a “natural” way to relate it
to a diagonal matrix?

One natural way to change matrices is through similarity, i.e.,
B = P−1AP. Note that Bn = P−1AnP, i.e., An = PBnP−1.

So if B is diagonal then we are in good shape.

In the language of

linear maps, given a linear map
T : V → V , is there a basis e1, . . . , en such that the matrix
corresponding to T , i.e., [T ] is diagonal? That is,
T (e1) = λ1e1, T (e2) = λ2e2, etc?

Vamsi Pritham Pingali Lecture 13 6/10



Similarity and powers

If A is an n × n matrix, when is it “easy” to calculate An? It
is so if A is diagonal. In that case, An = diag(an11, a

n
22, . . .).

Given an arbitrary n× n A is there a “natural” way to relate it
to a diagonal matrix?

One natural way to change matrices is through similarity, i.e.,
B = P−1AP. Note that Bn = P−1AnP, i.e., An = PBnP−1.

So if B is diagonal then we are in good shape.

In the language of linear maps,

given a linear map
T : V → V , is there a basis e1, . . . , en such that the matrix
corresponding to T , i.e., [T ] is diagonal? That is,
T (e1) = λ1e1, T (e2) = λ2e2, etc?

Vamsi Pritham Pingali Lecture 13 6/10



Similarity and powers

If A is an n × n matrix, when is it “easy” to calculate An? It
is so if A is diagonal. In that case, An = diag(an11, a

n
22, . . .).

Given an arbitrary n× n A is there a “natural” way to relate it
to a diagonal matrix?

One natural way to change matrices is through similarity, i.e.,
B = P−1AP. Note that Bn = P−1AnP, i.e., An = PBnP−1.

So if B is diagonal then we are in good shape.

In the language of linear maps, given a linear map
T : V → V ,

is there a basis e1, . . . , en such that the matrix
corresponding to T , i.e., [T ] is diagonal? That is,
T (e1) = λ1e1, T (e2) = λ2e2, etc?

Vamsi Pritham Pingali Lecture 13 6/10



Similarity and powers

If A is an n × n matrix, when is it “easy” to calculate An? It
is so if A is diagonal. In that case, An = diag(an11, a

n
22, . . .).

Given an arbitrary n× n A is there a “natural” way to relate it
to a diagonal matrix?

One natural way to change matrices is through similarity, i.e.,
B = P−1AP. Note that Bn = P−1AnP, i.e., An = PBnP−1.

So if B is diagonal then we are in good shape.

In the language of linear maps, given a linear map
T : V → V , is there a basis e1, . . . , en

such that the matrix
corresponding to T , i.e., [T ] is diagonal? That is,
T (e1) = λ1e1, T (e2) = λ2e2, etc?

Vamsi Pritham Pingali Lecture 13 6/10



Similarity and powers

If A is an n × n matrix, when is it “easy” to calculate An? It
is so if A is diagonal. In that case, An = diag(an11, a

n
22, . . .).

Given an arbitrary n× n A is there a “natural” way to relate it
to a diagonal matrix?

One natural way to change matrices is through similarity, i.e.,
B = P−1AP. Note that Bn = P−1AnP, i.e., An = PBnP−1.

So if B is diagonal then we are in good shape.

In the language of linear maps, given a linear map
T : V → V , is there a basis e1, . . . , en such that the matrix
corresponding to T , i.e.,

[T ] is diagonal? That is,
T (e1) = λ1e1, T (e2) = λ2e2, etc?

Vamsi Pritham Pingali Lecture 13 6/10



Similarity and powers

If A is an n × n matrix, when is it “easy” to calculate An? It
is so if A is diagonal. In that case, An = diag(an11, a

n
22, . . .).

Given an arbitrary n× n A is there a “natural” way to relate it
to a diagonal matrix?

One natural way to change matrices is through similarity, i.e.,
B = P−1AP. Note that Bn = P−1AnP, i.e., An = PBnP−1.

So if B is diagonal then we are in good shape.

In the language of linear maps, given a linear map
T : V → V , is there a basis e1, . . . , en such that the matrix
corresponding to T , i.e., [T ] is diagonal?

That is,
T (e1) = λ1e1, T (e2) = λ2e2, etc?

Vamsi Pritham Pingali Lecture 13 6/10



Similarity and powers

If A is an n × n matrix, when is it “easy” to calculate An? It
is so if A is diagonal. In that case, An = diag(an11, a

n
22, . . .).

Given an arbitrary n× n A is there a “natural” way to relate it
to a diagonal matrix?

One natural way to change matrices is through similarity, i.e.,
B = P−1AP. Note that Bn = P−1AnP, i.e., An = PBnP−1.

So if B is diagonal then we are in good shape.

In the language of linear maps, given a linear map
T : V → V , is there a basis e1, . . . , en such that the matrix
corresponding to T , i.e., [T ] is diagonal? That is,

T (e1) = λ1e1, T (e2) = λ2e2, etc?

Vamsi Pritham Pingali Lecture 13 6/10



Similarity and powers

If A is an n × n matrix, when is it “easy” to calculate An? It
is so if A is diagonal. In that case, An = diag(an11, a

n
22, . . .).

Given an arbitrary n× n A is there a “natural” way to relate it
to a diagonal matrix?

One natural way to change matrices is through similarity, i.e.,
B = P−1AP. Note that Bn = P−1AnP, i.e., An = PBnP−1.

So if B is diagonal then we are in good shape.

In the language of linear maps, given a linear map
T : V → V , is there a basis e1, . . . , en such that the matrix
corresponding to T , i.e., [T ] is diagonal? That is,
T (e1) = λ1e1, T (e2) = λ2e2, etc?

Vamsi Pritham Pingali Lecture 13 6/10



Eigenvalues and eigenvectors

Def: Let T : V → V be a linear map and V be a vector
space. A non-zero vector v is said to be an eigenvector with
eigenvalue λ ∈ F if Tv = λv .
Rookie mistake: An eigenvector by definition is required to
NOT be the zero vector!
Theorem: If V is a f.d. vector space, and T : V → V is linear
then [T ] is diagonal in an ordered basis e1, . . . if and only if
the basis vectors e1, . . . , en are eigenvectors with eigenvalues
[T ]11, [T ]22, . . ..
Proof:

If [T ] is diagonal: Clearly [T ][ei ] = [T ]ii [ei ]. Hence
Tei = Tiiei , i.e., ei are eigenvectors.
If ei are eigenvectors with eigenvalues λ1, λ2, . . .: Tei = λiei .
By definition of [T ], it is diagonal with diagonal entries λi .

A linear map T : V → V is said to be diagonalisable if it has
a basis of eigenvectors. Likewise, a square matrix A is said to
be diagonalisable if there is an invertible matrix P such that
P−1AP is diagonal.
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Examples

Consider T : V → V given by T (v) = cv for all v ∈ V . Every
non-zero vector is an eigenvector with eigenvalue c .

Eigenspace: Suppose T (v) = λv for a non-zero v then
T (cv) = cT (v) = λ(cv) for every c ∈ F. Moreover, if
T (w) = λw , then T (v + w) = T (v) + T (w) = λ(v + w). In
other words, the set of all eigenvectors corresponding to the
same eigenvalue along with the zero vector forms a subspace
known as the eigenspace of λ.

Consider the linear map T : R2 → R2 given by

T (v) =

[
0 1
0 0

] [
x
y

]
. Then T (e1) = 0. Hence T can have

0 as an eigenvalue without T being zero itself! In this example
T (v) = λv precisely when y = λx , 0 = λy . Thus λ = 0 is the
only eigenvalue and the eigenspace is spanned by one vector,
i.e., it is one-dimensional. Thus T is not diagonalisable.
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Examples

Consider rotation in R2 by 90 degrees. Clearly, there is no
non-zero vector v such that Tv = λv where λ ∈ R. The

matrix in the standard basis is

[
0 −1
1 0

]
. Note that[ √

−1
1

]
is an eigenvector with eigenvalue

√
−1. So the field

is important.

Suppose V is the space of f : R→ R having derivative of all
orders (‘smooth’ functions). D : V → V given by D(f ) = f ′

is a linear map. Df = λf precisely when f ′(x) = λf (x). As
we shall prove later, f (x) = Aeλx is the solution.
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A criterion for eigenvalues

Suppose V is f.d.

If v is an eigenvector of T : V → V with eigenvalue λ then
(λI − T )v = 0 where I : V → V is I (x) = x , and v 6= 0.

Therefore N(λI − T ) 6= 0. Thus λI − T is NOT invertible.
Hence det(λI − T ) = 0. That is, if e1, . . . , en is an ordered
basis, and [T ] is the corresponding matrix,
det(λ[I ]− [T ]) = 0.

Conversely, if det(λI − T ) = 0, then there exists a non-zero v
such that Tv = λv . Therefore, eigenvalues are precisely
solutions to pT (λ) = det(λI − T ) = 0 lying in F.

One can prove (HW) using induction that pT (λ) is a
polynomial of degree n with highest power being λn and
pT (0) = det(0− T ) = (−1)n det(T ). This polynomial is
called the characteristic polynomial of T .
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