Lecture 13 - UM 102 (Spring 2021)

Vamsi Pritham Pingali

IISc

- Proved that

Recap

- Proved that $\operatorname{det}(A)=\operatorname{det}\left(A^{T}\right)$ and hence

Recap

- Proved that $\operatorname{det}(A)=\operatorname{det}\left(A^{T}\right)$ and hence that row operations can be used,

Recap

- Proved that $\operatorname{det}(A)=\operatorname{det}\left(A^{T}\right)$ and hence that row operations can be used,
- Criterion for invertibility.

Recap

- Proved that $\operatorname{det}(A)=\operatorname{det}\left(A^{T}\right)$ and hence that row operations can be used,
- Criterion for invertibility.
- Product formula and

Recap

- Proved that $\operatorname{det}(A)=\operatorname{det}\left(A^{T}\right)$ and hence that row operations can be used,
- Criterion for invertibility.
- Product formula and block diagonal matrices.
- Proved that $\operatorname{det}(A)=\operatorname{det}\left(A^{T}\right)$ and hence that row operations can be used,
- Criterion for invertibility.
- Product formula and block diagonal matrices.
- Similar matrices and

Recap

- Proved that $\operatorname{det}(A)=\operatorname{det}\left(A^{T}\right)$ and hence that row operations can be used,
- Criterion for invertibility.
- Product formula and block diagonal matrices.
- Similar matrices and determinants of linear maps $T: V \rightarrow V$.

Fibonacci numbers

Fibonacci numbers

- The Fibonacci sequences is

Fibonacci numbers

- The Fibonacci sequences is $F_{0}=0$

Fibonacci numbers

- The Fibonacci sequences is $F_{0}=0 F_{1}=1$

Fibonacci numbers

- The Fibonacci sequences is $F_{0}=0 F_{1}=1 F_{2}=1+0=1$

Fibonacci numbers

- The Fibonacci sequences is $F_{0}=0 F_{1}=1 F_{2}=1+0=1$ $F_{n}=F_{n-1}+F_{n-2}$.
- The Fibonacci sequences is $F_{0}=0 F_{1}=1 F_{2}=1+0=1$ $F_{n}=F_{n-1}+F_{n-2}$.
- It was discovered
- The Fibonacci sequences is $F_{0}=0 F_{1}=1 F_{2}=1+0=1$ $F_{n}=F_{n-1}+F_{n-2}$.
- It was discovered by the Indians
- The Fibonacci sequences is $F_{0}=0 F_{1}=1 F_{2}=1+0=1$ $F_{n}=F_{n-1}+F_{n-2}$.
- It was discovered by the Indians in the context of
- The Fibonacci sequences is $F_{0}=0 F_{1}=1 F_{2}=1+0=1$ $F_{n}=F_{n-1}+F_{n-2}$.
- It was discovered by the Indians in the context of Sanskrit poetry (!) much earlier.
- The Fibonacci sequences is $F_{0}=0 F_{1}=1 F_{2}=1+0=1$ $F_{n}=F_{n-1}+F_{n-2}$.
- It was discovered by the Indians in the context of Sanskrit poetry (!) much earlier. Fibonacci himself discovered
- The Fibonacci sequences is $F_{0}=0 F_{1}=1 F_{2}=1+0=1$ $F_{n}=F_{n-1}+F_{n-2}$.
- It was discovered by the Indians in the context of Sanskrit poetry (!) much earlier. Fibonacci himself discovered them whilst modelling
- The Fibonacci sequences is $F_{0}=0 F_{1}=1 F_{2}=1+0=1$ $F_{n}=F_{n-1}+F_{n-2}$.
- It was discovered by the Indians in the context of Sanskrit poetry (!) much earlier. Fibonacci himself discovered them whilst modelling rabbit populations.
- The Fibonacci sequences is $F_{0}=0 F_{1}=1 F_{2}=1+0=1$ $F_{n}=F_{n-1}+F_{n-2}$.
- It was discovered by the Indians in the context of Sanskrit poetry (!) much earlier. Fibonacci himself discovered them whilst modelling rabbit populations. They turn up
- The Fibonacci sequences is $F_{0}=0 F_{1}=1 F_{2}=1+0=1$ $F_{n}=F_{n-1}+F_{n-2}$.
- It was discovered by the Indians in the context of Sanskrit poetry (!) much earlier. Fibonacci himself discovered them whilst modelling rabbit populations. They turn up unexpectedly in CS,
- The Fibonacci sequences is $F_{0}=0 F_{1}=1 F_{2}=1+0=1$ $F_{n}=F_{n-1}+F_{n-2}$.
- It was discovered by the Indians in the context of Sanskrit poetry (!) much earlier. Fibonacci himself discovered them whilst modelling rabbit populations. They turn up unexpectedly in CS, maths (Hilbert's tenth problem),
- The Fibonacci sequences is $F_{0}=0 F_{1}=1 F_{2}=1+0=1$ $F_{n}=F_{n-1}+F_{n-2}$.
- It was discovered by the Indians in the context of Sanskrit poetry (!) much earlier. Fibonacci himself discovered them whilst modelling rabbit populations. They turn up unexpectedly in CS, maths (Hilbert's tenth problem), and supposedly in biology.
- The Fibonacci sequences is $F_{0}=0 F_{1}=1 F_{2}=1+0=1$ $F_{n}=F_{n-1}+F_{n-2}$.
- It was discovered by the Indians in the context of Sanskrit poetry (!) much earlier. Fibonacci himself discovered them whilst modelling rabbit populations. They turn up unexpectedly in CS, maths (Hilbert's tenth problem), and supposedly in biology.
- Is there a
- The Fibonacci sequences is $F_{0}=0 F_{1}=1 F_{2}=1+0=1$ $F_{n}=F_{n-1}+F_{n-2}$.
- It was discovered by the Indians in the context of Sanskrit poetry (!) much earlier. Fibonacci himself discovered them whilst modelling rabbit populations. They turn up unexpectedly in CS, maths (Hilbert's tenth problem), and supposedly in biology.
- Is there a formula for F_{n} ?

Fibonacci numbers and matrices

Fibonacci numbers and matrices

- Consider $F_{n}=F_{n-1}+F_{n-2}$ and

Fibonacci numbers and matrices

- Consider $F_{n}=F_{n-1}+F_{n-2}$ and $F_{n-1}=F_{n-1}(!)$.

Fibonacci numbers and matrices

- Consider $F_{n}=F_{n-1}+F_{n-2}$ and $F_{n-1}=F_{n-1}(!)$. So F_{n}, F_{n-1} are

Fibonacci numbers and matrices

- Consider $F_{n}=F_{n-1}+F_{n-2}$ and $F_{n-1}=F_{n-1}(!)$. So F_{n}, F_{n-1} are linear in

Fibonacci numbers and matrices

- Consider $F_{n}=F_{n-1}+F_{n-2}$ and $F_{n-1}=F_{n-1}$ (!). So F_{n}, F_{n-1} are linear in F_{n-1}, F_{n-2}.

Fibonacci numbers and matrices

- Consider $F_{n}=F_{n-1}+F_{n-2}$ and $F_{n-1}=F_{n-1}(!)$. So F_{n}, F_{n-1} are linear in F_{n-1}, F_{n-2}.
- So $\left[\begin{array}{c}F_{n} \\ F_{n-1}\end{array}\right]=\left[\begin{array}{ll}1 & 1 \\ 1 & 0\end{array}\right]\left[\begin{array}{c}F_{n-1} \\ F_{n-2}\end{array}\right]$.

Fibonacci numbers and matrices

- Consider $F_{n}=F_{n-1}+F_{n-2}$ and $F_{n-1}=F_{n-1}(!)$. So F_{n}, F_{n-1} are linear in F_{n-1}, F_{n-2}.
- So $\left[\begin{array}{c}F_{n} \\ F_{n-1}\end{array}\right]=\left[\begin{array}{ll}1 & 1 \\ 1 & 0\end{array}\right]\left[\begin{array}{c}F_{n-1} \\ F_{n-2}\end{array}\right]$.
- Let $v_{n}=\left[\begin{array}{c}F_{n} \\ F_{n-1}\end{array}\right]$, and

Fibonacci numbers and matrices

- Consider $F_{n}=F_{n-1}+F_{n-2}$ and $F_{n-1}=F_{n-1}(!)$. So F_{n}, F_{n-1} are linear in F_{n-1}, F_{n-2}.
- So $\left[\begin{array}{c}F_{n} \\ F_{n-1}\end{array}\right]=\left[\begin{array}{ll}1 & 1 \\ 1 & 0\end{array}\right]\left[\begin{array}{c}F_{n-1} \\ F_{n-2}\end{array}\right]$.
- Let $v_{n}=\left[\begin{array}{c}F_{n} \\ F_{n-1}\end{array}\right]$, and $M=\left[\begin{array}{ll}1 & 1 \\ 1 & 0\end{array}\right]$.

Fibonacci numbers and matrices

- Consider $F_{n}=F_{n-1}+F_{n-2}$ and $F_{n-1}=F_{n-1}(!)$. So F_{n}, F_{n-1} are linear in F_{n-1}, F_{n-2}.
- So $\left[\begin{array}{c}F_{n} \\ F_{n-1}\end{array}\right]=\left[\begin{array}{ll}1 & 1 \\ 1 & 0\end{array}\right]\left[\begin{array}{c}F_{n-1} \\ F_{n-2}\end{array}\right]$.
- Let $v_{n}=\left[\begin{array}{c}F_{n} \\ F_{n-1}\end{array}\right]$, and $M=\left[\begin{array}{ll}1 & 1 \\ 1 & 0\end{array}\right]$. Then $v_{n}=M v_{n-1}$.

Fibonacci numbers and matrices

- Consider $F_{n}=F_{n-1}+F_{n-2}$ and $F_{n-1}=F_{n-1}(!)$. So F_{n}, F_{n-1} are linear in F_{n-1}, F_{n-2}.
- So $\left[\begin{array}{c}F_{n} \\ F_{n-1}\end{array}\right]=\left[\begin{array}{ll}1 & 1 \\ 1 & 0\end{array}\right]\left[\begin{array}{c}F_{n-1} \\ F_{n-2}\end{array}\right]$.
- Let $v_{n}=\left[\begin{array}{c}F_{n} \\ F_{n-1}\end{array}\right]$, and $M=\left[\begin{array}{ll}1 & 1 \\ 1 & 0\end{array}\right]$. Then $v_{n}=M v_{n-1}$.

Thus $v_{n}=M^{n-2} v_{2}$.

- Consider $F_{n}=F_{n-1}+F_{n-2}$ and $F_{n-1}=F_{n-1}$ (!). So F_{n}, F_{n-1} are linear in F_{n-1}, F_{n-2}.
- So $\left[\begin{array}{c}F_{n} \\ F_{n-1}\end{array}\right]=\left[\begin{array}{ll}1 & 1 \\ 1 & 0\end{array}\right]\left[\begin{array}{c}F_{n-1} \\ F_{n-2}\end{array}\right]$.
- Let $v_{n}=\left[\begin{array}{c}F_{n} \\ F_{n-1}\end{array}\right]$, and $M=\left[\begin{array}{ll}1 & 1 \\ 1 & 0\end{array}\right]$. Then $v_{n}=M v_{n-1}$.

Thus $v_{n}=M^{n-2} v_{2}$. How does one

- Consider $F_{n}=F_{n-1}+F_{n-2}$ and $F_{n-1}=F_{n-1}$ (!). So F_{n}, F_{n-1} are linear in F_{n-1}, F_{n-2}.
- So $\left[\begin{array}{c}F_{n} \\ F_{n-1}\end{array}\right]=\left[\begin{array}{ll}1 & 1 \\ 1 & 0\end{array}\right]\left[\begin{array}{c}F_{n-1} \\ F_{n-2}\end{array}\right]$.
- Let $v_{n}=\left[\begin{array}{c}F_{n} \\ F_{n-1}\end{array}\right]$, and $M=\left[\begin{array}{ll}1 & 1 \\ 1 & 0\end{array}\right]$. Then $v_{n}=M v_{n-1}$.

Thus $v_{n}=M^{n-2} v_{2}$. How does one write a formula for

- Consider $F_{n}=F_{n-1}+F_{n-2}$ and $F_{n-1}=F_{n-1}$ (!). So F_{n}, F_{n-1} are linear in F_{n-1}, F_{n-2}.
- So $\left[\begin{array}{c}F_{n} \\ F_{n-1}\end{array}\right]=\left[\begin{array}{ll}1 & 1 \\ 1 & 0\end{array}\right]\left[\begin{array}{c}F_{n-1} \\ F_{n-2}\end{array}\right]$.
- Let $v_{n}=\left[\begin{array}{c}F_{n} \\ F_{n-1}\end{array}\right]$, and $M=\left[\begin{array}{ll}1 & 1 \\ 1 & 0\end{array}\right]$. Then $v_{n}=M v_{n-1}$.

Thus $v_{n}=M^{n-2} v_{2}$. How does one write a formula for M^{n-2} ?

Weather prediction

Weather prediction

- Suppose the chance that

Weather prediction

- Suppose the chance that it rains tomorrow

Weather prediction

- Suppose the chance that it rains tomorrow if it rains today is

Weather prediction

- Suppose the chance that it rains tomorrow if it rains today is 0.7 and

Weather prediction

- Suppose the chance that it rains tomorrow if it rains today is 0.7 and the chance that

Weather prediction

- Suppose the chance that it rains tomorrow if it rains today is 0.7 and the chance that it rains tomorrow if it does not

Weather prediction

- Suppose the chance that it rains tomorrow if it rains today is 0.7 and the chance that it rains tomorrow if it does not rain today is

Weather prediction

- Suppose the chance that it rains tomorrow if it rains today is 0.7 and the chance that it rains tomorrow if it does not rain today is 0.5 .

Weather prediction

- Suppose the chance that it rains tomorrow if it rains today is 0.7 and the chance that it rains tomorrow if it does not rain today is 0.5 . What is the chance

Weather prediction

- Suppose the chance that it rains tomorrow if it rains today is 0.7 and the chance that it rains tomorrow if it does not rain today is 0.5 . What is the chance that it rains

Weather prediction

- Suppose the chance that it rains tomorrow if it rains today is 0.7 and the chance that it rains tomorrow if it does not rain today is 0.5 . What is the chance that it rains after 10 days

Weather prediction

- Suppose the chance that it rains tomorrow if it rains today is 0.7 and the chance that it rains tomorrow if it does not rain today is 0.5 . What is the chance that it rains after 10 days given that it rained today?

Weather prediction

- Suppose the chance that it rains tomorrow if it rains today is 0.7 and the chance that it rains tomorrow if it does not rain today is 0.5 . What is the chance that it rains after 10 days given that it rained today?
- If the chance that

Weather prediction

- Suppose the chance that it rains tomorrow if it rains today is 0.7 and the chance that it rains tomorrow if it does not rain today is 0.5 . What is the chance that it rains after 10 days given that it rained today?
- If the chance that it rains after

Weather prediction

- Suppose the chance that it rains tomorrow if it rains today is 0.7 and the chance that it rains tomorrow if it does not rain today is 0.5 . What is the chance that it rains after 10 days given that it rained today?
- If the chance that it rains after n days is p_{n} and

Weather prediction

- Suppose the chance that it rains tomorrow if it rains today is 0.7 and the chance that it rains tomorrow if it does not rain today is 0.5 . What is the chance that it rains after 10 days given that it rained today?
- If the chance that it rains after n days is p_{n} and $q_{n}=1-p_{n}$ is the chance that it does not rain,

Weather prediction

- Suppose the chance that it rains tomorrow if it rains today is 0.7 and the chance that it rains tomorrow if it does not rain today is 0.5 . What is the chance that it rains after 10 days given that it rained today?
- If the chance that it rains after n days is p_{n} and $q_{n}=1-p_{n}$ is the chance that it does not rain, then $p_{n}=0.7 p_{n-1}+0.5 q_{n-1}$ and

Weather prediction

- Suppose the chance that it rains tomorrow if it rains today is 0.7 and the chance that it rains tomorrow if it does not rain today is 0.5 . What is the chance that it rains after 10 days given that it rained today?
- If the chance that it rains after n days is p_{n} and $q_{n}=1-p_{n}$ is the chance that it does not rain, then $p_{n}=0.7 p_{n-1}+0.5 q_{n-1}$ and $q_{n}=0.3 p_{n-1}+0.5 q_{n-1}$.

Weather prediction

- Suppose the chance that it rains tomorrow if it rains today is 0.7 and the chance that it rains tomorrow if it does not rain today is 0.5 . What is the chance that it rains after 10 days given that it rained today?
- If the chance that it rains after n days is p_{n} and $q_{n}=1-p_{n}$ is the chance that it does not rain, then $p_{n}=0.7 p_{n-1}+0.5 q_{n-1}$ and $q_{n}=0.3 p_{n-1}+0.5 q_{n-1}$. Moreover, $p_{0}=1=1-q_{0}$ (
- Suppose the chance that it rains tomorrow if it rains today is 0.7 and the chance that it rains tomorrow if it does not rain today is 0.5 . What is the chance that it rains after 10 days given that it rained today?
- If the chance that it rains after n days is p_{n} and $q_{n}=1-p_{n}$ is the chance that it does not rain, then $p_{n}=0.7 p_{n-1}+0.5 q_{n-1}$ and $q_{n}=0.3 p_{n-1}+0.5 q_{n-1}$. Moreover, $p_{0}=1=1-q_{0}$ (because it rained today).
- Suppose the chance that it rains tomorrow if it rains today is 0.7 and the chance that it rains tomorrow if it does not rain today is 0.5 . What is the chance that it rains after 10 days given that it rained today?
- If the chance that it rains after n days is p_{n} and $q_{n}=1-p_{n}$ is the chance that it does not rain, then $p_{n}=0.7 p_{n-1}+0.5 q_{n-1}$ and $q_{n}=0.3 p_{n-1}+0.5 q_{n-1}$. Moreover, $p_{0}=1=1-q_{0}$ (because it rained today). We want p_{10}.
- Suppose the chance that it rains tomorrow if it rains today is 0.7 and the chance that it rains tomorrow if it does not rain today is 0.5 . What is the chance that it rains after 10 days given that it rained today?
- If the chance that it rains after n days is p_{n} and $q_{n}=1-p_{n}$ is the chance that it does not rain, then $p_{n}=0.7 p_{n-1}+0.5 q_{n-1}$ and $q_{n}=0.3 p_{n-1}+0.5 q_{n-1}$. Moreover, $p_{0}=1=1-q_{0}$ (because it rained today). We want p_{10}.
- As in the case of
- Suppose the chance that it rains tomorrow if it rains today is 0.7 and the chance that it rains tomorrow if it does not rain today is 0.5 . What is the chance that it rains after 10 days given that it rained today?
- If the chance that it rains after n days is p_{n} and $q_{n}=1-p_{n}$ is the chance that it does not rain, then $p_{n}=0.7 p_{n-1}+0.5 q_{n-1}$ and $q_{n}=0.3 p_{n-1}+0.5 q_{n-1}$. Moreover, $p_{0}=1=1-q_{0}$ (because it rained today). We want p_{10}.
- As in the case of Fibonacci numbers
- Suppose the chance that it rains tomorrow if it rains today is 0.7 and the chance that it rains tomorrow if it does not rain today is 0.5 . What is the chance that it rains after 10 days given that it rained today?
- If the chance that it rains after n days is p_{n} and $q_{n}=1-p_{n}$ is the chance that it does not rain, then $p_{n}=0.7 p_{n-1}+0.5 q_{n-1}$ and $q_{n}=0.3 p_{n-1}+0.5 q_{n-1}$. Moreover, $p_{0}=1=1-q_{0}$ (because it rained today). We want p_{10}.
- As in the case of Fibonacci numbers if $v_{n}=\left[\begin{array}{c}p_{n} \\ q_{n}\end{array}\right]$,
- Suppose the chance that it rains tomorrow if it rains today is 0.7 and the chance that it rains tomorrow if it does not rain today is 0.5 . What is the chance that it rains after 10 days given that it rained today?
- If the chance that it rains after n days is p_{n} and $q_{n}=1-p_{n}$ is the chance that it does not rain, then $p_{n}=0.7 p_{n-1}+0.5 q_{n-1}$ and $q_{n}=0.3 p_{n-1}+0.5 q_{n-1}$. Moreover, $p_{0}=1=1-q_{0}$ (because it rained today). We want p_{10}.
- As in the case of Fibonacci numbers if $v_{n}=\left[\begin{array}{c}p_{n} \\ q_{n}\end{array}\right]$, then $v_{n}=M v_{n-1}$
- Suppose the chance that it rains tomorrow if it rains today is 0.7 and the chance that it rains tomorrow if it does not rain today is 0.5 . What is the chance that it rains after 10 days given that it rained today?
- If the chance that it rains after n days is p_{n} and $q_{n}=1-p_{n}$ is the chance that it does not rain, then $p_{n}=0.7 p_{n-1}+0.5 q_{n-1}$ and $q_{n}=0.3 p_{n-1}+0.5 q_{n-1}$. Moreover, $p_{0}=1=1-q_{0}$ (because it rained today). We want p_{10}.
- As in the case of Fibonacci numbers if $v_{n}=\left[\begin{array}{c}p_{n} \\ q_{n}\end{array}\right]$, then $v_{n}=M v_{n-1}$ where $M=\left[\begin{array}{ll}0.7 & 0.5 \\ 0.3 & 0.5\end{array}\right]$.
- Suppose the chance that it rains tomorrow if it rains today is 0.7 and the chance that it rains tomorrow if it does not rain today is 0.5 . What is the chance that it rains after 10 days given that it rained today?
- If the chance that it rains after n days is p_{n} and $q_{n}=1-p_{n}$ is the chance that it does not rain, then $p_{n}=0.7 p_{n-1}+0.5 q_{n-1}$ and $q_{n}=0.3 p_{n-1}+0.5 q_{n-1}$. Moreover, $p_{0}=1=1-q_{0}$ (because it rained today). We want p_{10}.
- As in the case of Fibonacci numbers if $v_{n}=\left[\begin{array}{c}p_{n} \\ q_{n}\end{array}\right]$, then $v_{n}=M v_{n-1}$ where $M=\left[\begin{array}{ll}0.7 & 0.5 \\ 0.3 & 0.5\end{array}\right]$.
- So what is M^{n} ? (
- Suppose the chance that it rains tomorrow if it rains today is 0.7 and the chance that it rains tomorrow if it does not rain today is 0.5 . What is the chance that it rains after 10 days given that it rained today?
- If the chance that it rains after n days is p_{n} and $q_{n}=1-p_{n}$ is the chance that it does not rain, then $p_{n}=0.7 p_{n-1}+0.5 q_{n-1}$ and $q_{n}=0.3 p_{n-1}+0.5 q_{n-1}$. Moreover, $p_{0}=1=1-q_{0}$ (because it rained today). We want p_{10}.
- As in the case of Fibonacci numbers if $v_{n}=\left[\begin{array}{c}p_{n} \\ q_{n}\end{array}\right]$, then $v_{n}=M v_{n-1}$ where $M=\left[\begin{array}{ll}0.7 & 0.5 \\ 0.3 & 0.5\end{array}\right]$.
- So what is M^{n} ? (This simple model
- Suppose the chance that it rains tomorrow if it rains today is 0.7 and the chance that it rains tomorrow if it does not rain today is 0.5 . What is the chance that it rains after 10 days given that it rained today?
- If the chance that it rains after n days is p_{n} and $q_{n}=1-p_{n}$ is the chance that it does not rain, then $p_{n}=0.7 p_{n-1}+0.5 q_{n-1}$ and $q_{n}=0.3 p_{n-1}+0.5 q_{n-1}$. Moreover, $p_{0}=1=1-q_{0}$ (because it rained today). We want p_{10}.
- As in the case of Fibonacci numbers if $v_{n}=\left[\begin{array}{c}p_{n} \\ q_{n}\end{array}\right]$, then $v_{n}=M v_{n-1}$ where $M=\left[\begin{array}{ll}0.7 & 0.5 \\ 0.3 & 0.5\end{array}\right]$.
- So what is M^{n} ? (This simple model is an example of a
- Suppose the chance that it rains tomorrow if it rains today is 0.7 and the chance that it rains tomorrow if it does not rain today is 0.5 . What is the chance that it rains after 10 days given that it rained today?
- If the chance that it rains after n days is p_{n} and $q_{n}=1-p_{n}$ is the chance that it does not rain, then $p_{n}=0.7 p_{n-1}+0.5 q_{n-1}$ and $q_{n}=0.3 p_{n-1}+0.5 q_{n-1}$. Moreover, $p_{0}=1=1-q_{0}$ (because it rained today). We want p_{10}.
- As in the case of Fibonacci numbers if $v_{n}=\left[\begin{array}{l}p_{n} \\ q_{n}\end{array}\right]$, then $v_{n}=M v_{n-1}$ where $M=\left[\begin{array}{ll}0.7 & 0.5 \\ 0.3 & 0.5\end{array}\right]$.
- So what is M^{n} ? (This simple model is an example of a Markov chain.)

Similarity and powers

Similarity and powers

- If A is an $n \times n$ matrix,

Similarity and powers

- If A is an $n \times n$ matrix, when is it "easy"

Similarity and powers

- If A is an $n \times n$ matrix, when is it "easy" to calculate A^{n} ?

Similarity and powers

- If A is an $n \times n$ matrix, when is it "easy" to calculate A^{n} ? It is so if

Similarity and powers

- If A is an $n \times n$ matrix, when is it "easy" to calculate A^{n} ? It is so if A is diagonal.

Similarity and powers

- If A is an $n \times n$ matrix, when is it "easy" to calculate A^{n} ? It is so if A is diagonal. In that case,

Similarity and powers

- If A is an $n \times n$ matrix, when is it "easy" to calculate A^{n} ? It is so if A is diagonal. In that case, $A^{n}=\operatorname{diag}\left(a_{11}^{n}, a_{22}^{n}, \ldots\right)$.

Similarity and powers

- If A is an $n \times n$ matrix, when is it "easy" to calculate A^{n} ? It is so if A is diagonal. In that case, $A^{n}=\operatorname{diag}\left(a_{11}^{n}, a_{22}^{n}, \ldots\right)$.
- Given an arbitrary $n \times n A$

Similarity and powers

- If A is an $n \times n$ matrix, when is it "easy" to calculate A^{n} ? It is so if A is diagonal. In that case, $A^{n}=\operatorname{diag}\left(a_{11}^{n}, a_{22}^{n}, \ldots\right)$.
- Given an arbitrary $n \times n A$ is there a "natural" way

Similarity and powers

- If A is an $n \times n$ matrix, when is it "easy" to calculate A^{n} ? It is so if A is diagonal. In that case, $A^{n}=\operatorname{diag}\left(a_{11}^{n}, a_{22}^{n}, \ldots\right)$.
- Given an arbitrary $n \times n A$ is there a "natural" way to relate it to a

Similarity and powers

- If A is an $n \times n$ matrix, when is it "easy" to calculate A^{n} ? It is so if A is diagonal. In that case, $A^{n}=\operatorname{diag}\left(a_{11}^{n}, a_{22}^{n}, \ldots\right)$.
- Given an arbitrary $n \times n A$ is there a "natural" way to relate it to a diagonal matrix?

Similarity and powers

- If A is an $n \times n$ matrix, when is it "easy" to calculate A^{n} ? It is so if A is diagonal. In that case, $A^{n}=\operatorname{diag}\left(a_{11}^{n}, a_{22}^{n}, \ldots\right)$.
- Given an arbitrary $n \times n A$ is there a "natural" way to relate it to a diagonal matrix?
- One natural way to

Similarity and powers

- If A is an $n \times n$ matrix, when is it "easy" to calculate A^{n} ? It is so if A is diagonal. In that case, $A^{n}=\operatorname{diag}\left(a_{11}^{n}, a_{22}^{n}, \ldots\right)$.
- Given an arbitrary $n \times n A$ is there a "natural" way to relate it to a diagonal matrix?
- One natural way to change matrices

Similarity and powers

- If A is an $n \times n$ matrix, when is it "easy" to calculate A^{n} ? It is so if A is diagonal. In that case, $A^{n}=\operatorname{diag}\left(a_{11}^{n}, a_{22}^{n}, \ldots\right)$.
- Given an arbitrary $n \times n A$ is there a "natural" way to relate it to a diagonal matrix?
- One natural way to change matrices is through similarity, i.e.,

Similarity and powers

- If A is an $n \times n$ matrix, when is it "easy" to calculate A^{n} ? It is so if A is diagonal. In that case, $A^{n}=\operatorname{diag}\left(a_{11}^{n}, a_{22}^{n}, \ldots\right)$.
- Given an arbitrary $n \times n A$ is there a "natural" way to relate it to a diagonal matrix?
- One natural way to change matrices is through similarity, i.e., $B=P^{-1} A P$.

Similarity and powers

- If A is an $n \times n$ matrix, when is it "easy" to calculate A^{n} ? It is so if A is diagonal. In that case, $A^{n}=\operatorname{diag}\left(a_{11}^{n}, a_{22}^{n}, \ldots\right)$.
- Given an arbitrary $n \times n A$ is there a "natural" way to relate it to a diagonal matrix?
- One natural way to change matrices is through similarity, i.e., $B=P^{-1} A P$. Note that $B^{n}=P^{-1} A^{n} P$, i.e.,

Similarity and powers

- If A is an $n \times n$ matrix, when is it "easy" to calculate A^{n} ? It is so if A is diagonal. In that case, $A^{n}=\operatorname{diag}\left(a_{11}^{n}, a_{22}^{n}, \ldots\right)$.
- Given an arbitrary $n \times n A$ is there a "natural" way to relate it to a diagonal matrix?
- One natural way to change matrices is through similarity, i.e., $B=P^{-1} A P$. Note that $B^{n}=P^{-1} A^{n} P$, i.e., $A^{n}=P B^{n} P^{-1}$.

Similarity and powers

- If A is an $n \times n$ matrix, when is it "easy" to calculate A^{n} ? It is so if A is diagonal. In that case, $A^{n}=\operatorname{diag}\left(a_{11}^{n}, a_{22}^{n}, \ldots\right)$.
- Given an arbitrary $n \times n A$ is there a "natural" way to relate it to a diagonal matrix?
- One natural way to change matrices is through similarity, i.e., $B=P^{-1} A P$. Note that $B^{n}=P^{-1} A^{n} P$, i.e., $A^{n}=P B^{n} P^{-1}$.
- So if B is

Similarity and powers

- If A is an $n \times n$ matrix, when is it "easy" to calculate A^{n} ? It is so if A is diagonal. In that case, $A^{n}=\operatorname{diag}\left(a_{11}^{n}, a_{22}^{n}, \ldots\right)$.
- Given an arbitrary $n \times n A$ is there a "natural" way to relate it to a diagonal matrix?
- One natural way to change matrices is through similarity, i.e., $B=P^{-1} A P$. Note that $B^{n}=P^{-1} A^{n} P$, i.e., $A^{n}=P B^{n} P^{-1}$.
- So if B is diagonal then

Similarity and powers

- If A is an $n \times n$ matrix, when is it "easy" to calculate A^{n} ? It is so if A is diagonal. In that case, $A^{n}=\operatorname{diag}\left(a_{11}^{n}, a_{22}^{n}, \ldots\right)$.
- Given an arbitrary $n \times n A$ is there a "natural" way to relate it to a diagonal matrix?
- One natural way to change matrices is through similarity, i.e., $B=P^{-1} A P$. Note that $B^{n}=P^{-1} A^{n} P$, i.e., $A^{n}=P B^{n} P^{-1}$.
- So if B is diagonal then we are in good shape.

Similarity and powers

- If A is an $n \times n$ matrix, when is it "easy" to calculate A^{n} ? It is so if A is diagonal. In that case, $A^{n}=\operatorname{diag}\left(a_{11}^{n}, a_{22}^{n}, \ldots\right)$.
- Given an arbitrary $n \times n A$ is there a "natural" way to relate it to a diagonal matrix?
- One natural way to change matrices is through similarity, i.e., $B=P^{-1} A P$. Note that $B^{n}=P^{-1} A^{n} P$, i.e., $A^{n}=P B^{n} P^{-1}$.
- So if B is diagonal then we are in good shape.
- In the language of

Similarity and powers

- If A is an $n \times n$ matrix, when is it "easy" to calculate A^{n} ? It is so if A is diagonal. In that case, $A^{n}=\operatorname{diag}\left(a_{11}^{n}, a_{22}^{n}, \ldots\right)$.
- Given an arbitrary $n \times n A$ is there a "natural" way to relate it to a diagonal matrix?
- One natural way to change matrices is through similarity, i.e., $B=P^{-1} A P$. Note that $B^{n}=P^{-1} A^{n} P$, i.e., $A^{n}=P B^{n} P^{-1}$.
- So if B is diagonal then we are in good shape.
- In the language of linear maps,
- If A is an $n \times n$ matrix, when is it "easy" to calculate A^{n} ? It is so if A is diagonal. In that case, $A^{n}=\operatorname{diag}\left(a_{11}^{n}, a_{22}^{n}, \ldots\right)$.
- Given an arbitrary $n \times n A$ is there a "natural" way to relate it to a diagonal matrix?
- One natural way to change matrices is through similarity, i.e., $B=P^{-1} A P$. Note that $B^{n}=P^{-1} A^{n} P$, i.e., $A^{n}=P B^{n} P^{-1}$.
- So if B is diagonal then we are in good shape.
- In the language of linear maps, given a linear map $T: V \rightarrow V$,
- If A is an $n \times n$ matrix, when is it "easy" to calculate A^{n} ? It is so if A is diagonal. In that case, $A^{n}=\operatorname{diag}\left(a_{11}^{n}, a_{22}^{n}, \ldots\right)$.
- Given an arbitrary $n \times n A$ is there a "natural" way to relate it to a diagonal matrix?
- One natural way to change matrices is through similarity, i.e., $B=P^{-1} A P$. Note that $B^{n}=P^{-1} A^{n} P$, i.e., $A^{n}=P B^{n} P^{-1}$.
- So if B is diagonal then we are in good shape.
- In the language of linear maps, given a linear map
$T: V \rightarrow V$, is there a basis e_{1}, \ldots, e_{n}
- If A is an $n \times n$ matrix, when is it "easy" to calculate A^{n} ? It is so if A is diagonal. In that case, $A^{n}=\operatorname{diag}\left(a_{11}^{n}, a_{22}^{n}, \ldots\right)$.
- Given an arbitrary $n \times n A$ is there a "natural" way to relate it to a diagonal matrix?
- One natural way to change matrices is through similarity, i.e., $B=P^{-1} A P$. Note that $B^{n}=P^{-1} A^{n} P$, i.e., $A^{n}=P B^{n} P^{-1}$.
- So if B is diagonal then we are in good shape.
- In the language of linear maps, given a linear map $T: V \rightarrow V$, is there a basis e_{1}, \ldots, e_{n} such that the matrix corresponding to T, i.e.,
- If A is an $n \times n$ matrix, when is it "easy" to calculate A^{n} ? It is so if A is diagonal. In that case, $A^{n}=\operatorname{diag}\left(a_{11}^{n}, a_{22}^{n}, \ldots\right)$.
- Given an arbitrary $n \times n A$ is there a "natural" way to relate it to a diagonal matrix?
- One natural way to change matrices is through similarity, i.e., $B=P^{-1} A P$. Note that $B^{n}=P^{-1} A^{n} P$, i.e., $A^{n}=P B^{n} P^{-1}$.
- So if B is diagonal then we are in good shape.
- In the language of linear maps, given a linear map $T: V \rightarrow V$, is there a basis e_{1}, \ldots, e_{n} such that the matrix corresponding to T, i.e., $[T$] is diagonal?
- If A is an $n \times n$ matrix, when is it "easy" to calculate A^{n} ? It is so if A is diagonal. In that case, $A^{n}=\operatorname{diag}\left(a_{11}^{n}, a_{22}^{n}, \ldots\right)$.
- Given an arbitrary $n \times n A$ is there a "natural" way to relate it to a diagonal matrix?
- One natural way to change matrices is through similarity, i.e., $B=P^{-1} A P$. Note that $B^{n}=P^{-1} A^{n} P$, i.e., $A^{n}=P B^{n} P^{-1}$.
- So if B is diagonal then we are in good shape.
- In the language of linear maps, given a linear map $T: V \rightarrow V$, is there a basis e_{1}, \ldots, e_{n} such that the matrix corresponding to T, i.e., $[T]$ is diagonal? That is,
- If A is an $n \times n$ matrix, when is it "easy" to calculate A^{n} ? It is so if A is diagonal. In that case, $A^{n}=\operatorname{diag}\left(a_{11}^{n}, a_{22}^{n}, \ldots\right)$.
- Given an arbitrary $n \times n A$ is there a "natural" way to relate it to a diagonal matrix?
- One natural way to change matrices is through similarity, i.e., $B=P^{-1} A P$. Note that $B^{n}=P^{-1} A^{n} P$, i.e., $A^{n}=P B^{n} P^{-1}$.
- So if B is diagonal then we are in good shape.
- In the language of linear maps, given a linear map
$T: V \rightarrow V$, is there a basis e_{1}, \ldots, e_{n} such that the matrix corresponding to T, i.e., [T] is diagonal? That is, $T\left(e_{1}\right)=\lambda_{1} e_{1}, T\left(e_{2}\right)=\lambda_{2} e_{2}$, etc?

Eigenvalues and eigenvectors

Eigenvalues and eigenvectors

- Def:

Eigenvalues and eigenvectors

- Def: Let $T: V \rightarrow V$ be a linear map

Eigenvalues and eigenvectors

- Def: Let $T: V \rightarrow V$ be a linear map and V be a vector space.

Eigenvalues and eigenvectors

- Def: Let $T: V \rightarrow V$ be a linear map and V be a vector space. A non-zero vector v

Eigenvalues and eigenvectors

- Def: Let $T: V \rightarrow V$ be a linear map and V be a vector space. A non-zero vector v is said to be an eigenvector
- Def: Let $T: V \rightarrow V$ be a linear map and V be a vector space. A non-zero vector v is said to be an eigenvector with eigenvalue $\lambda \in \mathbb{F}$

Eigenvalues and eigenvectors

- Def: Let $T: V \rightarrow V$ be a linear map and V be a vector space. A non-zero vector v is said to be an eigenvector with eigenvalue $\lambda \in \mathbb{F}$ if $T v=\lambda v$.
- Def: Let $T: V \rightarrow V$ be a linear map and V be a vector space. A non-zero vector v is said to be an eigenvector with eigenvalue $\lambda \in \mathbb{F}$ if $T v=\lambda v$.
- Rookie mistake:
- Def: Let $T: V \rightarrow V$ be a linear map and V be a vector space. A non-zero vector v is said to be an eigenvector with eigenvalue $\lambda \in \mathbb{F}$ if $T v=\lambda v$.
- Rookie mistake: An eigenvector
- Def: Let $T: V \rightarrow V$ be a linear map and V be a vector space. A non-zero vector v is said to be an eigenvector with eigenvalue $\lambda \in \mathbb{F}$ if $T v=\lambda v$.
- Rookie mistake: An eigenvector by definition

Eigenvalues and eigenvectors

- Def: Let $T: V \rightarrow V$ be a linear map and V be a vector space. A non-zero vector v is said to be an eigenvector with eigenvalue $\lambda \in \mathbb{F}$ if $T v=\lambda v$.
- Rookie mistake: An eigenvector by definition is required to

Eigenvalues and eigenvectors

- Def: Let $T: V \rightarrow V$ be a linear map and V be a vector space. A non-zero vector v is said to be an eigenvector with eigenvalue $\lambda \in \mathbb{F}$ if $T v=\lambda v$.
- Rookie mistake: An eigenvector by definition is required to NOT be the zero vector!
- Def: Let $T: V \rightarrow V$ be a linear map and V be a vector space. A non-zero vector v is said to be an eigenvector with eigenvalue $\lambda \in \mathbb{F}$ if $T v=\lambda v$.
- Rookie mistake: An eigenvector by definition is required to NOT be the zero vector!
- Theorem:

Eigenvalues and eigenvectors

- Def: Let $T: V \rightarrow V$ be a linear map and V be a vector space. A non-zero vector v is said to be an eigenvector with eigenvalue $\lambda \in \mathbb{F}$ if $T v=\lambda v$.
- Rookie mistake: An eigenvector by definition is required to NOT be the zero vector!
- Theorem: If V is a f.d. vector space,

Eigenvalues and eigenvectors

- Def: Let $T: V \rightarrow V$ be a linear map and V be a vector space. A non-zero vector v is said to be an eigenvector with eigenvalue $\lambda \in \mathbb{F}$ if $T v=\lambda v$.
- Rookie mistake: An eigenvector by definition is required to NOT be the zero vector!
- Theorem: If V is a f.d. vector space, and $T: V \rightarrow V$ is linear

Eigenvalues and eigenvectors

- Def: Let $T: V \rightarrow V$ be a linear map and V be a vector space. A non-zero vector v is said to be an eigenvector with eigenvalue $\lambda \in \mathbb{F}$ if $T v=\lambda v$.
- Rookie mistake: An eigenvector by definition is required to NOT be the zero vector!
- Theorem: If V is a f.d. vector space, and $T: V \rightarrow V$ is linear then $[T$] is

Eigenvalues and eigenvectors

- Def: Let $T: V \rightarrow V$ be a linear map and V be a vector space. A non-zero vector v is said to be an eigenvector with eigenvalue $\lambda \in \mathbb{F}$ if $T v=\lambda v$.
- Rookie mistake: An eigenvector by definition is required to NOT be the zero vector!
- Theorem: If V is a f.d. vector space, and $T: V \rightarrow V$ is linear then $\left[T\right.$] is diagonal in an ordered basis e_{1}, \ldots

Eigenvalues and eigenvectors

- Def: Let $T: V \rightarrow V$ be a linear map and V be a vector space. A non-zero vector v is said to be an eigenvector with eigenvalue $\lambda \in \mathbb{F}$ if $T v=\lambda v$.
- Rookie mistake: An eigenvector by definition is required to NOT be the zero vector!
- Theorem: If V is a f.d. vector space, and $T: V \rightarrow V$ is linear then $[T]$ is diagonal in an ordered basis e_{1}, \ldots if and only if

Eigenvalues and eigenvectors

- Def: Let $T: V \rightarrow V$ be a linear map and V be a vector space. A non-zero vector v is said to be an eigenvector with eigenvalue $\lambda \in \mathbb{F}$ if $T v=\lambda v$.
- Rookie mistake: An eigenvector by definition is required to NOT be the zero vector!
- Theorem: If V is a f.d. vector space, and $T: V \rightarrow V$ is linear then [T] is diagonal in an ordered basis e_{1}, \ldots if and only if the basis vectors e_{1}, \ldots, e_{n}

Eigenvalues and eigenvectors

- Def: Let $T: V \rightarrow V$ be a linear map and V be a vector space. A non-zero vector v is said to be an eigenvector with eigenvalue $\lambda \in \mathbb{F}$ if $T v=\lambda v$.
- Rookie mistake: An eigenvector by definition is required to NOT be the zero vector!
- Theorem: If V is a f.d. vector space, and $T: V \rightarrow V$ is linear then [T] is diagonal in an ordered basis e_{1}, \ldots if and only if the basis vectors e_{1}, \ldots, e_{n} are eigenvectors with

Eigenvalues and eigenvectors

- Def: Let $T: V \rightarrow V$ be a linear map and V be a vector space. A non-zero vector v is said to be an eigenvector with eigenvalue $\lambda \in \mathbb{F}$ if $T v=\lambda v$.
- Rookie mistake: An eigenvector by definition is required to NOT be the zero vector!
- Theorem: If V is a f.d. vector space, and $T: V \rightarrow V$ is linear then [T] is diagonal in an ordered basis e_{1}, \ldots if and only if the basis vectors e_{1}, \ldots, e_{n} are eigenvectors with eigenvalues $[T]_{11},[T]_{22}, \ldots$.

Eigenvalues and eigenvectors

- Def: Let $T: V \rightarrow V$ be a linear map and V be a vector space. A non-zero vector v is said to be an eigenvector with eigenvalue $\lambda \in \mathbb{F}$ if $T v=\lambda v$.
- Rookie mistake: An eigenvector by definition is required to NOT be the zero vector!
- Theorem: If V is a f.d. vector space, and $T: V \rightarrow V$ is linear then [T] is diagonal in an ordered basis e_{1}, \ldots if and only if the basis vectors e_{1}, \ldots, e_{n} are eigenvectors with eigenvalues $[T]_{11},[T]_{22}, \ldots$
- Proof:

Eigenvalues and eigenvectors

- Def: Let $T: V \rightarrow V$ be a linear map and V be a vector space. A non-zero vector v is said to be an eigenvector with eigenvalue $\lambda \in \mathbb{F}$ if $T v=\lambda v$.
- Rookie mistake: An eigenvector by definition is required to NOT be the zero vector!
- Theorem: If V is a f.d. vector space, and $T: V \rightarrow V$ is linear then [T] is diagonal in an ordered basis e_{1}, \ldots if and only if the basis vectors e_{1}, \ldots, e_{n} are eigenvectors with eigenvalues $[T]_{11},[T]_{22}, \ldots$
- Proof:

Eigenvalues and eigenvectors

- Def: Let $T: V \rightarrow V$ be a linear map and V be a vector space. A non-zero vector v is said to be an eigenvector with eigenvalue $\lambda \in \mathbb{F}$ if $T v=\lambda v$.
- Rookie mistake: An eigenvector by definition is required to NOT be the zero vector!
- Theorem: If V is a f.d. vector space, and $T: V \rightarrow V$ is linear then [T] is diagonal in an ordered basis e_{1}, \ldots if and only if the basis vectors e_{1}, \ldots, e_{n} are eigenvectors with eigenvalues $[T]_{11},[T]_{22}, \ldots$
- Proof:
- If $[T]$ is diagonal:

Eigenvalues and eigenvectors

- Def: Let $T: V \rightarrow V$ be a linear map and V be a vector space. A non-zero vector v is said to be an eigenvector with eigenvalue $\lambda \in \mathbb{F}$ if $T v=\lambda v$.
- Rookie mistake: An eigenvector by definition is required to NOT be the zero vector!
- Theorem: If V is a f.d. vector space, and $T: V \rightarrow V$ is linear then [T] is diagonal in an ordered basis e_{1}, \ldots if and only if the basis vectors e_{1}, \ldots, e_{n} are eigenvectors with eigenvalues $[T]_{11},[T]_{22}, \ldots$
- Proof:
- If $[T]$ is diagonal: Clearly $[T]\left[e_{i}\right]=[T]_{i i}\left[e_{i}\right]$.

Eigenvalues and eigenvectors

- Def: Let $T: V \rightarrow V$ be a linear map and V be a vector space. A non-zero vector v is said to be an eigenvector with eigenvalue $\lambda \in \mathbb{F}$ if $T v=\lambda v$.
- Rookie mistake: An eigenvector by definition is required to NOT be the zero vector!
- Theorem: If V is a f.d. vector space, and $T: V \rightarrow V$ is linear then [T] is diagonal in an ordered basis e_{1}, \ldots if and only if the basis vectors e_{1}, \ldots, e_{n} are eigenvectors with eigenvalues $[T]_{11},[T]_{22}, \ldots$
- Proof:
- If $[T]$ is diagonal: Clearly $[T]\left[e_{i}\right]=[T]_{i i}\left[e_{i}\right]$. Hence

$$
T e_{i}=T_{i j} e_{i}, \text { i.e., }
$$

Eigenvalues and eigenvectors

- Def: Let $T: V \rightarrow V$ be a linear map and V be a vector space. A non-zero vector v is said to be an eigenvector with eigenvalue $\lambda \in \mathbb{F}$ if $T v=\lambda v$.
- Rookie mistake: An eigenvector by definition is required to NOT be the zero vector!
- Theorem: If V is a f.d. vector space, and $T: V \rightarrow V$ is linear then [T] is diagonal in an ordered basis e_{1}, \ldots if and only if the basis vectors e_{1}, \ldots, e_{n} are eigenvectors with eigenvalues $[T]_{11},[T]_{22}, \ldots$
- Proof:
- If $[T]$ is diagonal: Clearly $[T]\left[e_{i}\right]=[T]_{i i}\left[e_{i}\right]$. Hence $T e_{i}=T_{i i} e_{i}$, i.e., e_{i} are eigenvectors.

Eigenvalues and eigenvectors

- Def: Let $T: V \rightarrow V$ be a linear map and V be a vector space. A non-zero vector v is said to be an eigenvector with eigenvalue $\lambda \in \mathbb{F}$ if $T v=\lambda v$.
- Rookie mistake: An eigenvector by definition is required to NOT be the zero vector!
- Theorem: If V is a f.d. vector space, and $T: V \rightarrow V$ is linear then [T] is diagonal in an ordered basis e_{1}, \ldots if and only if the basis vectors e_{1}, \ldots, e_{n} are eigenvectors with eigenvalues $[T]_{11},[T]_{22}, \ldots$
- Proof:
- If $[T]$ is diagonal: Clearly $[T]\left[e_{i}\right]=[T]_{i i}\left[e_{i}\right]$. Hence $T e_{i}=T_{i i} e_{i}$, i.e., e_{i} are eigenvectors.
- If e_{i} are eigenvectors with

Eigenvalues and eigenvectors

- Def: Let $T: V \rightarrow V$ be a linear map and V be a vector space. A non-zero vector v is said to be an eigenvector with eigenvalue $\lambda \in \mathbb{F}$ if $T v=\lambda v$.
- Rookie mistake: An eigenvector by definition is required to NOT be the zero vector!
- Theorem: If V is a f.d. vector space, and $T: V \rightarrow V$ is linear then [T] is diagonal in an ordered basis e_{1}, \ldots if and only if the basis vectors e_{1}, \ldots, e_{n} are eigenvectors with eigenvalues $[T]_{11},[T]_{22}, \ldots$
- Proof:
- If $[T]$ is diagonal: Clearly $[T]\left[e_{i}\right]=[T]_{i i}\left[e_{i}\right]$. Hence $T e_{i}=T_{i i} e_{i}$, i.e., e_{i} are eigenvectors.
- If e_{i} are eigenvectors with eigenvalues $\lambda_{1}, \lambda_{2}, \ldots$.

Eigenvalues and eigenvectors

- Def: Let $T: V \rightarrow V$ be a linear map and V be a vector space. A non-zero vector v is said to be an eigenvector with eigenvalue $\lambda \in \mathbb{F}$ if $T v=\lambda v$.
- Rookie mistake: An eigenvector by definition is required to NOT be the zero vector!
- Theorem: If V is a f.d. vector space, and $T: V \rightarrow V$ is linear then [T] is diagonal in an ordered basis e_{1}, \ldots if and only if the basis vectors e_{1}, \ldots, e_{n} are eigenvectors with eigenvalues $[T]_{11},[T]_{22}, \ldots$
- Proof:
- If $[T]$ is diagonal: Clearly $[T]\left[e_{i}\right]=[T]_{i i}\left[e_{i}\right]$. Hence $T e_{i}=T_{i i} e_{i}$, i.e., e_{i} are eigenvectors.
- If e_{i} are eigenvectors with eigenvalues $\lambda_{1}, \lambda_{2}, \ldots: T e_{i}=\lambda_{i} e_{i}$.

Eigenvalues and eigenvectors

- Def: Let $T: V \rightarrow V$ be a linear map and V be a vector space. A non-zero vector v is said to be an eigenvector with eigenvalue $\lambda \in \mathbb{F}$ if $T v=\lambda v$.
- Rookie mistake: An eigenvector by definition is required to NOT be the zero vector!
- Theorem: If V is a f.d. vector space, and $T: V \rightarrow V$ is linear then [T] is diagonal in an ordered basis e_{1}, \ldots if and only if the basis vectors e_{1}, \ldots, e_{n} are eigenvectors with eigenvalues $[T]_{11},[T]_{22}, \ldots$
- Proof:
- If $[T]$ is diagonal: Clearly $[T]\left[e_{i}\right]=[T]_{i i}\left[e_{i}\right]$. Hence $T e_{i}=T_{i i} e_{i}$, i.e., e_{i} are eigenvectors.
- If e_{i} are eigenvectors with eigenvalues $\lambda_{1}, \lambda_{2}, \ldots: T e_{i}=\lambda_{i} e_{i}$. By definition of

Eigenvalues and eigenvectors

- Def: Let $T: V \rightarrow V$ be a linear map and V be a vector space. A non-zero vector v is said to be an eigenvector with eigenvalue $\lambda \in \mathbb{F}$ if $T v=\lambda v$.
- Rookie mistake: An eigenvector by definition is required to NOT be the zero vector!
- Theorem: If V is a f.d. vector space, and $T: V \rightarrow V$ is linear then [T] is diagonal in an ordered basis e_{1}, \ldots if and only if the basis vectors e_{1}, \ldots, e_{n} are eigenvectors with eigenvalues $[T]_{11},[T]_{22}, \ldots$
- Proof:
- If $[T]$ is diagonal: Clearly $[T]\left[e_{i}\right]=[T]_{i i}\left[e_{i}\right]$. Hence $T e_{i}=T_{i i} e_{i}$, i.e., e_{i} are eigenvectors.
- If e_{i} are eigenvectors with eigenvalues $\lambda_{1}, \lambda_{2}, \ldots: T e_{i}=\lambda_{i} e_{i}$. By definition of [T],

Eigenvalues and eigenvectors

- Def: Let $T: V \rightarrow V$ be a linear map and V be a vector space. A non-zero vector v is said to be an eigenvector with eigenvalue $\lambda \in \mathbb{F}$ if $T v=\lambda v$.
- Rookie mistake: An eigenvector by definition is required to NOT be the zero vector!
- Theorem: If V is a f.d. vector space, and $T: V \rightarrow V$ is linear then [T] is diagonal in an ordered basis e_{1}, \ldots if and only if the basis vectors e_{1}, \ldots, e_{n} are eigenvectors with eigenvalues $[T]_{11},[T]_{22}, \ldots$
- Proof:
- If $[T]$ is diagonal: Clearly $[T]\left[e_{i}\right]=[T]_{i i}\left[e_{i}\right]$. Hence $T e_{i}=T_{i i} e_{i}$, i.e., e_{i} are eigenvectors.
- If e_{i} are eigenvectors with eigenvalues $\lambda_{1}, \lambda_{2}, \ldots: T e_{i}=\lambda_{i} e_{i}$. By definition of $[T]$, it is diagonal with

Eigenvalues and eigenvectors

- Def: Let $T: V \rightarrow V$ be a linear map and V be a vector space. A non-zero vector v is said to be an eigenvector with eigenvalue $\lambda \in \mathbb{F}$ if $T v=\lambda v$.
- Rookie mistake: An eigenvector by definition is required to NOT be the zero vector!
- Theorem: If V is a f.d. vector space, and $T: V \rightarrow V$ is linear then [T] is diagonal in an ordered basis e_{1}, \ldots if and only if the basis vectors e_{1}, \ldots, e_{n} are eigenvectors with eigenvalues $[T]_{11},[T]_{22}, \ldots$
- Proof:
- If $[T]$ is diagonal: Clearly $[T]\left[e_{i}\right]=[T]_{i i}\left[e_{i}\right]$. Hence $T e_{i}=T_{i i} e_{i}$, i.e., e_{i} are eigenvectors.
- If e_{i} are eigenvectors with eigenvalues $\lambda_{1}, \lambda_{2}, \ldots: T e_{i}=\lambda_{i} e_{i}$. By definition of [T], it is diagonal with diagonal entries λ_{i}.

Eigenvalues and eigenvectors

- Def: Let $T: V \rightarrow V$ be a linear map and V be a vector space. A non-zero vector v is said to be an eigenvector with eigenvalue $\lambda \in \mathbb{F}$ if $T v=\lambda v$.
- Rookie mistake: An eigenvector by definition is required to NOT be the zero vector!
- Theorem: If V is a f.d. vector space, and $T: V \rightarrow V$ is linear then [T] is diagonal in an ordered basis e_{1}, \ldots if and only if the basis vectors e_{1}, \ldots, e_{n} are eigenvectors with eigenvalues $[T]_{11},[T]_{22}, \ldots$
- Proof:
- If $[T]$ is diagonal: Clearly $[T]\left[e_{i}\right]=[T]_{i i}\left[e_{i}\right]$. Hence $T e_{i}=T_{i i} e_{i}$, i.e., e_{i} are eigenvectors.
- If e_{i} are eigenvectors with eigenvalues $\lambda_{1}, \lambda_{2}, \ldots: T e_{i}=\lambda_{i} e_{i}$. By definition of [T], it is diagonal with diagonal entries λ_{i}.
- A linear map

Eigenvalues and eigenvectors

- Def: Let $T: V \rightarrow V$ be a linear map and V be a vector space. A non-zero vector v is said to be an eigenvector with eigenvalue $\lambda \in \mathbb{F}$ if $T v=\lambda v$.
- Rookie mistake: An eigenvector by definition is required to NOT be the zero vector!
- Theorem: If V is a f.d. vector space, and $T: V \rightarrow V$ is linear then [T] is diagonal in an ordered basis e_{1}, \ldots if and only if the basis vectors e_{1}, \ldots, e_{n} are eigenvectors with eigenvalues $[T]_{11},[T]_{22}, \ldots$.
- Proof:
- If $[T]$ is diagonal: Clearly $[T]\left[e_{i}\right]=[T]_{i i}\left[e_{i}\right]$. Hence $T e_{i}=T_{i i} e_{i}$, i.e., e_{i} are eigenvectors.
- If e_{i} are eigenvectors with eigenvalues $\lambda_{1}, \lambda_{2}, \ldots: T e_{i}=\lambda_{i} e_{i}$. By definition of [T], it is diagonal with diagonal entries λ_{i}.
- A linear map $T: V \rightarrow V$ is said to be

Eigenvalues and eigenvectors

- Def: Let $T: V \rightarrow V$ be a linear map and V be a vector space. A non-zero vector v is said to be an eigenvector with eigenvalue $\lambda \in \mathbb{F}$ if $T v=\lambda v$.
- Rookie mistake: An eigenvector by definition is required to NOT be the zero vector!
- Theorem: If V is a f.d. vector space, and $T: V \rightarrow V$ is linear then [T] is diagonal in an ordered basis e_{1}, \ldots if and only if the basis vectors e_{1}, \ldots, e_{n} are eigenvectors with eigenvalues $[T]_{11},[T]_{22}, \ldots$.
- Proof:
- If $[T]$ is diagonal: Clearly $[T]\left[e_{i}\right]=[T]_{i i}\left[e_{i}\right]$. Hence $T e_{i}=T_{i i} e_{i}$, i.e., e_{i} are eigenvectors.
- If e_{i} are eigenvectors with eigenvalues $\lambda_{1}, \lambda_{2}, \ldots: T e_{i}=\lambda_{i} e_{i}$. By definition of [T], it is diagonal with diagonal entries λ_{i}.
- A linear map $T: V \rightarrow V$ is said to be diagonalisable if

Eigenvalues and eigenvectors

- Def: Let $T: V \rightarrow V$ be a linear map and V be a vector space. A non-zero vector v is said to be an eigenvector with eigenvalue $\lambda \in \mathbb{F}$ if $T v=\lambda v$.
- Rookie mistake: An eigenvector by definition is required to NOT be the zero vector!
- Theorem: If V is a f.d. vector space, and $T: V \rightarrow V$ is linear then [T] is diagonal in an ordered basis e_{1}, \ldots if and only if the basis vectors e_{1}, \ldots, e_{n} are eigenvectors with eigenvalues $[T]_{11},[T]_{22}, \ldots$.
- Proof:
- If $[T]$ is diagonal: Clearly $[T]\left[e_{i}\right]=[T]_{i i}\left[e_{i}\right]$. Hence $T e_{i}=T_{i i} e_{i}$, i.e., e_{i} are eigenvectors.
- If e_{i} are eigenvectors with eigenvalues $\lambda_{1}, \lambda_{2}, \ldots: T e_{i}=\lambda_{i} e_{i}$. By definition of [T], it is diagonal with diagonal entries λ_{i}.
- A linear map $T: V \rightarrow V$ is said to be diagonalisable if it has a basis

Eigenvalues and eigenvectors

- Def: Let $T: V \rightarrow V$ be a linear map and V be a vector space. A non-zero vector v is said to be an eigenvector with eigenvalue $\lambda \in \mathbb{F}$ if $T v=\lambda v$.
- Rookie mistake: An eigenvector by definition is required to NOT be the zero vector!
- Theorem: If V is a f.d. vector space, and $T: V \rightarrow V$ is linear then [T] is diagonal in an ordered basis e_{1}, \ldots if and only if the basis vectors e_{1}, \ldots, e_{n} are eigenvectors with eigenvalues $[T]_{11},[T]_{22}, \ldots$.
- Proof:
- If $[T]$ is diagonal: Clearly $[T]\left[e_{i}\right]=[T]_{i i}\left[e_{i}\right]$. Hence $T e_{i}=T_{i i} e_{i}$, i.e., e_{i} are eigenvectors.
- If e_{i} are eigenvectors with eigenvalues $\lambda_{1}, \lambda_{2}, \ldots: T e_{i}=\lambda_{i} e_{i}$. By definition of [T], it is diagonal with diagonal entries λ_{i}.
- A linear map $T: V \rightarrow V$ is said to be diagonalisable if it has a basis of eigenvectors.

Eigenvalues and eigenvectors

- Def: Let $T: V \rightarrow V$ be a linear map and V be a vector space. A non-zero vector v is said to be an eigenvector with eigenvalue $\lambda \in \mathbb{F}$ if $T v=\lambda v$.
- Rookie mistake: An eigenvector by definition is required to NOT be the zero vector!
- Theorem: If V is a f.d. vector space, and $T: V \rightarrow V$ is linear then [T] is diagonal in an ordered basis e_{1}, \ldots if and only if the basis vectors e_{1}, \ldots, e_{n} are eigenvectors with eigenvalues $[T]_{11},[T]_{22}, \ldots$.
- Proof:
- If $[T]$ is diagonal: Clearly $[T]\left[e_{i}\right]=[T]_{i i}\left[e_{i}\right]$. Hence $T e_{i}=T_{i i} e_{i}$, i.e., e_{i} are eigenvectors.
- If e_{i} are eigenvectors with eigenvalues $\lambda_{1}, \lambda_{2}, \ldots: T e_{i}=\lambda_{i} e_{i}$. By definition of [T], it is diagonal with diagonal entries λ_{i}.
- A linear map $T: V \rightarrow V$ is said to be diagonalisable if it has a basis of eigenvectors. Likewise, a square matrix A

Eigenvalues and eigenvectors

- Def: Let $T: V \rightarrow V$ be a linear map and V be a vector space. A non-zero vector v is said to be an eigenvector with eigenvalue $\lambda \in \mathbb{F}$ if $T v=\lambda v$.
- Rookie mistake: An eigenvector by definition is required to NOT be the zero vector!
- Theorem: If V is a f.d. vector space, and $T: V \rightarrow V$ is linear then [T] is diagonal in an ordered basis e_{1}, \ldots if and only if the basis vectors e_{1}, \ldots, e_{n} are eigenvectors with eigenvalues $[T]_{11},[T]_{22}, \ldots$.
- Proof:
- If $[T]$ is diagonal: Clearly $[T]\left[e_{i}\right]=[T]_{i i}\left[e_{i}\right]$. Hence $T e_{i}=T_{i i} e_{i}$, i.e., e_{i} are eigenvectors.
- If e_{i} are eigenvectors with eigenvalues $\lambda_{1}, \lambda_{2}, \ldots: T e_{i}=\lambda_{i} e_{i}$. By definition of [T], it is diagonal with diagonal entries λ_{i}.
- A linear map $T: V \rightarrow V$ is said to be diagonalisable if it has a basis of eigenvectors. Likewise, a square matrix A is said to be diagonalisable if

Eigenvalues and eigenvectors

- Def: Let $T: V \rightarrow V$ be a linear map and V be a vector space. A non-zero vector v is said to be an eigenvector with eigenvalue $\lambda \in \mathbb{F}$ if $T v=\lambda v$.
- Rookie mistake: An eigenvector by definition is required to NOT be the zero vector!
- Theorem: If V is a f.d. vector space, and $T: V \rightarrow V$ is linear then [T] is diagonal in an ordered basis e_{1}, \ldots if and only if the basis vectors e_{1}, \ldots, e_{n} are eigenvectors with eigenvalues $[T]_{11},[T]_{22}, \ldots$.
- Proof:
- If $[T]$ is diagonal: Clearly $[T]\left[e_{i}\right]=[T]_{i i}\left[e_{i}\right]$. Hence $T e_{i}=T_{i i} e_{i}$, i.e., e_{i} are eigenvectors.
- If e_{i} are eigenvectors with eigenvalues $\lambda_{1}, \lambda_{2}, \ldots: T e_{i}=\lambda_{i} e_{i}$. By definition of [T], it is diagonal with diagonal entries λ_{i}.
- A linear map $T: V \rightarrow V$ is said to be diagonalisable if it has a basis of eigenvectors. Likewise, a square matrix A is said to be diagonalisable if there is an invertible matrix P

Eigenvalues and eigenvectors

- Def: Let $T: V \rightarrow V$ be a linear map and V be a vector space. A non-zero vector v is said to be an eigenvector with eigenvalue $\lambda \in \mathbb{F}$ if $T v=\lambda v$.
- Rookie mistake: An eigenvector by definition is required to NOT be the zero vector!
- Theorem: If V is a f.d. vector space, and $T: V \rightarrow V$ is linear then [T] is diagonal in an ordered basis e_{1}, \ldots if and only if the basis vectors e_{1}, \ldots, e_{n} are eigenvectors with eigenvalues $[T]_{11},[T]_{22}, \ldots$.
- Proof:
- If $[T]$ is diagonal: Clearly $[T]\left[e_{i}\right]=[T]_{i i}\left[e_{i}\right]$. Hence $T e_{i}=T_{i i} e_{i}$, i.e., e_{i} are eigenvectors.
- If e_{i} are eigenvectors with eigenvalues $\lambda_{1}, \lambda_{2}, \ldots: T e_{i}=\lambda_{i} e_{i}$. By definition of [T], it is diagonal with diagonal entries λ_{i}.
- A linear map $T: V \rightarrow V$ is said to be diagonalisable if it has a basis of eigenvectors. Likewise, a square matrix A is said to be diagonalisable if there is an invertible matrix P such that $P^{-1} A P$ is diasonal

Examples

Examples

- Consider $T: V \rightarrow V$

Examples

- Consider $T: V \rightarrow V$ given by $T(v)=c v$

Examples

- Consider $T: V \rightarrow V$ given by $T(v)=c v$ for all $v \in V$.

Examples

- Consider $T: V \rightarrow V$ given by $T(v)=c v$ for all $v \in V$. Every non-zero vector

Examples

- Consider $T: V \rightarrow V$ given by $T(v)=c v$ for all $v \in V$. Every non-zero vector is an eigenvector with

Examples

- Consider $T: V \rightarrow V$ given by $T(v)=c v$ for all $v \in V$. Every non-zero vector is an eigenvector with eigenvalue c.

Examples

- Consider $T: V \rightarrow V$ given by $T(v)=c v$ for all $v \in V$. Every non-zero vector is an eigenvector with eigenvalue c.
- Eigenspace:

Examples

- Consider $T: V \rightarrow V$ given by $T(v)=c v$ for all $v \in V$. Every non-zero vector is an eigenvector with eigenvalue c.
- Eigenspace: Suppose $T(v)=\lambda v$ for a non-zero v

Examples

- Consider $T: V \rightarrow V$ given by $T(v)=c v$ for all $v \in V$. Every non-zero vector is an eigenvector with eigenvalue c.
- Eigenspace: Suppose $T(v)=\lambda v$ for a non-zero v then $T(c v)=c T(v)=\lambda(c v)$ for

Examples

- Consider $T: V \rightarrow V$ given by $T(v)=c v$ for all $v \in V$. Every non-zero vector is an eigenvector with eigenvalue c.
- Eigenspace: Suppose $T(v)=\lambda v$ for a non-zero v then $T(c v)=c T(v)=\lambda(c v)$ for every $c \in \mathbb{F}$.

Examples

- Consider $T: V \rightarrow V$ given by $T(v)=c v$ for all $v \in V$. Every non-zero vector is an eigenvector with eigenvalue c.
- Eigenspace: Suppose $T(v)=\lambda v$ for a non-zero v then $T(c v)=c T(v)=\lambda(c v)$ for every $c \in \mathbb{F}$. Moreover,

Examples

- Consider $T: V \rightarrow V$ given by $T(v)=c v$ for all $v \in V$. Every non-zero vector is an eigenvector with eigenvalue c.
- Eigenspace: Suppose $T(v)=\lambda v$ for a non-zero v then $T(c v)=c T(v)=\lambda(c v)$ for every $c \in \mathbb{F}$. Moreover, if $T(w)=\lambda w$,

Examples

- Consider $T: V \rightarrow V$ given by $T(v)=c v$ for all $v \in V$. Every non-zero vector is an eigenvector with eigenvalue c.
- Eigenspace: Suppose $T(v)=\lambda v$ for a non-zero v then $T(c v)=c T(v)=\lambda(c v)$ for every $c \in \mathbb{F}$. Moreover, if $T(w)=\lambda w$, then $T(v+w)=T(v)+T(w)=\lambda(v+w)$.

Examples

- Consider $T: V \rightarrow V$ given by $T(v)=c v$ for all $v \in V$. Every non-zero vector is an eigenvector with eigenvalue c.
- Eigenspace: Suppose $T(v)=\lambda v$ for a non-zero v then $T(c v)=c T(v)=\lambda(c v)$ for every $c \in \mathbb{F}$. Moreover, if $T(w)=\lambda w$, then $T(v+w)=T(v)+T(w)=\lambda(v+w)$. In other words,

Examples

- Consider $T: V \rightarrow V$ given by $T(v)=c v$ for all $v \in V$. Every non-zero vector is an eigenvector with eigenvalue c.
- Eigenspace: Suppose $T(v)=\lambda v$ for a non-zero v then $T(c v)=c T(v)=\lambda(c v)$ for every $c \in \mathbb{F}$. Moreover, if $T(w)=\lambda w$, then $T(v+w)=T(v)+T(w)=\lambda(v+w)$. In other words, the set of all

Examples

- Consider $T: V \rightarrow V$ given by $T(v)=c v$ for all $v \in V$. Every non-zero vector is an eigenvector with eigenvalue c.
- Eigenspace: Suppose $T(v)=\lambda v$ for a non-zero v then $T(c v)=c T(v)=\lambda(c v)$ for every $c \in \mathbb{F}$. Moreover, if $T(w)=\lambda w$, then $T(v+w)=T(v)+T(w)=\lambda(v+w)$. In other words, the set of all eigenvectors corresponding to

Examples

- Consider $T: V \rightarrow V$ given by $T(v)=c v$ for all $v \in V$. Every non-zero vector is an eigenvector with eigenvalue c.
- Eigenspace: Suppose $T(v)=\lambda v$ for a non-zero v then $T(c v)=c T(v)=\lambda(c v)$ for every $c \in \mathbb{F}$. Moreover, if $T(w)=\lambda w$, then $T(v+w)=T(v)+T(w)=\lambda(v+w)$. In other words, the set of all eigenvectors corresponding to the same eigenvalue along with the zero vector

Examples

- Consider $T: V \rightarrow V$ given by $T(v)=c v$ for all $v \in V$. Every non-zero vector is an eigenvector with eigenvalue c.
- Eigenspace: Suppose $T(v)=\lambda v$ for a non-zero v then $T(c v)=c T(v)=\lambda(c v)$ for every $c \in \mathbb{F}$. Moreover, if $T(w)=\lambda w$, then $T(v+w)=T(v)+T(w)=\lambda(v+w)$. \ln other words, the set of all eigenvectors corresponding to the same eigenvalue along with the zero vector forms a subspace

Examples

- Consider $T: V \rightarrow V$ given by $T(v)=c v$ for all $v \in V$. Every non-zero vector is an eigenvector with eigenvalue c.
- Eigenspace: Suppose $T(v)=\lambda v$ for a non-zero v then $T(c v)=c T(v)=\lambda(c v)$ for every $c \in \mathbb{F}$. Moreover, if $T(w)=\lambda w$, then $T(v+w)=T(v)+T(w)=\lambda(v+w)$. \ln other words, the set of all eigenvectors corresponding to the same eigenvalue along with the zero vector forms a subspace known as the

Examples

- Consider $T: V \rightarrow V$ given by $T(v)=c v$ for all $v \in V$. Every non-zero vector is an eigenvector with eigenvalue c.
- Eigenspace: Suppose $T(v)=\lambda v$ for a non-zero v then $T(c v)=c T(v)=\lambda(c v)$ for every $c \in \mathbb{F}$. Moreover, if $T(w)=\lambda w$, then $T(v+w)=T(v)+T(w)=\lambda(v+w)$. In other words, the set of all eigenvectors corresponding to the same eigenvalue along with the zero vector forms a subspace known as the eigenspace of λ.
- Consider $T: V \rightarrow V$ given by $T(v)=c v$ for all $v \in V$. Every non-zero vector is an eigenvector with eigenvalue c.
- Eigenspace: Suppose $T(v)=\lambda v$ for a non-zero v then $T(c v)=c T(v)=\lambda(c v)$ for every $c \in \mathbb{F}$. Moreover, if $T(w)=\lambda w$, then $T(v+w)=T(v)+T(w)=\lambda(v+w)$. \ln other words, the set of all eigenvectors corresponding to the same eigenvalue along with the zero vector forms a subspace known as the eigenspace of λ.
- Consider the linear map $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$
- Consider $T: V \rightarrow V$ given by $T(v)=c v$ for all $v \in V$. Every non-zero vector is an eigenvector with eigenvalue c.
- Eigenspace: Suppose $T(v)=\lambda v$ for a non-zero v then $T(c v)=c T(v)=\lambda(c v)$ for every $c \in \mathbb{F}$. Moreover, if $T(w)=\lambda w$, then $T(v+w)=T(v)+T(w)=\lambda(v+w)$. \ln other words, the set of all eigenvectors corresponding to the same eigenvalue along with the zero vector forms a subspace known as the eigenspace of λ.
- Consider the linear map $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ given by

$$
T(v)=\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]
$$

- Consider $T: V \rightarrow V$ given by $T(v)=c v$ for all $v \in V$. Every non-zero vector is an eigenvector with eigenvalue c.
- Eigenspace: Suppose $T(v)=\lambda v$ for a non-zero v then $T(c v)=c T(v)=\lambda(c v)$ for every $c \in \mathbb{F}$. Moreover, if $T(w)=\lambda w$, then $T(v+w)=T(v)+T(w)=\lambda(v+w)$. In other words, the set of all eigenvectors corresponding to the same eigenvalue along with the zero vector forms a subspace known as the eigenspace of λ.
- Consider the linear map $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ given by

$$
T(v)=\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right] . \text { Then } T\left(e_{1}\right)=0
$$

- Consider $T: V \rightarrow V$ given by $T(v)=c v$ for all $v \in V$. Every non-zero vector is an eigenvector with eigenvalue c.
- Eigenspace: Suppose $T(v)=\lambda v$ for a non-zero v then $T(c v)=c T(v)=\lambda(c v)$ for every $c \in \mathbb{F}$. Moreover, if $T(w)=\lambda w$, then $T(v+w)=T(v)+T(w)=\lambda(v+w)$. In other words, the set of all eigenvectors corresponding to the same eigenvalue along with the zero vector forms a subspace known as the eigenspace of λ.
- Consider the linear map $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ given by

$$
T(v)=\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right] . \text { Then } T\left(e_{1}\right)=0 . \text { Hence } T
$$

- Consider $T: V \rightarrow V$ given by $T(v)=c v$ for all $v \in V$. Every non-zero vector is an eigenvector with eigenvalue c.
- Eigenspace: Suppose $T(v)=\lambda v$ for a non-zero v then $T(c v)=c T(v)=\lambda(c v)$ for every $c \in \mathbb{F}$. Moreover, if $T(w)=\lambda w$, then $T(v+w)=T(v)+T(w)=\lambda(v+w)$. In other words, the set of all eigenvectors corresponding to the same eigenvalue along with the zero vector forms a subspace known as the eigenspace of λ.
- Consider the linear map $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ given by
$T(v)=\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right]\left[\begin{array}{l}x \\ y\end{array}\right]$. Then $T\left(e_{1}\right)=0$. Hence T can have 0 as an eigenvalue
- Consider $T: V \rightarrow V$ given by $T(v)=c v$ for all $v \in V$. Every non-zero vector is an eigenvector with eigenvalue c.
- Eigenspace: Suppose $T(v)=\lambda v$ for a non-zero v then $T(c v)=c T(v)=\lambda(c v)$ for every $c \in \mathbb{F}$. Moreover, if $T(w)=\lambda w$, then $T(v+w)=T(v)+T(w)=\lambda(v+w)$. In other words, the set of all eigenvectors corresponding to the same eigenvalue along with the zero vector forms a subspace known as the eigenspace of λ.
- Consider the linear map $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ given by $T(v)=\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right]\left[\begin{array}{l}x \\ y\end{array}\right]$. Then $T\left(e_{1}\right)=0$. Hence T can have 0 as an eigenvalue without T being zero itself!
- Consider $T: V \rightarrow V$ given by $T(v)=c v$ for all $v \in V$. Every non-zero vector is an eigenvector with eigenvalue c.
- Eigenspace: Suppose $T(v)=\lambda v$ for a non-zero v then $T(c v)=c T(v)=\lambda(c v)$ for every $c \in \mathbb{F}$. Moreover, if $T(w)=\lambda w$, then $T(v+w)=T(v)+T(w)=\lambda(v+w)$. In other words, the set of all eigenvectors corresponding to the same eigenvalue along with the zero vector forms a subspace known as the eigenspace of λ.
- Consider the linear map $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ given by
$T(v)=\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right]\left[\begin{array}{l}x \\ y\end{array}\right]$. Then $T\left(e_{1}\right)=0$. Hence T can have
0 as an eigenvalue without T being zero itself! In this example
- Consider $T: V \rightarrow V$ given by $T(v)=c v$ for all $v \in V$. Every non-zero vector is an eigenvector with eigenvalue c.
- Eigenspace: Suppose $T(v)=\lambda v$ for a non-zero v then $T(c v)=c T(v)=\lambda(c v)$ for every $c \in \mathbb{F}$. Moreover, if $T(w)=\lambda w$, then $T(v+w)=T(v)+T(w)=\lambda(v+w)$. In other words, the set of all eigenvectors corresponding to the same eigenvalue along with the zero vector forms a subspace known as the eigenspace of λ.
- Consider the linear map $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ given by
$T(v)=\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right]\left[\begin{array}{l}x \\ y\end{array}\right]$. Then $T\left(e_{1}\right)=0$. Hence T can have 0 as an eigenvalue without T being zero itself! In this example $T(v)=\lambda v$
- Consider $T: V \rightarrow V$ given by $T(v)=c v$ for all $v \in V$. Every non-zero vector is an eigenvector with eigenvalue c.
- Eigenspace: Suppose $T(v)=\lambda v$ for a non-zero v then $T(c v)=c T(v)=\lambda(c v)$ for every $c \in \mathbb{F}$. Moreover, if $T(w)=\lambda w$, then $T(v+w)=T(v)+T(w)=\lambda(v+w)$. In other words, the set of all eigenvectors corresponding to the same eigenvalue along with the zero vector forms a subspace known as the eigenspace of λ.
- Consider the linear map $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ given by $T(v)=\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right]\left[\begin{array}{l}x \\ y\end{array}\right]$. Then $T\left(e_{1}\right)=0$. Hence T can have 0 as an eigenvalue without T being zero itself! In this example $T(v)=\lambda v$ precisely when $y=\lambda x$,
- Consider $T: V \rightarrow V$ given by $T(v)=c v$ for all $v \in V$. Every non-zero vector is an eigenvector with eigenvalue c.
- Eigenspace: Suppose $T(v)=\lambda v$ for a non-zero v then $T(c v)=c T(v)=\lambda(c v)$ for every $c \in \mathbb{F}$. Moreover, if $T(w)=\lambda w$, then $T(v+w)=T(v)+T(w)=\lambda(v+w)$. In other words, the set of all eigenvectors corresponding to the same eigenvalue along with the zero vector forms a subspace known as the eigenspace of λ.
- Consider the linear map $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ given by $T(v)=\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right]\left[\begin{array}{l}x \\ y\end{array}\right]$. Then $T\left(e_{1}\right)=0$. Hence T can have 0 as an eigenvalue without T being zero itself! In this example $T(v)=\lambda v$ precisely when $y=\lambda x, 0=\lambda y$.
- Consider $T: V \rightarrow V$ given by $T(v)=c v$ for all $v \in V$. Every non-zero vector is an eigenvector with eigenvalue c.
- Eigenspace: Suppose $T(v)=\lambda v$ for a non-zero v then $T(c v)=c T(v)=\lambda(c v)$ for every $c \in \mathbb{F}$. Moreover, if $T(w)=\lambda w$, then $T(v+w)=T(v)+T(w)=\lambda(v+w)$. In other words, the set of all eigenvectors corresponding to the same eigenvalue along with the zero vector forms a subspace known as the eigenspace of λ.
- Consider the linear map $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ given by $T(v)=\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right]\left[\begin{array}{l}x \\ y\end{array}\right]$. Then $T\left(e_{1}\right)=0$. Hence T can have 0 as an eigenvalue without T being zero itself! In this example $T(v)=\lambda v$ precisely when $y=\lambda x, 0=\lambda y$. Thus $\lambda=0$ is the
- Consider $T: V \rightarrow V$ given by $T(v)=c v$ for all $v \in V$. Every non-zero vector is an eigenvector with eigenvalue c.
- Eigenspace: Suppose $T(v)=\lambda v$ for a non-zero v then $T(c v)=c T(v)=\lambda(c v)$ for every $c \in \mathbb{F}$. Moreover, if $T(w)=\lambda w$, then $T(v+w)=T(v)+T(w)=\lambda(v+w)$. In other words, the set of all eigenvectors corresponding to the same eigenvalue along with the zero vector forms a subspace known as the eigenspace of λ.
- Consider the linear map $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ given by $T(v)=\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right]\left[\begin{array}{l}x \\ y\end{array}\right]$. Then $T\left(e_{1}\right)=0$. Hence T can have 0 as an eigenvalue without T being zero itself! In this example $T(v)=\lambda v$ precisely when $y=\lambda x, 0=\lambda y$. Thus $\lambda=0$ is the only eigenvalue
- Consider $T: V \rightarrow V$ given by $T(v)=c v$ for all $v \in V$. Every non-zero vector is an eigenvector with eigenvalue c.
- Eigenspace: Suppose $T(v)=\lambda v$ for a non-zero v then $T(c v)=c T(v)=\lambda(c v)$ for every $c \in \mathbb{F}$. Moreover, if $T(w)=\lambda w$, then $T(v+w)=T(v)+T(w)=\lambda(v+w)$. In other words, the set of all eigenvectors corresponding to the same eigenvalue along with the zero vector forms a subspace known as the eigenspace of λ.
- Consider the linear map $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ given by $T(v)=\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right]\left[\begin{array}{l}x \\ y\end{array}\right]$. Then $T\left(e_{1}\right)=0$. Hence T can have 0 as an eigenvalue without T being zero itself! In this example $T(v)=\lambda v$ precisely when $y=\lambda x, 0=\lambda y$. Thus $\lambda=0$ is the only eigenvalue and the eigenspace is
- Consider $T: V \rightarrow V$ given by $T(v)=c v$ for all $v \in V$. Every non-zero vector is an eigenvector with eigenvalue c.
- Eigenspace: Suppose $T(v)=\lambda v$ for a non-zero v then $T(c v)=c T(v)=\lambda(c v)$ for every $c \in \mathbb{F}$. Moreover, if $T(w)=\lambda w$, then $T(v+w)=T(v)+T(w)=\lambda(v+w)$. In other words, the set of all eigenvectors corresponding to the same eigenvalue along with the zero vector forms a subspace known as the eigenspace of λ.
- Consider the linear map $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ given by $T(v)=\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right]\left[\begin{array}{l}x \\ y\end{array}\right]$. Then $T\left(e_{1}\right)=0$. Hence T can have 0 as an eigenvalue without T being zero itself! In this example $T(v)=\lambda v$ precisely when $y=\lambda x, 0=\lambda y$. Thus $\lambda=0$ is the only eigenvalue and the eigenspace is spanned by
- Consider $T: V \rightarrow V$ given by $T(v)=c v$ for all $v \in V$. Every non-zero vector is an eigenvector with eigenvalue c.
- Eigenspace: Suppose $T(v)=\lambda v$ for a non-zero v then $T(c v)=c T(v)=\lambda(c v)$ for every $c \in \mathbb{F}$. Moreover, if $T(w)=\lambda w$, then $T(v+w)=T(v)+T(w)=\lambda(v+w)$. In other words, the set of all eigenvectors corresponding to the same eigenvalue along with the zero vector forms a subspace known as the eigenspace of λ.
- Consider the linear map $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ given by $T(v)=\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right]\left[\begin{array}{l}x \\ y\end{array}\right]$. Then $T\left(e_{1}\right)=0$. Hence T can have 0 as an eigenvalue without T being zero itself! In this example $T(v)=\lambda v$ precisely when $y=\lambda x, 0=\lambda y$. Thus $\lambda=0$ is the only eigenvalue and the eigenspace is spanned by one vector, i.e.,
- Consider $T: V \rightarrow V$ given by $T(v)=c v$ for all $v \in V$. Every non-zero vector is an eigenvector with eigenvalue c.
- Eigenspace: Suppose $T(v)=\lambda v$ for a non-zero v then $T(c v)=c T(v)=\lambda(c v)$ for every $c \in \mathbb{F}$. Moreover, if $T(w)=\lambda w$, then $T(v+w)=T(v)+T(w)=\lambda(v+w)$. In other words, the set of all eigenvectors corresponding to the same eigenvalue along with the zero vector forms a subspace known as the eigenspace of λ.
- Consider the linear map $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ given by $T(v)=\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right]\left[\begin{array}{l}x \\ y\end{array}\right]$. Then $T\left(e_{1}\right)=0$. Hence T can have 0 as an eigenvalue without T being zero itself! In this example $T(v)=\lambda v$ precisely when $y=\lambda x, 0=\lambda y$. Thus $\lambda=0$ is the only eigenvalue and the eigenspace is spanned by one vector, i.e., it is one-dimensional.
- Consider $T: V \rightarrow V$ given by $T(v)=c v$ for all $v \in V$. Every non-zero vector is an eigenvector with eigenvalue c.
- Eigenspace: Suppose $T(v)=\lambda v$ for a non-zero v then $T(c v)=c T(v)=\lambda(c v)$ for every $c \in \mathbb{F}$. Moreover, if $T(w)=\lambda w$, then $T(v+w)=T(v)+T(w)=\lambda(v+w)$. In other words, the set of all eigenvectors corresponding to the same eigenvalue along with the zero vector forms a subspace known as the eigenspace of λ.
- Consider the linear map $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ given by $T(v)=\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right]\left[\begin{array}{l}x \\ y\end{array}\right]$. Then $T\left(e_{1}\right)=0$. Hence T can have 0 as an eigenvalue without T being zero itself! In this example $T(v)=\lambda v$ precisely when $y=\lambda x, 0=\lambda y$. Thus $\lambda=0$ is the only eigenvalue and the eigenspace is spanned by one vector, i.e., it is one-dimensional. Thus T is
- Consider $T: V \rightarrow V$ given by $T(v)=c v$ for all $v \in V$. Every non-zero vector is an eigenvector with eigenvalue c.
- Eigenspace: Suppose $T(v)=\lambda v$ for a non-zero v then $T(c v)=c T(v)=\lambda(c v)$ for every $c \in \mathbb{F}$. Moreover, if $T(w)=\lambda w$, then $T(v+w)=T(v)+T(w)=\lambda(v+w)$. In other words, the set of all eigenvectors corresponding to the same eigenvalue along with the zero vector forms a subspace known as the eigenspace of λ.
- Consider the linear map $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ given by $T(v)=\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right]\left[\begin{array}{l}x \\ y\end{array}\right]$. Then $T\left(e_{1}\right)=0$. Hence T can have 0 as an eigenvalue without T being zero itself! In this example $T(v)=\lambda v$ precisely when $y=\lambda x, 0=\lambda y$. Thus $\lambda=0$ is the only eigenvalue and the eigenspace is spanned by one vector, i.e., it is one-dimensional. Thus T is not diagonalisable.

Examples

Examples

- Consider rotation

Examples

- Consider rotation in \mathbb{R}^{2}

Examples

- Consider rotation in \mathbb{R}^{2} by 90 degrees.

Examples

- Consider rotation in \mathbb{R}^{2} by 90 degrees. Clearly, there is

Examples

- Consider rotation in \mathbb{R}^{2} by 90 degrees. Clearly, there is no non-zero vector v

Examples

- Consider rotation in \mathbb{R}^{2} by 90 degrees. Clearly, there is no non-zero vector v such that $T v=\lambda v$ where $\lambda \in \mathbb{R}$.

Examples

- Consider rotation in \mathbb{R}^{2} by 90 degrees. Clearly, there is no non-zero vector v such that $T v=\lambda v$ where $\lambda \in \mathbb{R}$. The matrix

Examples

- Consider rotation in \mathbb{R}^{2} by 90 degrees. Clearly, there is no non-zero vector v such that $T v=\lambda v$ where $\lambda \in \mathbb{R}$. The matrix in the standard basis is

Examples

- Consider rotation in \mathbb{R}^{2} by 90 degrees. Clearly, there is no non-zero vector v such that $T v=\lambda v$ where $\lambda \in \mathbb{R}$. The matrix in the standard basis is $\left[\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right]$.

Examples

- Consider rotation in \mathbb{R}^{2} by 90 degrees. Clearly, there is no non-zero vector v such that $T v=\lambda v$ where $\lambda \in \mathbb{R}$. The matrix in the standard basis is $\left[\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right]$. Note that

Examples

- Consider rotation in \mathbb{R}^{2} by 90 degrees. Clearly, there is no non-zero vector v such that $T v=\lambda v$ where $\lambda \in \mathbb{R}$. The matrix in the standard basis is $\left[\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right]$. Note that $\left[\begin{array}{c}\sqrt{-1} \\ 1\end{array}\right]$ is an

Examples

- Consider rotation in \mathbb{R}^{2} by 90 degrees. Clearly, there is no non-zero vector v such that $T v=\lambda v$ where $\lambda \in \mathbb{R}$. The matrix in the standard basis is $\left[\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right]$. Note that $\left[\begin{array}{c}\sqrt{-1} \\ 1\end{array}\right]$ is an eigenvector with eigenvalue $\sqrt{-1}$.

Examples

- Consider rotation in \mathbb{R}^{2} by 90 degrees. Clearly, there is no non-zero vector v such that $T v=\lambda v$ where $\lambda \in \mathbb{R}$. The matrix in the standard basis is $\left[\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right]$. Note that $\left[\begin{array}{c}\sqrt{-1} \\ 1\end{array}\right]$ is an eigenvector with eigenvalue $\sqrt{-1}$. So the field is important.

Examples

- Consider rotation in \mathbb{R}^{2} by 90 degrees. Clearly, there is no non-zero vector v such that $T v=\lambda v$ where $\lambda \in \mathbb{R}$. The matrix in the standard basis is $\left[\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right]$. Note that $\left[\begin{array}{c}\sqrt{-1} \\ 1\end{array}\right]$ is an eigenvector with eigenvalue $\sqrt{-1}$. So the field is important.
- Suppose V

Examples

- Consider rotation in \mathbb{R}^{2} by 90 degrees. Clearly, there is no non-zero vector v such that $T v=\lambda v$ where $\lambda \in \mathbb{R}$. The matrix in the standard basis is $\left[\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right]$. Note that $\left[\begin{array}{c}\sqrt{-1} \\ 1\end{array}\right]$ is an eigenvector with eigenvalue $\sqrt{-1}$. So the field is important.
- Suppose V is the space of $f: \mathbb{R} \rightarrow \mathbb{R}$

Examples

- Consider rotation in \mathbb{R}^{2} by 90 degrees. Clearly, there is no non-zero vector v such that $T v=\lambda v$ where $\lambda \in \mathbb{R}$. The matrix in the standard basis is $\left[\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right]$. Note that $\left[\begin{array}{c}\sqrt{-1} \\ 1\end{array}\right]$ is an eigenvector with eigenvalue $\sqrt{-1}$. So the field is important.
- Suppose V is the space of $f: \mathbb{R} \rightarrow \mathbb{R}$ having derivative of all orders (

Examples

- Consider rotation in \mathbb{R}^{2} by 90 degrees. Clearly, there is no non-zero vector v such that $T v=\lambda v$ where $\lambda \in \mathbb{R}$. The matrix in the standard basis is $\left[\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right]$. Note that $\left[\begin{array}{c}\sqrt{-1} \\ 1\end{array}\right]$ is an eigenvector with eigenvalue $\sqrt{-1}$. So the field is important.
- Suppose V is the space of $f: \mathbb{R} \rightarrow \mathbb{R}$ having derivative of all orders ('smooth' functions).

Examples

- Consider rotation in \mathbb{R}^{2} by 90 degrees. Clearly, there is no non-zero vector v such that $T v=\lambda v$ where $\lambda \in \mathbb{R}$. The matrix in the standard basis is $\left[\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right]$. Note that $\left[\begin{array}{c}\sqrt{-1} \\ 1\end{array}\right]$ is an eigenvector with eigenvalue $\sqrt{-1}$. So the field is important.
- Suppose V is the space of $f: \mathbb{R} \rightarrow \mathbb{R}$ having derivative of all orders ('smooth' functions). $D: V \rightarrow V$ given by

Examples

- Consider rotation in \mathbb{R}^{2} by 90 degrees. Clearly, there is no non-zero vector v such that $T v=\lambda v$ where $\lambda \in \mathbb{R}$. The matrix in the standard basis is $\left[\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right]$. Note that $\left[\begin{array}{c}\sqrt{-1} \\ 1\end{array}\right]$ is an eigenvector with eigenvalue $\sqrt{-1}$. So the field is important.
- Suppose V is the space of $f: \mathbb{R} \rightarrow \mathbb{R}$ having derivative of all orders ('smooth' functions). $D: V \rightarrow V$ given by $D(f)=f^{\prime}$ is a linear map.

Examples

- Consider rotation in \mathbb{R}^{2} by 90 degrees. Clearly, there is no non-zero vector v such that $T v=\lambda v$ where $\lambda \in \mathbb{R}$. The matrix in the standard basis is $\left[\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right]$. Note that $\left[\begin{array}{c}\sqrt{-1} \\ 1\end{array}\right]$ is an eigenvector with eigenvalue $\sqrt{-1}$. So the field is important.
- Suppose V is the space of $f: \mathbb{R} \rightarrow \mathbb{R}$ having derivative of all orders ('smooth' functions). $D: V \rightarrow V$ given by $D(f)=f^{\prime}$ is a linear map. $D f=\lambda f$

Examples

- Consider rotation in \mathbb{R}^{2} by 90 degrees. Clearly, there is no non-zero vector v such that $T v=\lambda v$ where $\lambda \in \mathbb{R}$. The matrix in the standard basis is $\left[\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right]$. Note that $\left[\begin{array}{c}\sqrt{-1} \\ 1\end{array}\right]$ is an eigenvector with eigenvalue $\sqrt{-1}$. So the field is important.
- Suppose V is the space of $f: \mathbb{R} \rightarrow \mathbb{R}$ having derivative of all orders ('smooth' functions). $D: V \rightarrow V$ given by $D(f)=f^{\prime}$ is a linear map. $D f=\lambda f$ precisely when $f^{\prime}(x)=\lambda f(x)$.

Examples

- Consider rotation in \mathbb{R}^{2} by 90 degrees. Clearly, there is no non-zero vector v such that $T v=\lambda v$ where $\lambda \in \mathbb{R}$. The matrix in the standard basis is $\left[\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right]$. Note that $\left[\begin{array}{c}\sqrt{-1} \\ 1\end{array}\right]$ is an eigenvector with eigenvalue $\sqrt{-1}$. So the field is important.
- Suppose V is the space of $f: \mathbb{R} \rightarrow \mathbb{R}$ having derivative of all orders ('smooth' functions). $D: V \rightarrow V$ given by $D(f)=f^{\prime}$ is a linear map. $D f=\lambda f$ precisely when $f^{\prime}(x)=\lambda f(x)$. As we shall prove later,

Examples

- Consider rotation in \mathbb{R}^{2} by 90 degrees. Clearly, there is no non-zero vector v such that $T v=\lambda v$ where $\lambda \in \mathbb{R}$. The matrix in the standard basis is $\left[\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right]$. Note that $\left[\begin{array}{c}\sqrt{-1} \\ 1\end{array}\right]$ is an eigenvector with eigenvalue $\sqrt{-1}$. So the field is important.
- Suppose V is the space of $f: \mathbb{R} \rightarrow \mathbb{R}$ having derivative of all orders ('smooth' functions). $D: V \rightarrow V$ given by $D(f)=f^{\prime}$ is a linear map. $D f=\lambda f$ precisely when $f^{\prime}(x)=\lambda f(x)$. As we shall prove later, $f(x)=A e^{\lambda x}$ is

Examples

- Consider rotation in \mathbb{R}^{2} by 90 degrees. Clearly, there is no non-zero vector v such that $T v=\lambda v$ where $\lambda \in \mathbb{R}$. The matrix in the standard basis is $\left[\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right]$. Note that $\left[\begin{array}{c}\sqrt{-1} \\ 1\end{array}\right]$ is an eigenvector with eigenvalue $\sqrt{-1}$. So the field is important.
- Suppose V is the space of $f: \mathbb{R} \rightarrow \mathbb{R}$ having derivative of all orders ('smooth' functions). $D: V \rightarrow V$ given by $D(f)=f^{\prime}$ is a linear map. $D f=\lambda f$ precisely when $f^{\prime}(x)=\lambda f(x)$. As we shall prove later, $f(x)=A e^{\lambda x}$ is the solution.

A criterion for eigenvalues

A criterion for eigenvalues

- Suppose V is f.d.

A criterion for eigenvalues

- Suppose V is f.d.
- If v is an eigenvector of $T: V \rightarrow V$

A criterion for eigenvalues

- Suppose V is f.d.
- If v is an eigenvector of $T: V \rightarrow V$ with eigenvalue λ

A criterion for eigenvalues

- Suppose V is f.d.
- If v is an eigenvector of $T: V \rightarrow V$ with eigenvalue λ then $(\lambda I-T) v=0$

A criterion for eigenvalues

- Suppose V is f.d.
- If v is an eigenvector of $T: V \rightarrow V$ with eigenvalue λ then $(\lambda I-T) v=0$ where $I: V \rightarrow V$ is

A criterion for eigenvalues

- Suppose V is f.d.
- If v is an eigenvector of $T: V \rightarrow V$ with eigenvalue λ then $(\lambda I-T) v=0$ where $I: V \rightarrow V$ is $I(x)=x$, and $v \neq 0$.

A criterion for eigenvalues

- Suppose V is f.d.
- If v is an eigenvector of $T: V \rightarrow V$ with eigenvalue λ then $(\lambda I-T) v=0$ where $I: V \rightarrow V$ is $I(x)=x$, and $v \neq 0$.
- Therefore $N(\lambda I-T) \neq 0$.

A criterion for eigenvalues

- Suppose V is f.d.
- If v is an eigenvector of $T: V \rightarrow V$ with eigenvalue λ then $(\lambda I-T) v=0$ where $I: V \rightarrow V$ is $I(x)=x$, and $v \neq 0$.
- Therefore $N(\lambda I-T) \neq 0$. Thus $\lambda I-T$ is NOT invertible.

A criterion for eigenvalues

- Suppose V is f.d.
- If v is an eigenvector of $T: V \rightarrow V$ with eigenvalue λ then $(\lambda I-T) v=0$ where $I: V \rightarrow V$ is $I(x)=x$, and $v \neq 0$.
- Therefore $N(\lambda I-T) \neq 0$. Thus $\lambda I-T$ is NOT invertible. Hence $\operatorname{det}(\lambda I-T)=0$. That is,

A criterion for eigenvalues

- Suppose V is f.d.
- If v is an eigenvector of $T: V \rightarrow V$ with eigenvalue λ then $(\lambda I-T) v=0$ where $I: V \rightarrow V$ is $I(x)=x$, and $v \neq 0$.
- Therefore $N(\lambda I-T) \neq 0$. Thus $\lambda I-T$ is NOT invertible. Hence $\operatorname{det}(\lambda I-T)=0$. That is, if e_{1}, \ldots, e_{n} is an ordered basis,

A criterion for eigenvalues

- Suppose V is f.d.
- If v is an eigenvector of $T: V \rightarrow V$ with eigenvalue λ then $(\lambda I-T) v=0$ where $I: V \rightarrow V$ is $I(x)=x$, and $v \neq 0$.
- Therefore $N(\lambda I-T) \neq 0$. Thus $\lambda I-T$ is NOT invertible. Hence $\operatorname{det}(\lambda I-T)=0$. That is, if e_{1}, \ldots, e_{n} is an ordered basis, and $[T]$ is the corresponding matrix,

A criterion for eigenvalues

- Suppose V is f.d.
- If v is an eigenvector of $T: V \rightarrow V$ with eigenvalue λ then $(\lambda I-T) v=0$ where $I: V \rightarrow V$ is $I(x)=x$, and $v \neq 0$.
- Therefore $N(\lambda I-T) \neq 0$. Thus $\lambda I-T$ is NOT invertible. Hence $\operatorname{det}(\lambda I-T)=0$. That is, if e_{1}, \ldots, e_{n} is an ordered basis, and $[T]$ is the corresponding matrix, $\operatorname{det}(\lambda[I]-[T])=0$.

A criterion for eigenvalues

- Suppose V is f.d.
- If v is an eigenvector of $T: V \rightarrow V$ with eigenvalue λ then $(\lambda I-T) v=0$ where $I: V \rightarrow V$ is $I(x)=x$, and $v \neq 0$.
- Therefore $N(\lambda I-T) \neq 0$. Thus $\lambda I-T$ is NOT invertible. Hence $\operatorname{det}(\lambda I-T)=0$. That is, if e_{1}, \ldots, e_{n} is an ordered basis, and $[T]$ is the corresponding matrix, $\operatorname{det}(\lambda[I]-[T])=0$.
- Conversely,

A criterion for eigenvalues

- Suppose V is f.d.
- If v is an eigenvector of $T: V \rightarrow V$ with eigenvalue λ then $(\lambda I-T) v=0$ where $I: V \rightarrow V$ is $I(x)=x$, and $v \neq 0$.
- Therefore $N(\lambda I-T) \neq 0$. Thus $\lambda I-T$ is NOT invertible. Hence $\operatorname{det}(\lambda I-T)=0$. That is, if e_{1}, \ldots, e_{n} is an ordered basis, and $[T]$ is the corresponding matrix, $\operatorname{det}(\lambda[I]-[T])=0$.
- Conversely, if $\operatorname{det}(\lambda I-T)=0$,

A criterion for eigenvalues

- Suppose V is f.d.
- If v is an eigenvector of $T: V \rightarrow V$ with eigenvalue λ then $(\lambda I-T) v=0$ where $I: V \rightarrow V$ is $I(x)=x$, and $v \neq 0$.
- Therefore $N(\lambda I-T) \neq 0$. Thus $\lambda I-T$ is NOT invertible. Hence $\operatorname{det}(\lambda I-T)=0$. That is, if e_{1}, \ldots, e_{n} is an ordered basis, and $[T]$ is the corresponding matrix, $\operatorname{det}(\lambda[I]-[T])=0$.
- Conversely, if $\operatorname{det}(\lambda I-T)=0$, then there exists

A criterion for eigenvalues

- Suppose V is f.d.
- If v is an eigenvector of $T: V \rightarrow V$ with eigenvalue λ then $(\lambda I-T) v=0$ where $I: V \rightarrow V$ is $I(x)=x$, and $v \neq 0$.
- Therefore $N(\lambda I-T) \neq 0$. Thus $\lambda I-T$ is NOT invertible. Hence $\operatorname{det}(\lambda I-T)=0$. That is, if e_{1}, \ldots, e_{n} is an ordered basis, and $[T]$ is the corresponding matrix, $\operatorname{det}(\lambda[I]-[T])=0$.
- Conversely, if $\operatorname{det}(\lambda I-T)=0$, then there exists a non-zero v such that

A criterion for eigenvalues

- Suppose V is f.d.
- If v is an eigenvector of $T: V \rightarrow V$ with eigenvalue λ then $(\lambda I-T) v=0$ where $I: V \rightarrow V$ is $I(x)=x$, and $v \neq 0$.
- Therefore $N(\lambda I-T) \neq 0$. Thus $\lambda I-T$ is NOT invertible. Hence $\operatorname{det}(\lambda I-T)=0$. That is, if e_{1}, \ldots, e_{n} is an ordered basis, and $[T]$ is the corresponding matrix, $\operatorname{det}(\lambda[I]-[T])=0$.
- Conversely, if $\operatorname{det}(\lambda I-T)=0$, then there exists a non-zero v such that $T v=\lambda v$.

A criterion for eigenvalues

- Suppose V is f.d.
- If v is an eigenvector of $T: V \rightarrow V$ with eigenvalue λ then $(\lambda I-T) v=0$ where $I: V \rightarrow V$ is $I(x)=x$, and $v \neq 0$.
- Therefore $N(\lambda I-T) \neq 0$. Thus $\lambda I-T$ is NOT invertible. Hence $\operatorname{det}(\lambda I-T)=0$. That is, if e_{1}, \ldots, e_{n} is an ordered basis, and $[T]$ is the corresponding matrix, $\operatorname{det}(\lambda[I]-[T])=0$.
- Conversely, if $\operatorname{det}(\lambda I-T)=0$, then there exists a non-zero v such that $T v=\lambda v$. Therefore, eigenvalues are precisely

A criterion for eigenvalues

- Suppose V is f.d.
- If v is an eigenvector of $T: V \rightarrow V$ with eigenvalue λ then $(\lambda I-T) v=0$ where $I: V \rightarrow V$ is $I(x)=x$, and $v \neq 0$.
- Therefore $N(\lambda I-T) \neq 0$. Thus $\lambda I-T$ is NOT invertible. Hence $\operatorname{det}(\lambda I-T)=0$. That is, if e_{1}, \ldots, e_{n} is an ordered basis, and $[T]$ is the corresponding matrix, $\operatorname{det}(\lambda[I]-[T])=0$.
- Conversely, if $\operatorname{det}(\lambda I-T)=0$, then there exists a non-zero v such that $T v=\lambda v$. Therefore, eigenvalues are precisely solutions to $p_{T}(\lambda)=\operatorname{det}(\lambda I-T)=0$ lying

A criterion for eigenvalues

- Suppose V is f.d.
- If v is an eigenvector of $T: V \rightarrow V$ with eigenvalue λ then $(\lambda I-T) v=0$ where $I: V \rightarrow V$ is $I(x)=x$, and $v \neq 0$.
- Therefore $N(\lambda I-T) \neq 0$. Thus $\lambda I-T$ is NOT invertible. Hence $\operatorname{det}(\lambda I-T)=0$. That is, if e_{1}, \ldots, e_{n} is an ordered basis, and $[T]$ is the corresponding matrix, $\operatorname{det}(\lambda[I]-[T])=0$.
- Conversely, if $\operatorname{det}(\lambda I-T)=0$, then there exists a non-zero v such that $T v=\lambda v$. Therefore, eigenvalues are precisely solutions to $p_{T}(\lambda)=\operatorname{det}(\lambda I-T)=0$ lying in \mathbb{F}.

A criterion for eigenvalues

- Suppose V is f.d.
- If v is an eigenvector of $T: V \rightarrow V$ with eigenvalue λ then $(\lambda I-T) v=0$ where $I: V \rightarrow V$ is $I(x)=x$, and $v \neq 0$.
- Therefore $N(\lambda I-T) \neq 0$. Thus $\lambda I-T$ is NOT invertible. Hence $\operatorname{det}(\lambda I-T)=0$. That is, if e_{1}, \ldots, e_{n} is an ordered basis, and $[T]$ is the corresponding matrix, $\operatorname{det}(\lambda[I]-[T])=0$.
- Conversely, if $\operatorname{det}(\lambda I-T)=0$, then there exists a non-zero v such that $T v=\lambda v$. Therefore, eigenvalues are precisely solutions to $p_{T}(\lambda)=\operatorname{det}(\lambda I-T)=0$ lying in \mathbb{F}.
- One can prove

A criterion for eigenvalues

- Suppose V is f.d.
- If v is an eigenvector of $T: V \rightarrow V$ with eigenvalue λ then $(\lambda I-T) v=0$ where $I: V \rightarrow V$ is $I(x)=x$, and $v \neq 0$.
- Therefore $N(\lambda I-T) \neq 0$. Thus $\lambda I-T$ is NOT invertible. Hence $\operatorname{det}(\lambda I-T)=0$. That is, if e_{1}, \ldots, e_{n} is an ordered basis, and $[T]$ is the corresponding matrix, $\operatorname{det}(\lambda[I]-[T])=0$.
- Conversely, if $\operatorname{det}(\lambda I-T)=0$, then there exists a non-zero v such that $T v=\lambda v$. Therefore, eigenvalues are precisely solutions to $p_{T}(\lambda)=\operatorname{det}(\lambda I-T)=0$ lying in \mathbb{F}.
- One can prove (HW) using induction that

A criterion for eigenvalues

- Suppose V is f.d.
- If v is an eigenvector of $T: V \rightarrow V$ with eigenvalue λ then $(\lambda I-T) v=0$ where $I: V \rightarrow V$ is $I(x)=x$, and $v \neq 0$.
- Therefore $N(\lambda I-T) \neq 0$. Thus $\lambda I-T$ is NOT invertible. Hence $\operatorname{det}(\lambda I-T)=0$. That is, if e_{1}, \ldots, e_{n} is an ordered basis, and $[T]$ is the corresponding matrix, $\operatorname{det}(\lambda[I]-[T])=0$.
- Conversely, if $\operatorname{det}(\lambda I-T)=0$, then there exists a non-zero v such that $T v=\lambda v$. Therefore, eigenvalues are precisely solutions to $p_{T}(\lambda)=\operatorname{det}(\lambda I-T)=0$ lying in \mathbb{F}.
- One can prove (HW) using induction that $p_{T}(\lambda)$ is a polynomial of

A criterion for eigenvalues

- Suppose V is f.d.
- If v is an eigenvector of $T: V \rightarrow V$ with eigenvalue λ then $(\lambda I-T) v=0$ where $I: V \rightarrow V$ is $I(x)=x$, and $v \neq 0$.
- Therefore $N(\lambda I-T) \neq 0$. Thus $\lambda I-T$ is NOT invertible. Hence $\operatorname{det}(\lambda I-T)=0$. That is, if e_{1}, \ldots, e_{n} is an ordered basis, and $[T]$ is the corresponding matrix, $\operatorname{det}(\lambda[I]-[T])=0$.
- Conversely, if $\operatorname{det}(\lambda I-T)=0$, then there exists a non-zero v such that $T v=\lambda v$. Therefore, eigenvalues are precisely solutions to $p_{T}(\lambda)=\operatorname{det}(\lambda I-T)=0$ lying in \mathbb{F}.
- One can prove (HW) using induction that $p_{T}(\lambda)$ is a polynomial of degree n

A criterion for eigenvalues

- Suppose V is f.d.
- If v is an eigenvector of $T: V \rightarrow V$ with eigenvalue λ then $(\lambda I-T) v=0$ where $I: V \rightarrow V$ is $I(x)=x$, and $v \neq 0$.
- Therefore $N(\lambda I-T) \neq 0$. Thus $\lambda I-T$ is NOT invertible. Hence $\operatorname{det}(\lambda I-T)=0$. That is, if e_{1}, \ldots, e_{n} is an ordered basis, and $[T]$ is the corresponding matrix, $\operatorname{det}(\lambda[I]-[T])=0$.
- Conversely, if $\operatorname{det}(\lambda I-T)=0$, then there exists a non-zero v such that $T v=\lambda v$. Therefore, eigenvalues are precisely solutions to $p_{T}(\lambda)=\operatorname{det}(\lambda I-T)=0$ lying in \mathbb{F}.
- One can prove (HW) using induction that $p_{T}(\lambda)$ is a polynomial of degree n with highest power being

A criterion for eigenvalues

- Suppose V is f.d.
- If v is an eigenvector of $T: V \rightarrow V$ with eigenvalue λ then $(\lambda I-T) v=0$ where $I: V \rightarrow V$ is $I(x)=x$, and $v \neq 0$.
- Therefore $N(\lambda I-T) \neq 0$. Thus $\lambda I-T$ is NOT invertible. Hence $\operatorname{det}(\lambda I-T)=0$. That is, if e_{1}, \ldots, e_{n} is an ordered basis, and $[T]$ is the corresponding matrix, $\operatorname{det}(\lambda[I]-[T])=0$.
- Conversely, if $\operatorname{det}(\lambda I-T)=0$, then there exists a non-zero v such that $T v=\lambda v$. Therefore, eigenvalues are precisely solutions to $p_{T}(\lambda)=\operatorname{det}(\lambda I-T)=0$ lying in \mathbb{F}.
- One can prove (HW) using induction that $p_{T}(\lambda)$ is a polynomial of degree n with highest power being λ^{n} and

A criterion for eigenvalues

- Suppose V is f.d.
- If v is an eigenvector of $T: V \rightarrow V$ with eigenvalue λ then $(\lambda I-T) v=0$ where $I: V \rightarrow V$ is $I(x)=x$, and $v \neq 0$.
- Therefore $N(\lambda I-T) \neq 0$. Thus $\lambda I-T$ is NOT invertible. Hence $\operatorname{det}(\lambda I-T)=0$. That is, if e_{1}, \ldots, e_{n} is an ordered basis, and $[T]$ is the corresponding matrix, $\operatorname{det}(\lambda[I]-[T])=0$.
- Conversely, if $\operatorname{det}(\lambda I-T)=0$, then there exists a non-zero v such that $T v=\lambda v$. Therefore, eigenvalues are precisely solutions to $p_{T}(\lambda)=\operatorname{det}(\lambda I-T)=0$ lying in \mathbb{F}.
- One can prove (HW) using induction that $p_{T}(\lambda)$ is a polynomial of degree n with highest power being λ^{n} and $p_{T}(0)=\operatorname{det}(0-T)=(-1)^{n} \operatorname{det}(T)$.

A criterion for eigenvalues

- Suppose V is f.d.
- If v is an eigenvector of $T: V \rightarrow V$ with eigenvalue λ then $(\lambda I-T) v=0$ where $I: V \rightarrow V$ is $I(x)=x$, and $v \neq 0$.
- Therefore $N(\lambda I-T) \neq 0$. Thus $\lambda I-T$ is NOT invertible. Hence $\operatorname{det}(\lambda I-T)=0$. That is, if e_{1}, \ldots, e_{n} is an ordered basis, and $[T]$ is the corresponding matrix, $\operatorname{det}(\lambda[I]-[T])=0$.
- Conversely, if $\operatorname{det}(\lambda I-T)=0$, then there exists a non-zero v such that $T v=\lambda v$. Therefore, eigenvalues are precisely solutions to $p_{T}(\lambda)=\operatorname{det}(\lambda I-T)=0$ lying in \mathbb{F}.
- One can prove (HW) using induction that $p_{T}(\lambda)$ is a polynomial of degree n with highest power being λ^{n} and $p_{T}(0)=\operatorname{det}(0-T)=(-1)^{n} \operatorname{det}(T)$. This polynomial is called

A criterion for eigenvalues

- Suppose V is f.d.
- If v is an eigenvector of $T: V \rightarrow V$ with eigenvalue λ then $(\lambda I-T) v=0$ where $I: V \rightarrow V$ is $I(x)=x$, and $v \neq 0$.
- Therefore $N(\lambda I-T) \neq 0$. Thus $\lambda I-T$ is NOT invertible. Hence $\operatorname{det}(\lambda I-T)=0$. That is, if e_{1}, \ldots, e_{n} is an ordered basis, and $[T]$ is the corresponding matrix, $\operatorname{det}(\lambda[I]-[T])=0$.
- Conversely, if $\operatorname{det}(\lambda I-T)=0$, then there exists a non-zero v such that $T v=\lambda v$. Therefore, eigenvalues are precisely solutions to $p_{T}(\lambda)=\operatorname{det}(\lambda I-T)=0$ lying in \mathbb{F}.
- One can prove (HW) using induction that $p_{T}(\lambda)$ is a polynomial of degree n with highest power being λ^{n} and $p_{T}(0)=\operatorname{det}(0-T)=(-1)^{n} \operatorname{det}(T)$. This polynomial is called the characteristic polynomial of T.

