Lecture 14 - UM 102 (Spring 2021)

Vamsi Pritham Pingali

IISc

Recap

- We agreed that

Recap

- We agreed that calculating M^{n}

Recap

- We agreed that calculating M^{n} where M is a square matrix

Recap

- We agreed that calculating M^{n} where M is a square matrix is important (

Recap

- We agreed that calculating M^{n} where M is a square matrix is important (for Fibonacci sequences
- We agreed that calculating M^{n} where M is a square matrix is important (for Fibonacci sequences and Markov chains
- We agreed that calculating M^{n} where M is a square matrix is important (for Fibonacci sequences and Markov chains for instance).
- We agreed that calculating M^{n} where M is a square matrix is important (for Fibonacci sequences and Markov chains for instance).
- We observed that
- We agreed that calculating M^{n} where M is a square matrix is important (for Fibonacci sequences and Markov chains for instance).
- We observed that if M is
- We agreed that calculating M^{n} where M is a square matrix is important (for Fibonacci sequences and Markov chains for instance).
- We observed that if M is similar to
- We agreed that calculating M^{n} where M is a square matrix is important (for Fibonacci sequences and Markov chains for instance).
- We observed that if M is similar to a diagonal matrix
- We agreed that calculating M^{n} where M is a square matrix is important (for Fibonacci sequences and Markov chains for instance).
- We observed that if M is similar to a diagonal matrix we are "done".
- We agreed that calculating M^{n} where M is a square matrix is important (for Fibonacci sequences and Markov chains for instance).
- We observed that if M is similar to a diagonal matrix we are "done".
- We defined
- We agreed that calculating M^{n} where M is a square matrix is important (for Fibonacci sequences and Markov chains for instance).
- We observed that if M is similar to a diagonal matrix we are "done".
- We defined the eigenvalues and
- We agreed that calculating M^{n} where M is a square matrix is important (for Fibonacci sequences and Markov chains for instance).
- We observed that if M is similar to a diagonal matrix we are "done".
- We defined the eigenvalues and eigenvectors of
- We agreed that calculating M^{n} where M is a square matrix is important (for Fibonacci sequences and Markov chains for instance).
- We observed that if M is similar to a diagonal matrix we are "done".
- We defined the eigenvalues and eigenvectors of $T: V \rightarrow V$.

Recap

- We agreed that calculating M^{n} where M is a square matrix is important (for Fibonacci sequences and Markov chains for instance).
- We observed that if M is similar to a diagonal matrix we are "done".
- We defined the eigenvalues and eigenvectors of $T: V \rightarrow V$. Likewise for a matrix.

Recap

- We agreed that calculating M^{n} where M is a square matrix is important (for Fibonacci sequences and Markov chains for instance).
- We observed that if M is similar to a diagonal matrix we are "done".
- We defined the eigenvalues and eigenvectors of $T: V \rightarrow V$. Likewise for a matrix. We defined diagonalisability.

Recap

- We agreed that calculating M^{n} where M is a square matrix is important (for Fibonacci sequences and Markov chains for instance).
- We observed that if M is similar to a diagonal matrix we are "done".
- We defined the eigenvalues and eigenvectors of $T: V \rightarrow V$. Likewise for a matrix. We defined diagonalisability.
- Gave examples.

Recap

- We agreed that calculating M^{n} where M is a square matrix is important (for Fibonacci sequences and Markov chains for instance).
- We observed that if M is similar to a diagonal matrix we are "done".
- We defined the eigenvalues and eigenvectors of $T: V \rightarrow V$. Likewise for a matrix. We defined diagonalisability.
- Gave examples. Saw that

Recap

- We agreed that calculating M^{n} where M is a square matrix is important (for Fibonacci sequences and Markov chains for instance).
- We observed that if M is similar to a diagonal matrix we are "done".
- We defined the eigenvalues and eigenvectors of $T: V \rightarrow V$. Likewise for a matrix. We defined diagonalisability.
- Gave examples. Saw that these notions

Recap

- We agreed that calculating M^{n} where M is a square matrix is important (for Fibonacci sequences and Markov chains for instance).
- We observed that if M is similar to a diagonal matrix we are "done".
- We defined the eigenvalues and eigenvectors of $T: V \rightarrow V$. Likewise for a matrix. We defined diagonalisability.
- Gave examples. Saw that these notions depend on the field

Recap

- We agreed that calculating M^{n} where M is a square matrix is important (for Fibonacci sequences and Markov chains for instance).
- We observed that if M is similar to a diagonal matrix we are "done".
- We defined the eigenvalues and eigenvectors of $T: V \rightarrow V$. Likewise for a matrix. We defined diagonalisability.
- Gave examples. Saw that these notions depend on the field and on the matrix.

Recap

- We agreed that calculating M^{n} where M is a square matrix is important (for Fibonacci sequences and Markov chains for instance).
- We observed that if M is similar to a diagonal matrix we are "done".
- We defined the eigenvalues and eigenvectors of $T: V \rightarrow V$. Likewise for a matrix. We defined diagonalisability.
- Gave examples. Saw that these notions depend on the field and on the matrix. In particular,

Recap

- We agreed that calculating M^{n} where M is a square matrix is important (for Fibonacci sequences and Markov chains for instance).
- We observed that if M is similar to a diagonal matrix we are "done".
- We defined the eigenvalues and eigenvectors of $T: V \rightarrow V$. Likewise for a matrix. We defined diagonalisability.
- Gave examples. Saw that these notions depend on the field and on the matrix. In particular, not everything is diagonalisable!

Recap

- We agreed that calculating M^{n} where M is a square matrix is important (for Fibonacci sequences and Markov chains for instance).
- We observed that if M is similar to a diagonal matrix we are "done".
- We defined the eigenvalues and eigenvectors of $T: V \rightarrow V$. Likewise for a matrix. We defined diagonalisability.
- Gave examples. Saw that these notions depend on the field and on the matrix. In particular, not everything is diagonalisable!
- Proved that

Recap

- We agreed that calculating M^{n} where M is a square matrix is important (for Fibonacci sequences and Markov chains for instance).
- We observed that if M is similar to a diagonal matrix we are "done".
- We defined the eigenvalues and eigenvectors of $T: V \rightarrow V$. Likewise for a matrix. We defined diagonalisability.
- Gave examples. Saw that these notions depend on the field and on the matrix. In particular, not everything is diagonalisable!
- Proved that eigenvalues are

Recap

- We agreed that calculating M^{n} where M is a square matrix is important (for Fibonacci sequences and Markov chains for instance).
- We observed that if M is similar to a diagonal matrix we are "done".
- We defined the eigenvalues and eigenvectors of $T: V \rightarrow V$. Likewise for a matrix. We defined diagonalisability.
- Gave examples. Saw that these notions depend on the field and on the matrix. In particular, not everything is diagonalisable!
- Proved that eigenvalues are roots of

Recap

- We agreed that calculating M^{n} where M is a square matrix is important (for Fibonacci sequences and Markov chains for instance).
- We observed that if M is similar to a diagonal matrix we are "done".
- We defined the eigenvalues and eigenvectors of $T: V \rightarrow V$. Likewise for a matrix. We defined diagonalisability.
- Gave examples. Saw that these notions depend on the field and on the matrix. In particular, not everything is diagonalisable!
- Proved that eigenvalues are roots of the characteristic polynomial,

Recap

- We agreed that calculating M^{n} where M is a square matrix is important (for Fibonacci sequences and Markov chains for instance).
- We observed that if M is similar to a diagonal matrix we are "done".
- We defined the eigenvalues and eigenvectors of $T: V \rightarrow V$. Likewise for a matrix. We defined diagonalisability.
- Gave examples. Saw that these notions depend on the field and on the matrix. In particular, not everything is diagonalisable!
- Proved that eigenvalues are roots of the characteristic polynomial, $\operatorname{det}(\lambda I-T)$ that

Recap

- We agreed that calculating M^{n} where M is a square matrix is important (for Fibonacci sequences and Markov chains for instance).
- We observed that if M is similar to a diagonal matrix we are "done".
- We defined the eigenvalues and eigenvectors of $T: V \rightarrow V$. Likewise for a matrix. We defined diagonalisability.
- Gave examples. Saw that these notions depend on the field and on the matrix. In particular, not everything is diagonalisable!
- Proved that eigenvalues are roots of the characteristic polynomial, $\operatorname{det}(\lambda I-T)$ that lie in \mathbb{F}.

Eigenvalues

Eigenvalues

- Firstly,

Eigenvalues

- Firstly, not every

Eigenvalues

- Firstly, not every real polynomial

Eigenvalues

- Firstly, not every real polynomial has real roots!

Eigenvalues

- Firstly, not every real polynomial has real roots!
- However,

Eigenvalues

- Firstly, not every real polynomial has real roots!
- However, it is an important

Eigenvalues

- Firstly, not every real polynomial has real roots!
- However, it is an important result that every

Eigenvalues

- Firstly, not every real polynomial has real roots!
- However, it is an important result that every complex polynomial

Eigenvalues

- Firstly, not every real polynomial has real roots!
- However, it is an important result that every complex polynomial has at least one

Eigenvalues

- Firstly, not every real polynomial has real roots!
- However, it is an important result that every complex polynomial has at least one complex root. (

Eigenvalues

- Firstly, not every real polynomial has real roots!
- However, it is an important result that every complex polynomial has at least one complex root. (The fundamental theorem of algebra.)

Eigenvalues

- Firstly, not every real polynomial has real roots!
- However, it is an important result that every complex polynomial has at least one complex root. (The fundamental theorem of algebra.) Moreover,

Eigenvalues

- Firstly, not every real polynomial has real roots!
- However, it is an important result that every complex polynomial has at least one complex root. (The fundamental theorem of algebra.) Moreover, if it has degree n

Eigenvalues

- Firstly, not every real polynomial has real roots!
- However, it is an important result that every complex polynomial has at least one complex root. (The fundamental theorem of algebra.) Moreover, if it has degree n then counting roots with

Eigenvalues

- Firstly, not every real polynomial has real roots!
- However, it is an important result that every complex polynomial has at least one complex root. (The fundamental theorem of algebra.) Moreover, if it has degree n then counting roots with multiplicity,

Eigenvalues

- Firstly, not every real polynomial has real roots!
- However, it is an important result that every complex polynomial has at least one complex root. (The fundamental theorem of algebra.) Moreover, if it has degree n then counting roots with multiplicity, there are exactly

Eigenvalues

- Firstly, not every real polynomial has real roots!
- However, it is an important result that every complex polynomial has at least one complex root. (The fundamental theorem of algebra.) Moreover, if it has degree n then counting roots with multiplicity, there are exactly n roots.

Eigenvalues

- Firstly, not every real polynomial has real roots!
- However, it is an important result that every complex polynomial has at least one complex root. (The fundamental theorem of algebra.) Moreover, if it has degree n then counting roots with multiplicity, there are exactly n roots.
- Thus every

Eigenvalues

- Firstly, not every real polynomial has real roots!
- However, it is an important result that every complex polynomial has at least one complex root. (The fundamental theorem of algebra.) Moreover, if it has degree n then counting roots with multiplicity, there are exactly n roots.
- Thus every complex matrix

Eigenvalues

- Firstly, not every real polynomial has real roots!
- However, it is an important result that every complex polynomial has at least one complex root. (The fundamental theorem of algebra.) Moreover, if it has degree n then counting roots with multiplicity, there are exactly n roots.
- Thus every complex matrix has n complex eigenvalues when

Eigenvalues

- Firstly, not every real polynomial has real roots!
- However, it is an important result that every complex polynomial has at least one complex root. (The fundamental theorem of algebra.) Moreover, if it has degree n then counting roots with multiplicity, there are exactly n roots.
- Thus every complex matrix has n complex eigenvalues when counted with multiplicity.

Eigenvalues

- Firstly, not every real polynomial has real roots!
- However, it is an important result that every complex polynomial has at least one complex root. (The fundamental theorem of algebra.) Moreover, if it has degree n then counting roots with multiplicity, there are exactly n roots.
- Thus every complex matrix has n complex eigenvalues when counted with multiplicity.
- Assume from now that

Eigenvalues

- Firstly, not every real polynomial has real roots!
- However, it is an important result that every complex polynomial has at least one complex root. (The fundamental theorem of algebra.) Moreover, if it has degree n then counting roots with multiplicity, there are exactly n roots.
- Thus every complex matrix has n complex eigenvalues when counted with multiplicity.
- Assume from now that every vector space is

Eigenvalues

- Firstly, not every real polynomial has real roots!
- However, it is an important result that every complex polynomial has at least one complex root. (The fundamental theorem of algebra.) Moreover, if it has degree n then counting roots with multiplicity, there are exactly n roots.
- Thus every complex matrix has n complex eigenvalues when counted with multiplicity.
- Assume from now that every vector space is over \mathbb{C} and

Eigenvalues

- Firstly, not every real polynomial has real roots!
- However, it is an important result that every complex polynomial has at least one complex root. (The fundamental theorem of algebra.) Moreover, if it has degree n then counting roots with multiplicity, there are exactly n roots.
- Thus every complex matrix has n complex eigenvalues when counted with multiplicity.
- Assume from now that every vector space is over \mathbb{C} and so is every matrix.

Diagonalisability

Diagonalisability

- Since not

Diagonalisability

- Since not every matrix is

Diagonalisability

- Since not every matrix is diagonalisable, it is

Diagonalisability

- Since not every matrix is diagonalisable, it is natural to wonder

Diagonalisability

- Since not every matrix is diagonalisable, it is natural to wonder when a matrix is so.

Diagonalisability

- Since not every matrix is diagonalisable, it is natural to wonder when a matrix is so.
- Theorem:

Diagonalisability

- Since not every matrix is diagonalisable, it is natural to wonder when a matrix is so.
- Theorem: Let u_{1}, \ldots, u_{k} be eigenvectors

Diagonalisability

- Since not every matrix is diagonalisable, it is natural to wonder when a matrix is so.
- Theorem: Let u_{1}, \ldots, u_{k} be eigenvectors of a linear map $T: V \rightarrow V$

Diagonalisability

- Since not every matrix is diagonalisable, it is natural to wonder when a matrix is so.
- Theorem: Let u_{1}, \ldots, u_{k} be eigenvectors of a linear map $T: V \rightarrow V$ such that

Diagonalisability

- Since not every matrix is diagonalisable, it is natural to wonder when a matrix is so.
- Theorem: Let u_{1}, \ldots, u_{k} be eigenvectors of a linear map $T: V \rightarrow V$ such that the corresponding

Diagonalisability

- Since not every matrix is diagonalisable, it is natural to wonder when a matrix is so.
- Theorem: Let u_{1}, \ldots, u_{k} be eigenvectors of a linear map $T: V \rightarrow V$ such that the corresponding eigenvalues are

Diagonalisability

- Since not every matrix is diagonalisable, it is natural to wonder when a matrix is so.
- Theorem: Let u_{1}, \ldots, u_{k} be eigenvectors of a linear map $T: V \rightarrow V$ such that the corresponding eigenvalues are distinct. Then

Diagonalisability

- Since not every matrix is diagonalisable, it is natural to wonder when a matrix is so.
- Theorem: Let u_{1}, \ldots, u_{k} be eigenvectors of a linear map $T: V \rightarrow V$ such that the corresponding eigenvalues are distinct. Then the eigenvectors

Diagonalisability

- Since not every matrix is diagonalisable, it is natural to wonder when a matrix is so.
- Theorem: Let u_{1}, \ldots, u_{k} be eigenvectors of a linear map $T: V \rightarrow V$ such that the corresponding eigenvalues are distinct. Then the eigenvectors u_{1}, \ldots, u_{k} are

Diagonalisability

- Since not every matrix is diagonalisable, it is natural to wonder when a matrix is so.
- Theorem: Let u_{1}, \ldots, u_{k} be eigenvectors of a linear map $T: V \rightarrow V$ such that the corresponding eigenvalues are distinct. Then the eigenvectors u_{1}, \ldots, u_{k} are linearly independent.

Diagonalisability

- Since not every matrix is diagonalisable, it is natural to wonder when a matrix is so.
- Theorem: Let u_{1}, \ldots, u_{k} be eigenvectors of a linear map $T: V \rightarrow V$ such that the corresponding eigenvalues are distinct. Then the eigenvectors u_{1}, \ldots, u_{k} are linearly independent.
- As a consequence,

Diagonalisability

- Since not every matrix is diagonalisable, it is natural to wonder when a matrix is so.
- Theorem: Let u_{1}, \ldots, u_{k} be eigenvectors of a linear map $T: V \rightarrow V$ such that the corresponding eigenvalues are distinct. Then the eigenvectors u_{1}, \ldots, u_{k} are linearly independent.
- As a consequence, if V is f.d. of $\operatorname{dim} n$, and

Diagonalisability

- Since not every matrix is diagonalisable, it is natural to wonder when a matrix is so.
- Theorem: Let u_{1}, \ldots, u_{k} be eigenvectors of a linear map $T: V \rightarrow V$ such that the corresponding eigenvalues are distinct. Then the eigenvectors u_{1}, \ldots, u_{k} are linearly independent.
- As a consequence, if V is f.d. of $\operatorname{dim} n$, and all n eigenvalues of T

Diagonalisability

- Since not every matrix is diagonalisable, it is natural to wonder when a matrix is so.
- Theorem: Let u_{1}, \ldots, u_{k} be eigenvectors of a linear map $T: V \rightarrow V$ such that the corresponding eigenvalues are distinct. Then the eigenvectors u_{1}, \ldots, u_{k} are linearly independent.
- As a consequence, if V is $f . d$. of $\operatorname{dim} n$, and all n eigenvalues of T are distinct

Diagonalisability

- Since not every matrix is diagonalisable, it is natural to wonder when a matrix is so.
- Theorem: Let u_{1}, \ldots, u_{k} be eigenvectors of a linear map $T: V \rightarrow V$ such that the corresponding eigenvalues are distinct. Then the eigenvectors u_{1}, \ldots, u_{k} are linearly independent.
- As a consequence, if V is f.d. of $\operatorname{dim} n$, and all n eigenvalues of T are distinct then T is diagonalisable.

Diagonalisability

- Since not every matrix is diagonalisable, it is natural to wonder when a matrix is so.
- Theorem: Let u_{1}, \ldots, u_{k} be eigenvectors of a linear map $T: V \rightarrow V$ such that the corresponding eigenvalues are distinct. Then the eigenvectors u_{1}, \ldots, u_{k} are linearly independent.
- As a consequence, if V is f.d. of $\operatorname{dim} n$, and all n eigenvalues of T are distinct then T is diagonalisable.
- Proof of Theorem:

Diagonalisability

- Since not every matrix is diagonalisable, it is natural to wonder when a matrix is so.
- Theorem: Let u_{1}, \ldots, u_{k} be eigenvectors of a linear map $T: V \rightarrow V$ such that the corresponding eigenvalues are distinct. Then the eigenvectors u_{1}, \ldots, u_{k} are linearly independent.
- As a consequence, if V is f.d. of $\operatorname{dim} n$, and all n eigenvalues of T are distinct then T is diagonalisable.
- Proof of Theorem: We induct on k.

Diagonalisability

- Since not every matrix is diagonalisable, it is natural to wonder when a matrix is so.
- Theorem: Let u_{1}, \ldots, u_{k} be eigenvectors of a linear map $T: V \rightarrow V$ such that the corresponding eigenvalues are distinct. Then the eigenvectors u_{1}, \ldots, u_{k} are linearly independent.
- As a consequence, if V is f.d. of $\operatorname{dim} n$, and all n eigenvalues of T are distinct then T is diagonalisable.
- Proof of Theorem: We induct on k. For $k=1$ it is by definition.

Diagonalisability

- Since not every matrix is diagonalisable, it is natural to wonder when a matrix is so.
- Theorem: Let u_{1}, \ldots, u_{k} be eigenvectors of a linear map $T: V \rightarrow V$ such that the corresponding eigenvalues are distinct. Then the eigenvectors u_{1}, \ldots, u_{k} are linearly independent.
- As a consequence, if V is f.d. of $\operatorname{dim} n$, and all n eigenvalues of T are distinct then T is diagonalisable.
- Proof of Theorem: We induct on k. For $k=1$ it is by definition. Assume truth for $1,2, \ldots, k-1$.

Diagonalisability

- Since not every matrix is diagonalisable, it is natural to wonder when a matrix is so.
- Theorem: Let u_{1}, \ldots, u_{k} be eigenvectors of a linear map $T: V \rightarrow V$ such that the corresponding eigenvalues are distinct. Then the eigenvectors u_{1}, \ldots, u_{k} are linearly independent.
- As a consequence, if V is f.d. of $\operatorname{dim} n$, and all n eigenvalues of T are distinct then T is diagonalisable.
- Proof of Theorem: We induct on k. For $k=1$ it is by definition. Assume truth for $1,2, \ldots, k-1$. Suppose $\sum_{i} c_{i} u_{i}=0$.

Diagonalisability

- Since not every matrix is diagonalisable, it is natural to wonder when a matrix is so.
- Theorem: Let u_{1}, \ldots, u_{k} be eigenvectors of a linear map $T: V \rightarrow V$ such that the corresponding eigenvalues are distinct. Then the eigenvectors u_{1}, \ldots, u_{k} are linearly independent.
- As a consequence, if V is f.d. of $\operatorname{dim} n$, and all n eigenvalues of T are distinct then T is diagonalisable.
- Proof of Theorem: We induct on k. For $k=1$ it is by definition. Assume truth for $1,2, \ldots, k-1$. Suppose $\sum_{i} c_{i} u_{i}=0$. Then $\sum_{i} c_{i} T\left(u_{i}\right)=0$.

Diagonalisability

- Since not every matrix is diagonalisable, it is natural to wonder when a matrix is so.
- Theorem: Let u_{1}, \ldots, u_{k} be eigenvectors of a linear map $T: V \rightarrow V$ such that the corresponding eigenvalues are distinct. Then the eigenvectors u_{1}, \ldots, u_{k} are linearly independent.
- As a consequence, if V is f.d. of $\operatorname{dim} n$, and all n eigenvalues of T are distinct then T is diagonalisable.
- Proof of Theorem: We induct on k. For $k=1$ it is by definition. Assume truth for $1,2, \ldots, k-1$. Suppose $\sum_{i} c_{i} u_{i}=0$. Then $\sum_{i} c_{i} T\left(u_{i}\right)=0$. Hence $\sum_{i} c_{i} \lambda_{i} u_{i}=0$.

Diagonalisability

- Since not every matrix is diagonalisable, it is natural to wonder when a matrix is so.
- Theorem: Let u_{1}, \ldots, u_{k} be eigenvectors of a linear map $T: V \rightarrow V$ such that the corresponding eigenvalues are distinct. Then the eigenvectors u_{1}, \ldots, u_{k} are linearly independent.
- As a consequence, if V is f.d. of $\operatorname{dim} n$, and all n eigenvalues of T are distinct then T is diagonalisable.
- Proof of Theorem: We induct on k. For $k=1$ it is by definition. Assume truth for $1,2, \ldots, k-1$. Suppose $\sum_{i} c_{i} u_{i}=0$. Then $\sum_{i} c_{i} T\left(u_{i}\right)=0$. Hence $\sum_{i} c_{i} \lambda_{i} u_{i}=0$. Eliminate c_{1}

Diagonalisability

- Since not every matrix is diagonalisable, it is natural to wonder when a matrix is so.
- Theorem: Let u_{1}, \ldots, u_{k} be eigenvectors of a linear map $T: V \rightarrow V$ such that the corresponding eigenvalues are distinct. Then the eigenvectors u_{1}, \ldots, u_{k} are linearly independent.
- As a consequence, if V is f.d. of $\operatorname{dim} n$, and all n eigenvalues of T are distinct then T is diagonalisable.
- Proof of Theorem: We induct on k. For $k=1$ it is by definition. Assume truth for $1,2, \ldots, k-1$. Suppose $\sum_{i} c_{i} u_{i}=0$. Then $\sum_{i} c_{i} T\left(u_{i}\right)=0$. Hence $\sum_{i} c_{i} \lambda_{i} u_{i}=0$.
Eliminate c_{1} by multiplying

Diagonalisability

- Since not every matrix is diagonalisable, it is natural to wonder when a matrix is so.
- Theorem: Let u_{1}, \ldots, u_{k} be eigenvectors of a linear map $T: V \rightarrow V$ such that the corresponding eigenvalues are distinct. Then the eigenvectors u_{1}, \ldots, u_{k} are linearly independent.
- As a consequence, if V is f.d. of $\operatorname{dim} n$, and all n eigenvalues of T are distinct then T is diagonalisable.
- Proof of Theorem: We induct on k. For $k=1$ it is by definition. Assume truth for $1,2, \ldots, k-1$. Suppose $\sum_{i} c_{i} u_{i}=0$. Then $\sum_{i} c_{i} T\left(u_{i}\right)=0$. Hence $\sum_{i} c_{i} \lambda_{i} u_{i}=0$. Eliminate c_{1} by multiplying the first equation by

Diagonalisability

- Since not every matrix is diagonalisable, it is natural to wonder when a matrix is so.
- Theorem: Let u_{1}, \ldots, u_{k} be eigenvectors of a linear map $T: V \rightarrow V$ such that the corresponding eigenvalues are distinct. Then the eigenvectors u_{1}, \ldots, u_{k} are linearly independent.
- As a consequence, if V is f.d. of $\operatorname{dim} n$, and all n eigenvalues of T are distinct then T is diagonalisable.
- Proof of Theorem: We induct on k. For $k=1$ it is by definition. Assume truth for $1,2, \ldots, k-1$. Suppose $\sum_{i} c_{i} u_{i}=0$. Then $\sum_{i} c_{i} T\left(u_{i}\right)=0$. Hence $\sum_{i} c_{i} \lambda_{i} u_{i}=0$. Eliminate c_{1} by multiplying the first equation by λ_{1} and subtracting

Diagonalisability

- Since not every matrix is diagonalisable, it is natural to wonder when a matrix is so.
- Theorem: Let u_{1}, \ldots, u_{k} be eigenvectors of a linear map $T: V \rightarrow V$ such that the corresponding eigenvalues are distinct. Then the eigenvectors u_{1}, \ldots, u_{k} are linearly independent.
- As a consequence, if V is f.d. of $\operatorname{dim} n$, and all n eigenvalues of T are distinct then T is diagonalisable.
- Proof of Theorem: We induct on k. For $k=1$ it is by definition. Assume truth for $1,2, \ldots, k-1$. Suppose $\sum_{i} c_{i} u_{i}=0$. Then $\sum_{i} c_{i} T\left(u_{i}\right)=0$. Hence $\sum_{i} c_{i} \lambda_{i} u_{i}=0$. Eliminate c_{1} by multiplying the first equation by λ_{1} and subtracting to get $c_{2}\left(\lambda_{2}-\lambda_{1}\right) u_{2}+\ldots=0$.

Diagonalisability

- Since not every matrix is diagonalisable, it is natural to wonder when a matrix is so.
- Theorem: Let u_{1}, \ldots, u_{k} be eigenvectors of a linear map $T: V \rightarrow V$ such that the corresponding eigenvalues are distinct. Then the eigenvectors u_{1}, \ldots, u_{k} are linearly independent.
- As a consequence, if V is f.d. of $\operatorname{dim} n$, and all n eigenvalues of T are distinct then T is diagonalisable.
- Proof of Theorem: We induct on k. For $k=1$ it is by definition. Assume truth for $1,2, \ldots, k-1$. Suppose $\sum_{i} c_{i} u_{i}=0$. Then $\sum_{i} c_{i} T\left(u_{i}\right)=0$. Hence $\sum_{i} c_{i} \lambda_{i} u_{i}=0$. Eliminate c_{1} by multiplying the first equation by λ_{1} and subtracting to get $c_{2}\left(\lambda_{2}-\lambda_{1}\right) u_{2}+\ldots=0$. By the induction hypothesis

Diagonalisability

- Since not every matrix is diagonalisable, it is natural to wonder when a matrix is so.
- Theorem: Let u_{1}, \ldots, u_{k} be eigenvectors of a linear map $T: V \rightarrow V$ such that the corresponding eigenvalues are distinct. Then the eigenvectors u_{1}, \ldots, u_{k} are linearly independent.
- As a consequence, if V is f.d. of $\operatorname{dim} n$, and all n eigenvalues of T are distinct then T is diagonalisable.
- Proof of Theorem: We induct on k. For $k=1$ it is by definition. Assume truth for $1,2, \ldots, k-1$. Suppose $\sum_{i} c_{i} u_{i}=0$. Then $\sum_{i} c_{i} T\left(u_{i}\right)=0$. Hence $\sum_{i} c_{i} \lambda_{i} u_{i}=0$. Eliminate c_{1} by multiplying the first equation by λ_{1} and subtracting to get $c_{2}\left(\lambda_{2}-\lambda_{1}\right) u_{2}+\ldots=0$. By the induction hypothesis $c_{2}=c_{3}=\ldots=0$.

Diagonalisability

- Since not every matrix is diagonalisable, it is natural to wonder when a matrix is so.
- Theorem: Let u_{1}, \ldots, u_{k} be eigenvectors of a linear map $T: V \rightarrow V$ such that the corresponding eigenvalues are distinct. Then the eigenvectors u_{1}, \ldots, u_{k} are linearly independent.
- As a consequence, if V is f.d. of $\operatorname{dim} n$, and all n eigenvalues of T are distinct then T is diagonalisable.
- Proof of Theorem: We induct on k. For $k=1$ it is by definition. Assume truth for $1,2, \ldots, k-1$. Suppose $\sum_{i} c_{i} u_{i}=0$. Then $\sum_{i} c_{i} T\left(u_{i}\right)=0$. Hence $\sum_{i} c_{i} \lambda_{i} u_{i}=0$. Eliminate c_{1} by multiplying the first equation by λ_{1} and subtracting to get $c_{2}\left(\lambda_{2}-\lambda_{1}\right) u_{2}+\ldots=0$. By the induction hypothesis $c_{2}=c_{3}=\ldots=0$. Thus, so is c_{1}.

Simple criteria for checking similarity

Simple criteria for checking similarity

- Given two square matrices

Simple criteria for checking similarity

- Given two square matrices A and B

Simple criteria for checking similarity

- Given two square matrices A and B when are they similar?

Simple criteria for checking similarity

- Given two square matrices A and B when are they similar?
- This question is

Simple criteria for checking similarity

- Given two square matrices A and B when are they similar?
- This question is not easy to answer.

Simple criteria for checking similarity

- Given two square matrices A and B when are they similar?
- This question is not easy to answer. But there are

Simple criteria for checking similarity

- Given two square matrices A and B when are they similar?
- This question is not easy to answer. But there are necessary (but

Simple criteria for checking similarity

- Given two square matrices A and B when are they similar?
- This question is not easy to answer. But there are necessary (but NOT sufficient) conditions

Simple criteria for checking similarity

- Given two square matrices A and B when are they similar?
- This question is not easy to answer. But there are necessary (but NOT sufficient) conditions that A and B

Simple criteria for checking similarity

- Given two square matrices A and B when are they similar?
- This question is not easy to answer. But there are necessary (but NOT sufficient) conditions that A and B must satisfy.

Simple criteria for checking similarity

- Given two square matrices A and B when are they similar?
- This question is not easy to answer. But there are necessary (but NOT sufficient) conditions that A and B must satisfy. Assume $A=P^{-1} B P$.

Simple criteria for checking similarity

- Given two square matrices A and B when are they similar?
- This question is not easy to answer. But there are necessary (but NOT sufficient) conditions that A and B must satisfy. Assume $A=P^{-1} B P$.
- Then

Simple criteria for checking similarity

- Given two square matrices A and B when are they similar?
- This question is not easy to answer. But there are necessary (but NOT sufficient) conditions that A and B must satisfy. Assume $A=P^{-1} B P$.
- Then $\operatorname{det}(\lambda I-A)=\operatorname{det}\left(\lambda P^{-1} P-P^{-1} B P\right)=\operatorname{det}(\lambda I-B)$.

Simple criteria for checking similarity

- Given two square matrices A and B when are they similar?
- This question is not easy to answer. But there are necessary (but NOT sufficient) conditions that A and B must satisfy. Assume $A=P^{-1} B P$.
- Then $\operatorname{det}(\lambda I-A)=\operatorname{det}\left(\lambda P^{-1} P-P^{-1} B P\right)=\operatorname{det}(\lambda I-B)$. So their eigenvalues

Simple criteria for checking similarity

- Given two square matrices A and B when are they similar?
- This question is not easy to answer. But there are necessary (but NOT sufficient) conditions that A and B must satisfy. Assume $A=P^{-1} B P$.
- Then $\operatorname{det}(\lambda I-A)=\operatorname{det}\left(\lambda P^{-1} P-P^{-1} B P\right)=\operatorname{det}(\lambda I-B)$. So their eigenvalues must be equal!

Simple criteria for checking similarity

- Given two square matrices A and B when are they similar?
- This question is not easy to answer. But there are necessary (but NOT sufficient) conditions that A and B must satisfy. Assume $A=P^{-1} B P$.
- Then $\operatorname{det}(\lambda I-A)=\operatorname{det}\left(\lambda P^{-1} P-P^{-1} B P\right)=\operatorname{det}(\lambda I-B)$. So their eigenvalues must be equal!
- In particular,

Simple criteria for checking similarity

- Given two square matrices A and B when are they similar?
- This question is not easy to answer. But there are necessary (but NOT sufficient) conditions that A and B must satisfy. Assume $A=P^{-1} B P$.
- Then $\operatorname{det}(\lambda I-A)=\operatorname{det}\left(\lambda P^{-1} P-P^{-1} B P\right)=\operatorname{det}(\lambda I-B)$. So their eigenvalues must be equal!
- In particular, $\operatorname{det}(A)=\operatorname{det}(B)$.

Simple criteria for checking similarity

- Given two square matrices A and B when are they similar?
- This question is not easy to answer. But there are necessary (but NOT sufficient) conditions that A and B must satisfy. Assume $A=P^{-1} B P$.
- Then $\operatorname{det}(\lambda I-A)=\operatorname{det}\left(\lambda P^{-1} P-P^{-1} B P\right)=\operatorname{det}(\lambda I-B)$. So their eigenvalues must be equal!
- In particular, $\operatorname{det}(A)=\operatorname{det}(B)$. Moreover, we define

Simple criteria for checking similarity

- Given two square matrices A and B when are they similar?
- This question is not easy to answer. But there are necessary (but NOT sufficient) conditions that A and B must satisfy. Assume $A=P^{-1} B P$.
- Then $\operatorname{det}(\lambda I-A)=\operatorname{det}\left(\lambda P^{-1} P-P^{-1} B P\right)=\operatorname{det}(\lambda I-B)$. So their eigenvalues must be equal!
- In particular, $\operatorname{det}(A)=\operatorname{det}(B)$. Moreover, we define $\operatorname{tr}(A)=\sum_{i} A_{i i}$.

Simple criteria for checking similarity

- Given two square matrices A and B when are they similar?
- This question is not easy to answer. But there are necessary (but NOT sufficient) conditions that A and B must satisfy. Assume $A=P^{-1} B P$.
- Then $\operatorname{det}(\lambda I-A)=\operatorname{det}\left(\lambda P^{-1} P-P^{-1} B P\right)=\operatorname{det}(\lambda I-B)$. So their eigenvalues must be equal!
- In particular, $\operatorname{det}(A)=\operatorname{det}(B)$. Moreover, we define $\operatorname{tr}(A)=\sum_{i} A_{i i}$. The coefficient of

Simple criteria for checking similarity

- Given two square matrices A and B when are they similar?
- This question is not easy to answer. But there are necessary (but NOT sufficient) conditions that A and B must satisfy. Assume $A=P^{-1} B P$.
- Then $\operatorname{det}(\lambda I-A)=\operatorname{det}\left(\lambda P^{-1} P-P^{-1} B P\right)=\operatorname{det}(\lambda I-B)$. So their eigenvalues must be equal!
- In particular, $\operatorname{det}(A)=\operatorname{det}(B)$. Moreover, we define $\operatorname{tr}(A)=\sum_{i} A_{i i}$. The coefficient of λ^{n-1} is

Simple criteria for checking similarity

- Given two square matrices A and B when are they similar?
- This question is not easy to answer. But there are necessary (but NOT sufficient) conditions that A and B must satisfy. Assume $A=P^{-1} B P$.
- Then $\operatorname{det}(\lambda I-A)=\operatorname{det}\left(\lambda P^{-1} P-P^{-1} B P\right)=\operatorname{det}(\lambda I-B)$. So their eigenvalues must be equal!
- In particular, $\operatorname{det}(A)=\operatorname{det}(B)$. Moreover, we define $\operatorname{tr}(A)=\sum_{i} A_{i j}$. The coefficient of λ^{n-1} is $-\operatorname{tr}(A)$.

Simple criteria for checking similarity

- Given two square matrices A and B when are they similar?
- This question is not easy to answer. But there are necessary (but NOT sufficient) conditions that A and B must satisfy. Assume $A=P^{-1} B P$.
- Then $\operatorname{det}(\lambda I-A)=\operatorname{det}\left(\lambda P^{-1} P-P^{-1} B P\right)=\operatorname{det}(\lambda I-B)$. So their eigenvalues must be equal!
- In particular, $\operatorname{det}(A)=\operatorname{det}(B)$. Moreover, we define $\operatorname{tr}(A)=\sum_{i} A_{i i}$. The coefficient of λ^{n-1} is $-\operatorname{tr}(A)$. Thus $\operatorname{tr}(A)=\sum_{i} \lambda_{i}$.

Simple criteria for checking similarity

- Given two square matrices A and B when are they similar?
- This question is not easy to answer. But there are necessary (but NOT sufficient) conditions that A and B must satisfy. Assume $A=P^{-1} B P$.
- Then $\operatorname{det}(\lambda I-A)=\operatorname{det}\left(\lambda P^{-1} P-P^{-1} B P\right)=\operatorname{det}(\lambda I-B)$. So their eigenvalues must be equal!
- In particular, $\operatorname{det}(A)=\operatorname{det}(B)$. Moreover, we define $\operatorname{tr}(A)=\sum_{i} A_{i i}$. The coefficient of λ^{n-1} is $-\operatorname{tr}(A)$. Thus $\operatorname{tr}(A)=\sum_{i} \lambda_{i}$. Hence $\operatorname{tr}(A)=\operatorname{tr}(B)$ if

Simple criteria for checking similarity

- Given two square matrices A and B when are they similar?
- This question is not easy to answer. But there are necessary (but NOT sufficient) conditions that A and B must satisfy. Assume $A=P^{-1} B P$.
- Then $\operatorname{det}(\lambda I-A)=\operatorname{det}\left(\lambda P^{-1} P-P^{-1} B P\right)=\operatorname{det}(\lambda I-B)$. So their eigenvalues must be equal!
- In particular, $\operatorname{det}(A)=\operatorname{det}(B)$. Moreover, we define $\operatorname{tr}(A)=\sum_{i} A_{i i}$. The coefficient of λ^{n-1} is $-\operatorname{tr}(A)$. Thus $\operatorname{tr}(A)=\sum_{i} \lambda_{i}$. Hence $\operatorname{tr}(A)=\operatorname{tr}(B)$ if A and B are similar.

Simple criteria for checking similarity

- Given two square matrices A and B when are they similar?
- This question is not easy to answer. But there are necessary (but NOT sufficient) conditions that A and B must satisfy. Assume $A=P^{-1} B P$.
- Then $\operatorname{det}(\lambda I-A)=\operatorname{det}\left(\lambda P^{-1} P-P^{-1} B P\right)=\operatorname{det}(\lambda I-B)$. So their eigenvalues must be equal!
- In particular, $\operatorname{det}(A)=\operatorname{det}(B)$. Moreover, we define $\operatorname{tr}(A)=\sum_{i} A_{i i}$. The coefficient of λ^{n-1} is $-\operatorname{tr}(A)$. Thus $\operatorname{tr}(A)=\sum_{i} \lambda_{i}$. Hence $\operatorname{tr}(A)=\operatorname{tr}(B)$ if A and B are similar.
- As a part of

Simple criteria for checking similarity

- Given two square matrices A and B when are they similar?
- This question is not easy to answer. But there are necessary (but NOT sufficient) conditions that A and B must satisfy. Assume $A=P^{-1} B P$.
- Then $\operatorname{det}(\lambda I-A)=\operatorname{det}\left(\lambda P^{-1} P-P^{-1} B P\right)=\operatorname{det}(\lambda I-B)$. So their eigenvalues must be equal!
- In particular, $\operatorname{det}(A)=\operatorname{det}(B)$. Moreover, we define $\operatorname{tr}(A)=\sum_{i} A_{i i}$. The coefficient of λ^{n-1} is $-\operatorname{tr}(A)$. Thus $\operatorname{tr}(A)=\sum_{i} \lambda_{i}$. Hence $\operatorname{tr}(A)=\operatorname{tr}(B)$ if A and B are similar.
- As a part of HW you will prove that

Simple criteria for checking similarity

- Given two square matrices A and B when are they similar?
- This question is not easy to answer. But there are necessary (but NOT sufficient) conditions that A and B must satisfy. Assume $A=P^{-1} B P$.
- Then $\operatorname{det}(\lambda I-A)=\operatorname{det}\left(\lambda P^{-1} P-P^{-1} B P\right)=\operatorname{det}(\lambda I-B)$. So their eigenvalues must be equal!
- In particular, $\operatorname{det}(A)=\operatorname{det}(B)$. Moreover, we define $\operatorname{tr}(A)=\sum_{i} A_{i i}$. The coefficient of λ^{n-1} is $-\operatorname{tr}(A)$. Thus $\operatorname{tr}(A)=\sum_{i} \lambda_{i}$. Hence $\operatorname{tr}(A)=\operatorname{tr}(B)$ if A and B are similar.
- As a part of HW you will prove that $\operatorname{tr}(A B)=\operatorname{tr}(B A)$.

Example-1

Example-1

- Calculate

Example-1

- Calculate the eigenvalues and

Example-1

- Calculate the eigenvalues and eigenspaces of

Example-1

- Calculate the eigenvalues and eigenspaces of

$$
T=\left[\begin{array}{ccc}
2 & 1 & 1 \\
2 & 3 & 4 \\
-1 & -1 & -2
\end{array}\right] \text { over } \mathbb{C}
$$

Example-1

- Calculate the eigenvalues and eigenspaces of

$$
T=\left[\begin{array}{ccc}
2 & 1 & 1 \\
2 & 3 & 4 \\
-1 & -1 & -2
\end{array}\right] \text { over } \mathbb{C} .
$$

- The characteristic polynomial is

Example-1

- Calculate the eigenvalues and eigenspaces of

$$
T=\left[\begin{array}{ccc}
2 & 1 & 1 \\
2 & 3 & 4 \\
-1 & -1 & -2
\end{array}\right] \text { over } \mathbb{C}
$$

- The characteristic polynomial is

$$
p_{T}(\lambda)=\operatorname{det}(\lambda I-T)=\left|\begin{array}{ccc}
\lambda-2 & -1 & -1 \\
-2 & \lambda-3 & -4 \\
1 & 1 & \lambda+2
\end{array}\right|
$$

Example-1

- Calculate the eigenvalues and eigenspaces of

$$
T=\left[\begin{array}{ccc}
2 & 1 & 1 \\
2 & 3 & 4 \\
-1 & -1 & -2
\end{array}\right] \text { over } \mathbb{C}
$$

- The characteristic polynomial is

$$
\begin{aligned}
& p_{T}(\lambda)=\operatorname{det}(\lambda I-T)=\left|\begin{array}{ccc}
\lambda-2 & -1 & -1 \\
-2 & \lambda-3 & -4 \\
1 & 1 & \lambda+2
\end{array}\right| \\
& C_{2} \rightarrow C_{2}-C_{3}
\end{aligned}
$$

Example-1

- Calculate the eigenvalues and eigenspaces of

$$
T=\left[\begin{array}{ccc}
2 & 1 & 1 \\
2 & 3 & 4 \\
-1 & -1 & -2
\end{array}\right] \text { over } \mathbb{C}
$$

- The characteristic polynomial is

$$
\begin{aligned}
& p_{T}(\lambda)=\operatorname{det}(\lambda I-T)=\left|\begin{array}{ccc}
\lambda-2 & -1 & -1 \\
-2 & \lambda-3 & -4 \\
1 & 1 & \lambda+2
\end{array}\right| \\
& C_{2} \rightarrow C_{2}-C_{3}, R_{3} \rightarrow R_{3}+R_{2} \text { and }
\end{aligned}
$$

Example-1

- Calculate the eigenvalues and eigenspaces of

$$
T=\left[\begin{array}{ccc}
2 & 1 & 1 \\
2 & 3 & 4 \\
-1 & -1 & -2
\end{array}\right] \text { over } \mathbb{C} .
$$

- The characteristic polynomial is

$$
\begin{aligned}
& p_{T}(\lambda)=\operatorname{det}(\lambda I-T)=\left|\begin{array}{ccc}
\lambda-2 & -1 & -1 \\
-2 & \lambda-3 & -4 \\
1 & 1 & \lambda+2
\end{array}\right| \\
& C_{2} \rightarrow C_{2}-C_{3}, R_{3} \rightarrow R_{3}+R_{2} \text { and expanding along }
\end{aligned}
$$

Example-1

- Calculate the eigenvalues and eigenspaces of

$$
T=\left[\begin{array}{ccc}
2 & 1 & 1 \\
2 & 3 & 4 \\
-1 & -1 & -2
\end{array}\right] \text { over } \mathbb{C} .
$$

- The characteristic polynomial is

$$
p_{T}(\lambda)=\operatorname{det}(\lambda I-T)=\left|\begin{array}{ccc}
\lambda-2 & -1 & -1 \\
-2 & \lambda-3 & -4 \\
1 & 1 & \lambda+2
\end{array}\right|
$$

$C_{2} \rightarrow C_{2}-C_{3}, R_{3} \rightarrow R_{3}+R_{2}$ and expanding along the second column

Example-1

- Calculate the eigenvalues and eigenspaces of

$$
T=\left[\begin{array}{ccc}
2 & 1 & 1 \\
2 & 3 & 4 \\
-1 & -1 & -2
\end{array}\right] \text { over } \mathbb{C} .
$$

- The characteristic polynomial is
$p_{T}(\lambda)=\operatorname{det}(\lambda I-T)=\left|\begin{array}{ccc}\lambda-2 & -1 & -1 \\ -2 & \lambda-3 & -4 \\ 1 & 1 & \lambda+2\end{array}\right|$.
$C_{2} \rightarrow C_{2}-C_{3}, R_{3} \rightarrow R_{3}+R_{2}$ and expanding along the second column yields

Example-1

- Calculate the eigenvalues and eigenspaces of

$$
T=\left[\begin{array}{ccc}
2 & 1 & 1 \\
2 & 3 & 4 \\
-1 & -1 & -2
\end{array}\right] \text { over } \mathbb{C}
$$

- The characteristic polynomial is
$p_{T}(\lambda)=\operatorname{det}(\lambda I-T)=\left|\begin{array}{ccc}\lambda-2 & -1 & -1 \\ -2 & \lambda-3 & -4 \\ 1 & 1 & \lambda+2\end{array}\right|$.
$C_{2} \rightarrow C_{2}-C_{3}, R_{3} \rightarrow R_{3}+R_{2}$ and expanding along the second column yields $p_{T}(\lambda)=(\lambda+1)(\lambda-1)(\lambda-3)$.

Example-1

- Calculate the eigenvalues and eigenspaces of
$T=\left[\begin{array}{ccc}2 & 1 & 1 \\ 2 & 3 & 4 \\ -1 & -1 & -2\end{array}\right]$ over \mathbb{C}.
- The characteristic polynomial is
$p_{T}(\lambda)=\operatorname{det}(\lambda I-T)=\left|\begin{array}{ccc}\lambda-2 & -1 & -1 \\ -2 & \lambda-3 & -4 \\ 1 & 1 & \lambda+2\end{array}\right|$.
$C_{2} \rightarrow C_{2}-C_{3}, R_{3} \rightarrow R_{3}+R_{2}$ and expanding along the second column yields $p_{T}(\lambda)=(\lambda+1)(\lambda-1)(\lambda-3)$.
- So the eigenvalues are $-1,1,3$.

Example-1

- Calculate the eigenvalues and eigenspaces of
$T=\left[\begin{array}{ccc}2 & 1 & 1 \\ 2 & 3 & 4 \\ -1 & -1 & -2\end{array}\right]$ over \mathbb{C}.
- The characteristic polynomial is
$p_{T}(\lambda)=\operatorname{det}(\lambda I-T)=\left|\begin{array}{ccc}\lambda-2 & -1 & -1 \\ -2 & \lambda-3 & -4 \\ 1 & 1 & \lambda+2\end{array}\right|$.
$C_{2} \rightarrow C_{2}-C_{3}, R_{3} \rightarrow R_{3}+R_{2}$ and expanding along the second column yields $p_{T}(\lambda)=(\lambda+1)(\lambda-1)(\lambda-3)$.
- So the eigenvalues are $-1,1,3$. They are distinct

Example-1

- Calculate the eigenvalues and eigenspaces of
$T=\left[\begin{array}{ccc}2 & 1 & 1 \\ 2 & 3 & 4 \\ -1 & -1 & -2\end{array}\right]$ over \mathbb{C}.
- The characteristic polynomial is
$p_{T}(\lambda)=\operatorname{det}(\lambda I-T)=\left|\begin{array}{ccc}\lambda-2 & -1 & -1 \\ -2 & \lambda-3 & -4 \\ 1 & 1 & \lambda+2\end{array}\right|$.
$C_{2} \rightarrow C_{2}-C_{3}, R_{3} \rightarrow R_{3}+R_{2}$ and expanding along the second column yields $p_{T}(\lambda)=(\lambda+1)(\lambda-1)(\lambda-3)$.
- So the eigenvalues are $-1,1,3$. They are distinct and hence the matrix is

Example-1

- Calculate the eigenvalues and eigenspaces of
$T=\left[\begin{array}{ccc}2 & 1 & 1 \\ 2 & 3 & 4 \\ -1 & -1 & -2\end{array}\right]$ over \mathbb{C}.
- The characteristic polynomial is
$p_{T}(\lambda)=\operatorname{det}(\lambda I-T)=\left|\begin{array}{ccc}\lambda-2 & -1 & -1 \\ -2 & \lambda-3 & -4 \\ 1 & 1 & \lambda+2\end{array}\right|$.
$C_{2} \rightarrow C_{2}-C_{3}, R_{3} \rightarrow R_{3}+R_{2}$ and expanding along the second column yields $p_{T}(\lambda)=(\lambda+1)(\lambda-1)(\lambda-3)$.
- So the eigenvalues are $-1,1,3$. They are distinct and hence the matrix is diagonalisable.

Example-1

- Calculate the eigenvalues and eigenspaces of
$T=\left[\begin{array}{ccc}2 & 1 & 1 \\ 2 & 3 & 4 \\ -1 & -1 & -2\end{array}\right]$ over \mathbb{C}.
- The characteristic polynomial is
$p_{T}(\lambda)=\operatorname{det}(\lambda I-T)=\left|\begin{array}{ccc}\lambda-2 & -1 & -1 \\ -2 & \lambda-3 & -4 \\ 1 & 1 & \lambda+2\end{array}\right|$.
$C_{2} \rightarrow C_{2}-C_{3}, R_{3} \rightarrow R_{3}+R_{2}$ and expanding along the second column yields $p_{T}(\lambda)=(\lambda+1)(\lambda-1)(\lambda-3)$.
- So the eigenvalues are $-1,1,3$. They are distinct and hence the matrix is diagonalisable.
- So we find

Example-1

- Calculate the eigenvalues and eigenspaces of
$T=\left[\begin{array}{ccc}2 & 1 & 1 \\ 2 & 3 & 4 \\ -1 & -1 & -2\end{array}\right]$ over \mathbb{C}.
- The characteristic polynomial is
$p_{T}(\lambda)=\operatorname{det}(\lambda I-T)=\left|\begin{array}{ccc}\lambda-2 & -1 & -1 \\ -2 & \lambda-3 & -4 \\ 1 & 1 & \lambda+2\end{array}\right|$.
$C_{2} \rightarrow C_{2}-C_{3}, R_{3} \rightarrow R_{3}+R_{2}$ and expanding along the second column yields $p_{T}(\lambda)=(\lambda+1)(\lambda-1)(\lambda-3)$.
- So the eigenvalues are $-1,1,3$. They are distinct and hence the matrix is diagonalisable.
- So we find the eigenspaces by

Example-1

- Calculate the eigenvalues and eigenspaces of
$T=\left[\begin{array}{ccc}2 & 1 & 1 \\ 2 & 3 & 4 \\ -1 & -1 & -2\end{array}\right]$ over \mathbb{C}.
- The characteristic polynomial is
$p_{T}(\lambda)=\operatorname{det}(\lambda I-T)=\left|\begin{array}{ccc}\lambda-2 & -1 & -1 \\ -2 & \lambda-3 & -4 \\ 1 & 1 & \lambda+2\end{array}\right|$.
$C_{2} \rightarrow C_{2}-C_{3}, R_{3} \rightarrow R_{3}+R_{2}$ and expanding along the second column yields $p_{T}(\lambda)=(\lambda+1)(\lambda-1)(\lambda-3)$.
- So the eigenvalues are $-1,1,3$. They are distinct and hence the matrix is diagonalisable.
- So we find the eigenspaces by solving $T v=\lambda v$.

Example-1

Example-1

- For $\lambda=1$

Example-1

- For $\lambda=1$ and $v=\left[\begin{array}{l}v_{1} \\ v_{2} \\ v_{3}\end{array}\right]$

Example-1

- For $\lambda=1$ and $v=\left[\begin{array}{l}v_{1} \\ v_{2} \\ v_{3}\end{array}\right]$ we need to solve $(I-T) v=0$.

Example-1

- For $\lambda=1$ and $v=\left[\begin{array}{l}v_{1} \\ v_{2} \\ v_{3}\end{array}\right]$ we need to solve $(I-T) v=0$.
- Let's do

Example-1

- For $\lambda=1$ and $v=\left[\begin{array}{l}v_{1} \\ v_{2} \\ v_{3}\end{array}\right]$ we need to solve $(I-T) v=0$.
- Let's do row operations to the augmented matrix $[I-T \mid 0]$.

Example-1

- For $\lambda=1$ and $v=\left[\begin{array}{l}v_{1} \\ v_{2} \\ v_{3}\end{array}\right]$ we need to solve $(I-T) v=0$.
- Let's do row operations to the augmented matrix [I $-T \mid 0$]. $R_{3} \rightarrow R_{3}+R_{1}, R_{2} \rightarrow R_{2}-2 R_{1}$ yield

Example-1

- For $\lambda=1$ and $v=\left[\begin{array}{l}v_{1} \\ v_{2} \\ v_{3}\end{array}\right]$ we need to solve $(I-T) v=0$.
- Let's do row operations to the augmented matrix [I $-T \mid 0]$. $R_{3} \rightarrow R_{3}+R_{1}, R_{2} \rightarrow R_{2}-2 R_{1}$ yield
$2 v_{3}=0=-2 v_{3}=-v_{1}-v_{2}-v_{3}$.

Example-1

- For $\lambda=1$ and $v=\left[\begin{array}{l}v_{1} \\ v_{2} \\ v_{3}\end{array}\right]$ we need to solve $(I-T) v=0$.
- Let's do row operations to the augmented matrix [I $-T \mid 0]$. $R_{3} \rightarrow R_{3}+R_{1}, R_{2} \rightarrow R_{2}-2 R_{1}$ yield $2 v_{3}=0=-2 v_{3}=-v_{1}-v_{2}-v_{3}$. Hence $v_{3}=0, v_{2}=-v_{1}$.

Example-1

- For $\lambda=1$ and $v=\left[\begin{array}{l}v_{1} \\ v_{2} \\ v_{3}\end{array}\right]$ we need to solve $(I-T) v=0$.
- Let's do row operations to the augmented matrix [I $-T \mid 0]$. $R_{3} \rightarrow R_{3}+R_{1}, R_{2} \rightarrow R_{2}-2 R_{1}$ yield
$2 v_{3}=0=-2 v_{3}=-v_{1}-v_{2}-v_{3}$. Hence $v_{3}=0, v_{2}=-v_{1}$.
Thus every eigenvector corresponding to

Example-1

- For $\lambda=1$ and $v=\left[\begin{array}{l}v_{1} \\ v_{2} \\ v_{3}\end{array}\right]$ we need to solve $(I-T) v=0$.
- Let's do row operations to the augmented matrix [I $-T \mid 0$]. $R_{3} \rightarrow R_{3}+R_{1}, R_{2} \rightarrow R_{2}-2 R_{1}$ yield
$2 v_{3}=0=-2 v_{3}=-v_{1}-v_{2}-v_{3}$. Hence $v_{3}=0, v_{2}=-v_{1}$.
Thus every eigenvector corresponding to $\lambda=1$ is of the form

Example-1

- For $\lambda=1$ and $v=\left[\begin{array}{l}v_{1} \\ v_{2} \\ v_{3}\end{array}\right]$ we need to solve $(I-T) v=0$.
- Let's do row operations to the augmented matrix [I $-T \mid 0$]. $R_{3} \rightarrow R_{3}+R_{1}, R_{2} \rightarrow R_{2}-2 R_{1}$ yield
$2 v_{3}=0=-2 v_{3}=-v_{1}-v_{2}-v_{3}$. Hence $v_{3}=0, v_{2}=-v_{1}$. Thus every eigenvector corresponding to $\lambda=1$ is of the form $t(1,-1,0)$ where $t \neq 0$ is any complex number.

Example-1

- For $\lambda=1$ and $v=\left[\begin{array}{l}v_{1} \\ v_{2} \\ v_{3}\end{array}\right]$ we need to solve $(I-T) v=0$.
- Let's do row operations to the augmented matrix [I $-T \mid 0$]. $R_{3} \rightarrow R_{3}+R_{1}, R_{2} \rightarrow R_{2}-2 R_{1}$ yield
$2 v_{3}=0=-2 v_{3}=-v_{1}-v_{2}-v_{3}$. Hence $v_{3}=0, v_{2}=-v_{1}$.
Thus every eigenvector corresponding to $\lambda=1$ is of the form $t(1,-1,0)$ where $t \neq 0$ is any complex number.
- Likewise,

Example-1

- For $\lambda=1$ and $v=\left[\begin{array}{l}v_{1} \\ v_{2} \\ v_{3}\end{array}\right]$ we need to solve $(I-T) v=0$.
- Let's do row operations to the augmented matrix [I $-T \mid 0$]. $R_{3} \rightarrow R_{3}+R_{1}, R_{2} \rightarrow R_{2}-2 R_{1}$ yield
$2 v_{3}=0=-2 v_{3}=-v_{1}-v_{2}-v_{3}$. Hence $v_{3}=0, v_{2}=-v_{1}$.
Thus every eigenvector corresponding to $\lambda=1$ is of the form $t(1,-1,0)$ where $t \neq 0$ is any complex number.
- Likewise, the eigenspace of $\lambda=-1$ is spanned by

Example-1

- For $\lambda=1$ and $v=\left[\begin{array}{l}v_{1} \\ v_{2} \\ v_{3}\end{array}\right]$ we need to solve $(I-T) v=0$.
- Let's do row operations to the augmented matrix [I $-T \mid 0$]. $R_{3} \rightarrow R_{3}+R_{1}, R_{2} \rightarrow R_{2}-2 R_{1}$ yield
$2 v_{3}=0=-2 v_{3}=-v_{1}-v_{2}-v_{3}$. Hence $v_{3}=0, v_{2}=-v_{1}$. Thus every eigenvector corresponding to $\lambda=1$ is of the form $t(1,-1,0)$ where $t \neq 0$ is any complex number.
- Likewise, the eigenspace of $\lambda=-1$ is spanned by $(0,1,-1)$ and that of

Example-1

- For $\lambda=1$ and $v=\left[\begin{array}{l}v_{1} \\ v_{2} \\ v_{3}\end{array}\right]$ we need to solve $(I-T) v=0$.
- Let's do row operations to the augmented matrix [I $-T \mid 0$]. $R_{3} \rightarrow R_{3}+R_{1}, R_{2} \rightarrow R_{2}-2 R_{1}$ yield
$2 v_{3}=0=-2 v_{3}=-v_{1}-v_{2}-v_{3}$. Hence $v_{3}=0, v_{2}=-v_{1}$. Thus every eigenvector corresponding to $\lambda=1$ is of the form $t(1,-1,0)$ where $t \neq 0$ is any complex number.
- Likewise, the eigenspace of $\lambda=-1$ is spanned by $(0,1,-1)$ and that of $\lambda=3$ is spanned by

Example-1

- For $\lambda=1$ and $v=\left[\begin{array}{l}v_{1} \\ v_{2} \\ v_{3}\end{array}\right]$ we need to solve $(I-T) v=0$.
- Let's do row operations to the augmented matrix [I $-T \mid 0$]. $R_{3} \rightarrow R_{3}+R_{1}, R_{2} \rightarrow R_{2}-2 R_{1}$ yield
$2 v_{3}=0=-2 v_{3}=-v_{1}-v_{2}-v_{3}$. Hence $v_{3}=0, v_{2}=-v_{1}$. Thus every eigenvector corresponding to $\lambda=1$ is of the form $t(1,-1,0)$ where $t \neq 0$ is any complex number.
- Likewise, the eigenspace of $\lambda=-1$ is spanned by $(0,1,-1)$ and that of $\lambda=3$ is spanned by $(2,3,-1)$.

Example-1

Example-1

- To find a matrix P

Example-1

- To find a matrix P such that $P^{-1} T P$ is $D=\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 3\end{array}\right]$,

Example-1

- To find a matrix P such that $P^{-1} T P$ is $D=\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 3\end{array}\right]$, note that $P^{-1} T P e_{1}=D e_{1}=\lambda_{1} e_{1}=e_{1}$.

Example-1

- To find a matrix P such that $P^{-1} T P$ is $D=\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 3\end{array}\right]$, note that $P^{-1} T P e_{1}=D e_{1}=\lambda_{1} e_{1}=e_{1}$. Thus the first column of P must be

Example-1

- To find a matrix P such that $P^{-1} T P$ is $D=\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 3\end{array}\right]$, note that $P^{-1} T P e_{1}=D e_{1}=\lambda_{1} e_{1}=e_{1}$. Thus the first column of P must be an eigenvector corresponding to

Example-1

- To find a matrix P such that $P^{-1} T P$ is $D=\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 3\end{array}\right]$, note that $P^{-1} T P e_{1}=D e_{1}=\lambda_{1} e_{1}=e_{1}$. Thus the first column of P must be an eigenvector corresponding to $\lambda=1$,
i.e.,

Example-1

- To find a matrix P such that $P^{-1} T P$ is $D=\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 3\end{array}\right]$,
note that $P^{-1} T P e_{1}=D e_{1}=\lambda_{1} e_{1}=e_{1}$. Thus the first column of P must be an eigenvector corresponding to $\lambda=1$, 1
i.e., $\begin{gathered}-1 \\ 0\end{gathered}$

Example-1

- To find a matrix P such that $P^{-1} T P$ is $D=\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 3\end{array}\right]$,
note that $P^{-1} T P e_{1}=D e_{1}=\lambda_{1} e_{1}=e_{1}$. Thus the first column of P must be an eigenvector corresponding to $\lambda=1$, 1
i.e., $\begin{gathered}-1 \\ 0\end{gathered}$
- Likewise for the other columns.

Example-1

- To find a matrix P such that $P^{-1} T P$ is $D=\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 3\end{array}\right]$,
note that $P^{-1} T P e_{1}=D e_{1}=\lambda_{1} e_{1}=e_{1}$. Thus the first column of P must be an eigenvector corresponding to $\lambda=1$, 1
i.e., $\begin{gathered}-1 \\ 0\end{gathered}$
- Likewise for the other columns. Thus P is

Example-1

- To find a matrix P such that $P^{-1} T P$ is $D=\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 3\end{array}\right]$, note that $P^{-1} T P e_{1}=D e_{1}=\lambda_{1} e_{1}=e_{1}$. Thus the first column of P must be an eigenvector corresponding to $\lambda=1$, 1
i.e., $\begin{gathered}-1 \\ 0\end{gathered}$
- Likewise for the other columns. Thus P is $\left[\begin{array}{ccc}1 & 0 & 2 \\ -1 & 1 & 3 \\ 0 & -1 & -1\end{array}\right]$.

Example-1

- To find a matrix P such that $P^{-1} T P$ is $D=\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 3\end{array}\right]$, note that $P^{-1} T P e_{1}=D e_{1}=\lambda_{1} e_{1}=e_{1}$. Thus the first column of P must be an eigenvector corresponding to $\lambda=1$, 1
i.e., $\begin{gathered}-1 \\ 0\end{gathered}$
- Likewise for the other columns. Thus P is $\left[\begin{array}{ccc}1 & 0 & 2 \\ -1 & 1 & 3 \\ 0 & -1 & -1\end{array}\right]$.
- More generally,

Example-1

- To find a matrix P such that $P^{-1} T P$ is $D=\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 3\end{array}\right]$, note that $P^{-1} T P e_{1}=D e_{1}=\lambda_{1} e_{1}=e_{1}$. Thus the first column of P must be an eigenvector corresponding to $\lambda=1$, 1
i.e., $\begin{gathered}-1 \\ 0\end{gathered}$
- Likewise for the other columns. Thus P is $\left[\begin{array}{ccc}1 & 0 & 2 \\ -1 & 1 & 3 \\ 0 & -1 & -1\end{array}\right]$.
- More generally, if we have a basis

Example-1

- To find a matrix P such that $P^{-1} T P$ is $D=\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 3\end{array}\right]$, note that $P^{-1} T P e_{1}=D e_{1}=\lambda_{1} e_{1}=e_{1}$. Thus the first column of P must be an eigenvector corresponding to $\lambda=1$, 1
i.e., $\begin{gathered}-1 \\ 0\end{gathered}$
- Likewise for the other columns. Thus P is $\left[\begin{array}{ccc}1 & 0 & 2 \\ -1 & 1 & 3 \\ 0 & -1 & -1\end{array}\right]$.
- More generally, if we have a basis of eigenvectors

Example-1

- To find a matrix P such that $P^{-1} T P$ is $D=\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 3\end{array}\right]$, note that $P^{-1} T P e_{1}=D e_{1}=\lambda_{1} e_{1}=e_{1}$. Thus the first column of P must be an eigenvector corresponding to $\lambda=1$, 1
i.e., $\begin{gathered}-1 \\ 0\end{gathered}$
- Likewise for the other columns. Thus P is $\left[\begin{array}{ccc}1 & 0 & 2 \\ -1 & 1 & 3 \\ 0 & -1 & -1\end{array}\right]$.
- More generally, if we have a basis of eigenvectors then $P^{-1} T P$ is diagonal

Example-1

- To find a matrix P such that $P^{-1} T P$ is $D=\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 3\end{array}\right]$, note that $P^{-1} T P e_{1}=D e_{1}=\lambda_{1} e_{1}=e_{1}$. Thus the first column of P must be an eigenvector corresponding to $\lambda=1$, 1
i.e., $\begin{gathered}-1 \\ 0\end{gathered}$
- Likewise for the other columns. Thus P is $\left[\begin{array}{ccc}1 & 0 & 2 \\ -1 & 1 & 3 \\ 0 & -1 & -1\end{array}\right]$.
- More generally, if we have a basis of eigenvectors then $P^{-1} T P$ is diagonal where the columns of P are

Example-1

- To find a matrix P such that $P^{-1} T P$ is $D=\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 3\end{array}\right]$, note that $P^{-1} T P e_{1}=D e_{1}=\lambda_{1} e_{1}=e_{1}$. Thus the first column of P must be an eigenvector corresponding to $\lambda=1$, 1
i.e., $\begin{gathered}-1 \\ 0\end{gathered}$
- Likewise for the other columns. Thus P is $\left[\begin{array}{ccc}1 & 0 & 2 \\ -1 & 1 & 3 \\ 0 & -1 & -1\end{array}\right]$.
- More generally, if we have a basis of eigenvectors then $P^{-1} T P$ is diagonal where the columns of P are the eigenvectors. So

Example-1

- To find a matrix P such that $P^{-1} T P$ is $D=\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 3\end{array}\right]$, note that $P^{-1} T P e_{1}=D e_{1}=\lambda_{1} e_{1}=e_{1}$. Thus the first column of P must be an eigenvector corresponding to $\lambda=1$, 1 i.e., $\begin{gathered}-1 \\ 0\end{gathered}$
- Likewise for the other columns. Thus P is $\left[\begin{array}{ccc}1 & 0 & 2 \\ -1 & 1 & 3 \\ 0 & -1 & -1\end{array}\right]$.
- More generally, if we have a basis of eigenvectors then $P^{-1} T P$ is diagonal where the columns of P are the eigenvectors. So $T=P D P^{-1}$.

Example-2

Example-2

$$
-T=\left[\begin{array}{lll}
2 & 1 & 1 \\
2 & 3 & 2 \\
3 & 3 & 4
\end{array}\right]
$$

Example-2

$$
\begin{aligned}
& \text { - } T=\left[\begin{array}{lll}
2 & 1 & 1 \\
2 & 3 & 2 \\
3 & 3 & 4
\end{array}\right] \\
& \text { - } p_{T}(\lambda)=(\lambda-1)^{2}(\lambda-7) \text { by }
\end{aligned}
$$

Example-2

$$
\begin{aligned}
& \text { - } T=\left[\begin{array}{lll}
2 & 1 & 1 \\
2 & 3 & 2 \\
3 & 3 & 4
\end{array}\right] \\
& \text { - } p_{T}(\lambda)=(\lambda-1)^{2}(\lambda-7) \text { by } C_{2} \rightarrow C_{2}-C_{1}, R_{3} \rightarrow R_{3}+R_{2} \\
& \text { and }
\end{aligned}
$$

Example-2

- $T=\left[\begin{array}{lll}2 & 1 & 1 \\ 2 & 3 & 2 \\ 3 & 3 & 4\end{array}\right]$
- $p_{T}(\lambda)=(\lambda-1)^{2}(\lambda-7)$ by $C_{2} \rightarrow C_{2}-C_{1}, R_{3} \rightarrow R_{3}+R_{2}$ and expanding along the second column.

Example-2

- $T=\left[\begin{array}{lll}2 & 1 & 1 \\ 2 & 3 & 2 \\ 3 & 3 & 4\end{array}\right]$
- $p_{T}(\lambda)=(\lambda-1)^{2}(\lambda-7)$ by $C_{2} \rightarrow C_{2}-C_{1}, R_{3} \rightarrow R_{3}+R_{2}$ and expanding along the second column.
- For $\lambda=1$,

Example-2

- $T=\left[\begin{array}{lll}2 & 1 & 1 \\ 2 & 3 & 2 \\ 3 & 3 & 4\end{array}\right]$
- $p_{T}(\lambda)=(\lambda-1)^{2}(\lambda-7)$ by $C_{2} \rightarrow C_{2}-C_{1}, R_{3} \rightarrow R_{3}+R_{2}$ and expanding along the second column.
- For $\lambda=1$, consider [$I-T \mid 0]$ and

Example-2

- $T=\left[\begin{array}{lll}2 & 1 & 1 \\ 2 & 3 & 2 \\ 3 & 3 & 4\end{array}\right]$
- $p_{T}(\lambda)=(\lambda-1)^{2}(\lambda-7)$ by $C_{2} \rightarrow C_{2}-C_{1}, R_{3} \rightarrow R_{3}+R_{2}$ and expanding along the second column.
- For $\lambda=1$, consider [I $-T \mid 0$] and do $R_{2} \rightarrow R_{2}-2 R_{1}$, $R_{3} \rightarrow R_{3}-3 R_{1}$ to get

Example-2

- $T=\left[\begin{array}{lll}2 & 1 & 1 \\ 2 & 3 & 2 \\ 3 & 3 & 4\end{array}\right]$
- $p_{T}(\lambda)=(\lambda-1)^{2}(\lambda-7)$ by $C_{2} \rightarrow C_{2}-C_{1}, R_{3} \rightarrow R_{3}+R_{2}$ and expanding along the second column.
- For $\lambda=1$, consider [I $-T \mid 0$] and do $R_{2} \rightarrow R_{2}-2 R_{1}$, $R_{3} \rightarrow R_{3}-3 R_{1}$ to get $-v_{1}-v_{2}-v_{3}=0$.

Example-2

- $T=\left[\begin{array}{lll}2 & 1 & 1 \\ 2 & 3 & 2 \\ 3 & 3 & 4\end{array}\right]$
- $p_{T}(\lambda)=(\lambda-1)^{2}(\lambda-7)$ by $C_{2} \rightarrow C_{2}-C_{1}, R_{3} \rightarrow R_{3}+R_{2}$ and expanding along the second column.
- For $\lambda=1$, consider [I $-T \mid 0$] and do $R_{2} \rightarrow R_{2}-2 R_{1}$, $R_{3} \rightarrow R_{3}-3 R_{1}$ to get $-v_{1}-v_{2}-v_{3}=0$. Hence $(1,0,-1),(0,1,-1)$ span the eigenspace of

Example-2

- $T=\left[\begin{array}{lll}2 & 1 & 1 \\ 2 & 3 & 2 \\ 3 & 3 & 4\end{array}\right]$
- $p_{T}(\lambda)=(\lambda-1)^{2}(\lambda-7)$ by $C_{2} \rightarrow C_{2}-C_{1}, R_{3} \rightarrow R_{3}+R_{2}$ and expanding along the second column.
- For $\lambda=1$, consider [I $-T \mid 0$] and do $R_{2} \rightarrow R_{2}-2 R_{1}$, $R_{3} \rightarrow R_{3}-3 R_{1}$ to get $-v_{1}-v_{2}-v_{3}=0$. Hence $(1,0,-1),(0,1,-1)$ span the eigenspace of $\lambda=1$. Likewise,

Example-2

- $T=\left[\begin{array}{lll}2 & 1 & 1 \\ 2 & 3 & 2 \\ 3 & 3 & 4\end{array}\right]$
- $p_{T}(\lambda)=(\lambda-1)^{2}(\lambda-7)$ by $C_{2} \rightarrow C_{2}-C_{1}, R_{3} \rightarrow R_{3}+R_{2}$ and expanding along the second column.
- For $\lambda=1$, consider [I $-T \mid 0$] and do $R_{2} \rightarrow R_{2}-2 R_{1}$, $R_{3} \rightarrow R_{3}-3 R_{1}$ to get $-v_{1}-v_{2}-v_{3}=0$. Hence $(1,0,-1),(0,1,-1)$ span the eigenspace of $\lambda=1$. Likewise, $(1,2,3)$ spans the eigenspace of

Example-2

- $T=\left[\begin{array}{lll}2 & 1 & 1 \\ 2 & 3 & 2 \\ 3 & 3 & 4\end{array}\right]$
- $p_{T}(\lambda)=(\lambda-1)^{2}(\lambda-7)$ by $C_{2} \rightarrow C_{2}-C_{1}, R_{3} \rightarrow R_{3}+R_{2}$ and expanding along the second column.
- For $\lambda=1$, consider [I $-T \mid 0$] and do $R_{2} \rightarrow R_{2}-2 R_{1}$, $R_{3} \rightarrow R_{3}-3 R_{1}$ to get $-v_{1}-v_{2}-v_{3}=0$. Hence $(1,0,-1),(0,1,-1)$ span the eigenspace of $\lambda=1$. Likewise, $(1,2,3)$ spans the eigenspace of $\lambda=7$.

Example-2

- $T=\left[\begin{array}{lll}2 & 1 & 1 \\ 2 & 3 & 2 \\ 3 & 3 & 4\end{array}\right]$
- $p_{T}(\lambda)=(\lambda-1)^{2}(\lambda-7)$ by $C_{2} \rightarrow C_{2}-C_{1}, R_{3} \rightarrow R_{3}+R_{2}$ and expanding along the second column.
- For $\lambda=1$, consider [I $-T \mid 0$] and do $R_{2} \rightarrow R_{2}-2 R_{1}$, $R_{3} \rightarrow R_{3}-3 R_{1}$ to get $-v_{1}-v_{2}-v_{3}=0$. Hence
$(1,0,-1),(0,1,-1)$ span the eigenspace of $\lambda=1$. Likewise,
$(1,2,3)$ spans the eigenspace of $\lambda=7$.
- Thus $P^{-1} T P=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 7\end{array}\right]$ where $P=\left[\begin{array}{ccc}1 & 0 & 1 \\ 0 & 1 & 2 \\ -1 & -1 & 3\end{array}\right]$.

Example-3

Example-3

- $T=\left[\begin{array}{ccc}2 & -1 & 1 \\ 0 & 3 & -1 \\ 2 & 1 & 3\end{array}\right]$.

Example-3

- $T=\left[\begin{array}{ccc}2 & -1 & 1 \\ 0 & 3 & -1 \\ 2 & 1 & 3\end{array}\right]$.
- $p_{T}(\lambda)=(\lambda-2)^{2}(\lambda-4)$.

Example-3

- $T=\left[\begin{array}{ccc}2 & -1 & 1 \\ 0 & 3 & -1 \\ 2 & 1 & 3\end{array}\right]$.
- $p_{T}(\lambda)=(\lambda-2)^{2}(\lambda-4)$.
- For $\lambda=2$,

Example-3

- $T=\left[\begin{array}{ccc}2 & -1 & 1 \\ 0 & 3 & -1 \\ 2 & 1 & 3\end{array}\right]$.
- $p_{T}(\lambda)=(\lambda-2)^{2}(\lambda-4)$.
- For $\lambda=2$, the eigenspace is 1-dimensional and

Example-3

- $T=\left[\begin{array}{ccc}2 & -1 & 1 \\ 0 & 3 & -1 \\ 2 & 1 & 3\end{array}\right]$.
- $p_{T}(\lambda)=(\lambda-2)^{2}(\lambda-4)$.
- For $\lambda=2$, the eigenspace is 1 -dimensional and is spanned by $(-1,1,1)$.

Example-3

- $T=\left[\begin{array}{ccc}2 & -1 & 1 \\ 0 & 3 & -1 \\ 2 & 1 & 3\end{array}\right]$.
- $p_{T}(\lambda)=(\lambda-2)^{2}(\lambda-4)$.
- For $\lambda=2$, the eigenspace is 1 -dimensional and is spanned by $(-1,1,1)$. For $\lambda=4$,

Example-3

- $T=\left[\begin{array}{ccc}2 & -1 & 1 \\ 0 & 3 & -1 \\ 2 & 1 & 3\end{array}\right]$.
- $p_{T}(\lambda)=(\lambda-2)^{2}(\lambda-4)$.
- For $\lambda=2$, the eigenspace is 1 -dimensional and is spanned by $(-1,1,1)$. For $\lambda=4$, it is spanned by

Example-3

- $T=\left[\begin{array}{ccc}2 & -1 & 1 \\ 0 & 3 & -1 \\ 2 & 1 & 3\end{array}\right]$.
- $p_{T}(\lambda)=(\lambda-2)^{2}(\lambda-4)$.
- For $\lambda=2$, the eigenspace is 1 -dimensional and is spanned by $(-1,1,1)$. For $\lambda=4$, it is spanned by $(1,-1,1)$.

Example-3

- $T=\left[\begin{array}{ccc}2 & -1 & 1 \\ 0 & 3 & -1 \\ 2 & 1 & 3\end{array}\right]$.
- $p_{T}(\lambda)=(\lambda-2)^{2}(\lambda-4)$.
- For $\lambda=2$, the eigenspace is 1 -dimensional and is spanned by $(-1,1,1)$. For $\lambda=4$, it is spanned by $(1,-1,1)$.
- Hence T is

Example-3

- $T=\left[\begin{array}{ccc}2 & -1 & 1 \\ 0 & 3 & -1 \\ 2 & 1 & 3\end{array}\right]$.
- $p_{T}(\lambda)=(\lambda-2)^{2}(\lambda-4)$.
- For $\lambda=2$, the eigenspace is 1 -dimensional and is spanned by $(-1,1,1)$. For $\lambda=4$, it is spanned by $(1,-1,1)$.
- Hence T is NOT diagonalisable.

