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(but NOT sufficient) conditions that A and B must satisfy.
Assume A = P~1BP.

e Then det(\ — A) = det(AP~1P — P~1BP) = det(\l — B).
So their eigenvalues must be equal!

o In particular, det(A) = det(B). Moreover, we define
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T= 2 3 4 over C.
-1 -1 -2
@ The characteristic polynomial is
A—=2 -1 -1
pr(A) =det(AM —=T)=| -2 X-3 -4
1 1 A+2

(G, — G — G3, R3 = R34+ R» and expanding along the
second column yields pr(A) = (A + 1)(A — 1)(A — 3).

@ So the eigenvalues are —1,1,3. They are distinct and hence
the matrix is diagonalisable.
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@ Let's do row operations to the augmented matrix [/ — T|0].
R3s — R3+ R, Ro — Ry — 2R, yield
2v3 =0= —2v3=—v; — v» — v3. Hence v3 = 0, v, = —v3.
Thus every eigenvector corresponding to A = 1 is of the form
t(1,—1,0) where t # 0 is any complex number.
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0O 0 3

note that P~1TPe; = De; = A\je; = e1. Thus the first
column of P must be an eigenvector corresponding to A =1,

1
i,e., —1 will do.
0
1 0 2
@ Likewise for the other columns. Thus Pis | —1 1 3
0o -1 -1

o More generally, if we have a basis of eigenvectors then P~1 TP
is diagonal where the columns of P are the eigenvectors. So
T = PDP~ 1.
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and expanding along the second column.

e For A =1, consider [/ — T|0] and do R — R» — 2Ry,
R3 — R3 — 3Ry to get —v; — vo» — v3 = 0. Hence
(1,0,-1),(0,1, —1) span the eigenspace of A = 1. Likewise,
(1,2, 3) spans the eigenspace of A = 7.

1 00 1 0

o Thus P71TP=| 0 0 | whereP=| 0 1

0 7

1
0 -1 -1
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2
e 7T=]0 3 -1
2

o pr(N) = (A—2)*(\ — 4).
@ For A = 2, the eigenspace is 1-dimensional and is spanned by
(—=1,1,1). For A =4, it is spanned by (1,—1,1).
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2
e 7T=]0 3 -1
2

o pr(N) = (A = 22(A — 4),

@ For A = 2, the eigenspace is 1-dimensional and is spanned by
(—=1,1,1). For A =4, it is spanned by (1,—1,1).

@ Hence T is NOT diagonalisable.
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