Lecture 14 - UM 102 (Spring 2021)

Vamsi Pritham Pingali

IISc

Recap

▶ < ≣ ▶

æ

• We agreed that

æ

Ξ.

• We agreed that calculating M^n

æ

• We agreed that calculating M^n where M is a square matrix

• We agreed that calculating M^n where M is a square matrix is important (

• We agreed that calculating M^n where M is a square matrix is important (for Fibonacci sequences

• We agreed that calculating M^n where M is a square matrix is important (for Fibonacci sequences and Markov chains

• We agreed that calculating M^n where M is a square matrix is important (for Fibonacci sequences and Markov chains for instance).

- We agreed that calculating M^n where M is a square matrix is important (for Fibonacci sequences and Markov chains for instance).
- We observed that

- We agreed that calculating M^n where M is a square matrix is important (for Fibonacci sequences and Markov chains for instance).
- We observed that if *M* is

- We agreed that calculating M^n where M is a square matrix is important (for Fibonacci sequences and Markov chains for instance).
- We observed that if *M* is similar to

- We agreed that calculating M^n where M is a square matrix is important (for Fibonacci sequences and Markov chains for instance).
- We observed that if *M* is similar to a diagonal matrix

- We agreed that calculating M^n where M is a square matrix is important (for Fibonacci sequences and Markov chains for instance).
- We observed that if *M* is similar to a diagonal matrix we are "done".

- We agreed that calculating M^n where M is a square matrix is important (for Fibonacci sequences and Markov chains for instance).
- We observed that if *M* is similar to a diagonal matrix we are "done".
- We defined

- We agreed that calculating M^n where M is a square matrix is important (for Fibonacci sequences and Markov chains for instance).
- We observed that if *M* is similar to a diagonal matrix we are "done".
- We defined the eigenvalues and

- We agreed that calculating M^n where M is a square matrix is important (for Fibonacci sequences and Markov chains for instance).
- We observed that if *M* is similar to a diagonal matrix we are "done".
- We defined the eigenvalues and eigenvectors of

- We agreed that calculating M^n where M is a square matrix is important (for Fibonacci sequences and Markov chains for instance).
- We observed that if *M* is similar to a diagonal matrix we are "done".
- We defined the eigenvalues and eigenvectors of $T: V \rightarrow V$.

- We agreed that calculating M^n where M is a square matrix is important (for Fibonacci sequences and Markov chains for instance).
- We observed that if *M* is similar to a diagonal matrix we are "done".
- We defined the eigenvalues and eigenvectors of T : V → V. Likewise for a matrix.

2/10

- We agreed that calculating M^n where M is a square matrix is important (for Fibonacci sequences and Markov chains for instance).
- We observed that if *M* is similar to a diagonal matrix we are "done".
- We defined the eigenvalues and eigenvectors of *T* : *V* → *V*. Likewise for a matrix. We defined diagonalisability.

2/10

- We agreed that calculating M^n where M is a square matrix is important (for Fibonacci sequences and Markov chains for instance).
- We observed that if *M* is similar to a diagonal matrix we are "done".
- We defined the eigenvalues and eigenvectors of *T* : *V* → *V*. Likewise for a matrix. We defined diagonalisability.
- Gave examples.

- We agreed that calculating M^n where M is a square matrix is important (for Fibonacci sequences and Markov chains for instance).
- We observed that if *M* is similar to a diagonal matrix we are "done".
- We defined the eigenvalues and eigenvectors of *T* : *V* → *V*. Likewise for a matrix. We defined diagonalisability.
- Gave examples. Saw that

2/10

- We agreed that calculating M^n where M is a square matrix is important (for Fibonacci sequences and Markov chains for instance).
- We observed that if *M* is similar to a diagonal matrix we are "done".
- We defined the eigenvalues and eigenvectors of *T* : *V* → *V*. Likewise for a matrix. We defined diagonalisability.
- Gave examples. Saw that these notions

- We agreed that calculating M^n where M is a square matrix is important (for Fibonacci sequences and Markov chains for instance).
- We observed that if *M* is similar to a diagonal matrix we are "done".
- We defined the eigenvalues and eigenvectors of *T* : *V* → *V*. Likewise for a matrix. We defined diagonalisability.
- Gave examples. Saw that these notions depend on the field

- We agreed that calculating M^n where M is a square matrix is important (for Fibonacci sequences and Markov chains for instance).
- We observed that if *M* is similar to a diagonal matrix we are "done".
- We defined the eigenvalues and eigenvectors of *T* : *V* → *V*. Likewise for a matrix. We defined diagonalisability.
- Gave examples. Saw that these notions depend on the field and on the matrix.

- We agreed that calculating M^n where M is a square matrix is important (for Fibonacci sequences and Markov chains for instance).
- We observed that if *M* is similar to a diagonal matrix we are "done".
- We defined the eigenvalues and eigenvectors of *T* : *V* → *V*. Likewise for a matrix. We defined diagonalisability.
- Gave examples. Saw that these notions depend on the field and on the matrix. In particular,

- We agreed that calculating M^n where M is a square matrix is important (for Fibonacci sequences and Markov chains for instance).
- We observed that if *M* is similar to a diagonal matrix we are "done".
- We defined the eigenvalues and eigenvectors of *T* : *V* → *V*. Likewise for a matrix. We defined diagonalisability.
- Gave examples. Saw that these notions depend on the field and on the matrix. In particular, not everything is diagonalisable!

- We agreed that calculating M^n where M is a square matrix is important (for Fibonacci sequences and Markov chains for instance).
- We observed that if *M* is similar to a diagonal matrix we are "done".
- We defined the eigenvalues and eigenvectors of *T* : *V* → *V*. Likewise for a matrix. We defined diagonalisability.
- Gave examples. Saw that these notions depend on the field and on the matrix. In particular, not everything is diagonalisable!
- Proved that

- We agreed that calculating M^n where M is a square matrix is important (for Fibonacci sequences and Markov chains for instance).
- We observed that if *M* is similar to a diagonal matrix we are "done".
- We defined the eigenvalues and eigenvectors of *T* : *V* → *V*. Likewise for a matrix. We defined diagonalisability.
- Gave examples. Saw that these notions depend on the field and on the matrix. In particular, not everything is diagonalisable!
- Proved that eigenvalues are

- We agreed that calculating M^n where M is a square matrix is important (for Fibonacci sequences and Markov chains for instance).
- We observed that if *M* is similar to a diagonal matrix we are "done".
- We defined the eigenvalues and eigenvectors of *T* : *V* → *V*. Likewise for a matrix. We defined diagonalisability.
- Gave examples. Saw that these notions depend on the field and on the matrix. In particular, not everything is diagonalisable!
- Proved that eigenvalues are roots of

- We agreed that calculating M^n where M is a square matrix is important (for Fibonacci sequences and Markov chains for instance).
- We observed that if *M* is similar to a diagonal matrix we are "done".
- We defined the eigenvalues and eigenvectors of *T* : *V* → *V*. Likewise for a matrix. We defined diagonalisability.
- Gave examples. Saw that these notions depend on the field and on the matrix. In particular, not everything is diagonalisable!
- Proved that eigenvalues are roots of the characteristic polynomial,

- We agreed that calculating M^n where M is a square matrix is important (for Fibonacci sequences and Markov chains for instance).
- We observed that if *M* is similar to a diagonal matrix we are "done".
- We defined the eigenvalues and eigenvectors of *T* : *V* → *V*. Likewise for a matrix. We defined diagonalisability.
- Gave examples. Saw that these notions depend on the field and on the matrix. In particular, not everything is diagonalisable!
- Proved that eigenvalues are roots of the characteristic polynomial, $det(\lambda I T)$ that

- We agreed that calculating M^n where M is a square matrix is important (for Fibonacci sequences and Markov chains for instance).
- We observed that if *M* is similar to a diagonal matrix we are "done".
- We defined the eigenvalues and eigenvectors of *T* : *V* → *V*. Likewise for a matrix. We defined diagonalisability.
- Gave examples. Saw that these notions depend on the field and on the matrix. In particular, not everything is diagonalisable!
- Proved that eigenvalues are roots of the characteristic polynomial, $det(\lambda I T)$ that lie in \mathbb{F} .

Eigenvalues

▶ ★ 臣 ▶

æ

• Firstly,

æ

_ र ≣ ≯

• Firstly, not every

포 씨는 포

• Firstly, not every real polynomial

문 문 문

• Firstly, not every real polynomial has real roots!

- Firstly, not every real polynomial has real roots!
- However,

3) 3

- Firstly, not every real polynomial has real roots!
- However, it is an important

- Firstly, not every real polynomial has real roots!
- However, it is an important result that every

- Firstly, not every real polynomial has real roots!
- However, it is an important result that every complex polynomial

- Firstly, not every real polynomial has real roots!
- However, it is an important result that every complex polynomial has at least one

- Firstly, not every real polynomial has real roots!
- However, it is an important result that every complex polynomial has at least one complex root. (

- Firstly, not every real polynomial has real roots!
- However, it is an important result that every complex polynomial has at least one complex root. (The fundamental theorem of algebra.)

- Firstly, not every real polynomial has real roots!
- However, it is an important result that every complex polynomial has at least one complex root. (The fundamental theorem of algebra.) Moreover,

- Firstly, not every real polynomial has real roots!
- However, it is an important result that every complex polynomial has at least one complex root. (The fundamental theorem of algebra.) Moreover, if it has degree *n*

- Firstly, not every real polynomial has real roots!
- However, it is an important result that every complex polynomial has at least one complex root. (The fundamental theorem of algebra.) Moreover, if it has degree *n* then counting roots with

- Firstly, not every real polynomial has real roots!
- However, it is an important result that every complex polynomial has at least one complex root. (The fundamental theorem of algebra.) Moreover, if it has degree *n* then counting roots with multiplicity,

- Firstly, not every real polynomial has real roots!
- However, it is an important result that every complex polynomial has at least one complex root. (The fundamental theorem of algebra.) Moreover, if it has degree *n* then counting roots with multiplicity, there are exactly

- Firstly, not every real polynomial has real roots!
- However, it is an important result that every complex polynomial has at least one complex root. (The fundamental theorem of algebra.) Moreover, if it has degree *n* then counting roots with multiplicity, there are exactly *n* roots.

- Firstly, not every real polynomial has real roots!
- However, it is an important result that every complex polynomial has at least one complex root. (The fundamental theorem of algebra.) Moreover, if it has degree *n* then counting roots with multiplicity, there are exactly *n* roots.
- Thus every

- Firstly, not every real polynomial has real roots!
- However, it is an important result that every complex polynomial has at least one complex root. (The fundamental theorem of algebra.) Moreover, if it has degree *n* then counting roots with multiplicity, there are exactly *n* roots.
- Thus every complex matrix

3/10

- Firstly, not every real polynomial has real roots!
- However, it is an important result that every complex polynomial has at least one complex root. (The fundamental theorem of algebra.) Moreover, if it has degree *n* then counting roots with multiplicity, there are exactly *n* roots.
- Thus every complex matrix has *n* complex eigenvalues when

3/10

- Firstly, not every real polynomial has real roots!
- However, it is an important result that every complex polynomial has at least one complex root. (The fundamental theorem of algebra.) Moreover, if it has degree *n* then counting roots with multiplicity, there are exactly *n* roots.
- Thus every complex matrix has *n* complex eigenvalues when counted with multiplicity.

3/10

- Firstly, not every real polynomial has real roots!
- However, it is an important result that every complex polynomial has at least one complex root. (The fundamental theorem of algebra.) Moreover, if it has degree *n* then counting roots with multiplicity, there are exactly *n* roots.
- Thus every complex matrix has *n* complex eigenvalues when counted with multiplicity.
- Assume from now that

- Firstly, not every real polynomial has real roots!
- However, it is an important result that every complex polynomial has at least one complex root. (The fundamental theorem of algebra.) Moreover, if it has degree *n* then counting roots with multiplicity, there are exactly *n* roots.
- Thus every complex matrix has *n* complex eigenvalues when counted with multiplicity.
- Assume from now that every vector space is

- Firstly, not every real polynomial has real roots!
- However, it is an important result that every complex polynomial has at least one complex root. (The fundamental theorem of algebra.) Moreover, if it has degree *n* then counting roots with multiplicity, there are exactly *n* roots.
- Thus every complex matrix has *n* complex eigenvalues when counted with multiplicity.
- \bullet Assume from now that every vector space is over ${\mathbb C}$ and

- Firstly, not every real polynomial has real roots!
- However, it is an important result that every complex polynomial has at least one complex root. (The fundamental theorem of algebra.) Moreover, if it has degree *n* then counting roots with multiplicity, there are exactly *n* roots.
- Thus every complex matrix has *n* complex eigenvalues when counted with multiplicity.
- \bullet Assume from now that every vector space is over $\mathbb C$ and so is every matrix.

æ

-∢ ≣⇒

• Since not

'문▶' ★ 문▶

æ

• Since not every matrix is

_ र ≣ ≯

æ

• Since not every matrix is diagonalisable, it is

4/10

≣ ।•

• Since not every matrix is diagonalisable, it is natural to wonder

글▶ 글

• Since not every matrix is diagonalisable, it is natural to wonder when a matrix is so.

⊒ ⊳

- Since not every matrix is diagonalisable, it is natural to wonder when a matrix is so.
- Theorem:

- Since not every matrix is diagonalisable, it is natural to wonder when a matrix is so.
- Theorem: Let u_1, \ldots, u_k be eigenvectors

- Since not every matrix is diagonalisable, it is natural to wonder when a matrix is so.
- Theorem: Let u_1, \ldots, u_k be eigenvectors of a linear map $T: V \to V$

- Since not every matrix is diagonalisable, it is natural to wonder when a matrix is so.
- Theorem: Let u_1, \ldots, u_k be eigenvectors of a linear map $T: V \to V$ such that

- Since not every matrix is diagonalisable, it is natural to wonder when a matrix is so.
- Theorem: Let u_1, \ldots, u_k be eigenvectors of a linear map $T: V \to V$ such that the corresponding

- Since not every matrix is diagonalisable, it is natural to wonder when a matrix is so.
- Theorem: Let u_1, \ldots, u_k be eigenvectors of a linear map $T: V \to V$ such that the corresponding eigenvalues are

- Since not every matrix is diagonalisable, it is natural to wonder when a matrix is so.
- Theorem: Let u₁,..., u_k be eigenvectors of a linear map *T* : V → V such that the corresponding eigenvalues are distinct. Then

- Since not every matrix is diagonalisable, it is natural to wonder when a matrix is so.
- Theorem: Let u₁,..., u_k be eigenvectors of a linear map *T* : V → V such that the corresponding eigenvalues are distinct. Then the eigenvectors

- Since not every matrix is diagonalisable, it is natural to wonder when a matrix is so.
- Theorem: Let u₁,..., u_k be eigenvectors of a linear map *T* : V → V such that the corresponding eigenvalues are distinct. Then the eigenvectors u₁,..., u_k are

- Since not every matrix is diagonalisable, it is natural to wonder when a matrix is so.
- Theorem: Let u_1, \ldots, u_k be eigenvectors of a linear map $T: V \rightarrow V$ such that the corresponding eigenvalues are distinct. Then the eigenvectors u_1, \ldots, u_k are linearly independent.

- Since not every matrix is diagonalisable, it is natural to wonder when a matrix is so.
- Theorem: Let u_1, \ldots, u_k be eigenvectors of a linear map $T: V \rightarrow V$ such that the corresponding eigenvalues are distinct. Then the eigenvectors u_1, \ldots, u_k are linearly independent.
- As a consequence,

- Since not every matrix is diagonalisable, it is natural to wonder when a matrix is so.
- Theorem: Let u_1, \ldots, u_k be eigenvectors of a linear map $T: V \to V$ such that the corresponding eigenvalues are distinct. Then the eigenvectors u_1, \ldots, u_k are linearly independent.
- As a consequence, if V is f.d. of dim n, and

- Since not every matrix is diagonalisable, it is natural to wonder when a matrix is so.
- Theorem: Let u₁,..., u_k be eigenvectors of a linear map *T* : V → V such that the corresponding eigenvalues are distinct. Then the eigenvectors u₁,..., u_k are linearly independent.
- As a consequence, if V is f.d. of dim n, and all n eigenvalues of T

- Since not every matrix is diagonalisable, it is natural to wonder when a matrix is so.
- Theorem: Let u_1, \ldots, u_k be eigenvectors of a linear map $T: V \to V$ such that the corresponding eigenvalues are distinct. Then the eigenvectors u_1, \ldots, u_k are linearly independent.
- As a consequence, if V is f.d. of dim n, and all n eigenvalues of T are distinct

- Since not every matrix is diagonalisable, it is natural to wonder when a matrix is so.
- Theorem: Let u_1, \ldots, u_k be eigenvectors of a linear map $T: V \to V$ such that the corresponding eigenvalues are distinct. Then the eigenvectors u_1, \ldots, u_k are linearly independent.
- As a consequence, if V is f.d. of dim n, and all n eigenvalues of T are distinct then T is diagonalisable.

- Since not every matrix is diagonalisable, it is natural to wonder when a matrix is so.
- Theorem: Let u_1, \ldots, u_k be eigenvectors of a linear map $T: V \to V$ such that the corresponding eigenvalues are distinct. Then the eigenvectors u_1, \ldots, u_k are linearly independent.
- As a consequence, if V is f.d. of dim n, and all n eigenvalues of T are distinct then T is diagonalisable.
- Proof of Theorem:

- Since not every matrix is diagonalisable, it is natural to wonder when a matrix is so.
- Theorem: Let u_1, \ldots, u_k be eigenvectors of a linear map $T: V \to V$ such that the corresponding eigenvalues are distinct. Then the eigenvectors u_1, \ldots, u_k are linearly independent.
- As a consequence, if V is f.d. of dim n, and all n eigenvalues of T are distinct then T is diagonalisable.
- Proof of Theorem: We induct on k.

- Since not every matrix is diagonalisable, it is natural to wonder when a matrix is so.
- Theorem: Let u_1, \ldots, u_k be eigenvectors of a linear map $T: V \to V$ such that the corresponding eigenvalues are distinct. Then the eigenvectors u_1, \ldots, u_k are linearly independent.
- As a consequence, if V is f.d. of dim n, and all n eigenvalues of T are distinct then T is diagonalisable.
- Proof of Theorem: We induct on *k*. For *k* = 1 it is by definition.

- Since not every matrix is diagonalisable, it is natural to wonder when a matrix is so.
- Theorem: Let u₁,..., u_k be eigenvectors of a linear map *T* : V → V such that the corresponding eigenvalues are distinct. Then the eigenvectors u₁,..., u_k are linearly independent.
- As a consequence, if V is f.d. of dim n, and all n eigenvalues of T are distinct then T is diagonalisable.
- Proof of Theorem: We induct on k. For k = 1 it is by definition. Assume truth for 1, 2, ..., k 1.

- Since not every matrix is diagonalisable, it is natural to wonder when a matrix is so.
- Theorem: Let u_1, \ldots, u_k be eigenvectors of a linear map $T: V \to V$ such that the corresponding eigenvalues are distinct. Then the eigenvectors u_1, \ldots, u_k are linearly independent.
- As a consequence, if V is f.d. of dim n, and all n eigenvalues of T are distinct then T is diagonalisable.
- Proof of Theorem: We induct on k. For k = 1 it is by definition. Assume truth for 1, 2, ..., k 1. Suppose $\sum_i c_i u_i = 0$.

- Since not every matrix is diagonalisable, it is natural to wonder when a matrix is so.
- Theorem: Let u_1, \ldots, u_k be eigenvectors of a linear map $T: V \to V$ such that the corresponding eigenvalues are distinct. Then the eigenvectors u_1, \ldots, u_k are linearly independent.
- As a consequence, if V is f.d. of dim n, and all n eigenvalues of T are distinct then T is diagonalisable.
- Proof of Theorem: We induct on k. For k = 1 it is by definition. Assume truth for 1, 2, ..., k 1. Suppose $\sum_i c_i u_i = 0$. Then $\sum_i c_i T(u_i) = 0$.

- Since not every matrix is diagonalisable, it is natural to wonder when a matrix is so.
- Theorem: Let u_1, \ldots, u_k be eigenvectors of a linear map $T: V \to V$ such that the corresponding eigenvalues are distinct. Then the eigenvectors u_1, \ldots, u_k are linearly independent.
- As a consequence, if V is f.d. of dim n, and all n eigenvalues of T are distinct then T is diagonalisable.
- Proof of Theorem: We induct on k. For k = 1 it is by definition. Assume truth for 1, 2, ..., k 1. Suppose $\sum_i c_i u_i = 0$. Then $\sum_i c_i T(u_i) = 0$. Hence $\sum_i c_i \lambda_i u_i = 0$.

- Since not every matrix is diagonalisable, it is natural to wonder when a matrix is so.
- Theorem: Let u_1, \ldots, u_k be eigenvectors of a linear map $T: V \to V$ such that the corresponding eigenvalues are distinct. Then the eigenvectors u_1, \ldots, u_k are linearly independent.
- As a consequence, if V is f.d. of dim n, and all n eigenvalues of T are distinct then T is diagonalisable.
- Proof of Theorem: We induct on k. For k = 1 it is by definition. Assume truth for 1, 2, ..., k 1. Suppose $\sum_i c_i u_i = 0$. Then $\sum_i c_i T(u_i) = 0$. Hence $\sum_i c_i \lambda_i u_i = 0$. Eliminate c_1

- Since not every matrix is diagonalisable, it is natural to wonder when a matrix is so.
- Theorem: Let u_1, \ldots, u_k be eigenvectors of a linear map $T: V \to V$ such that the corresponding eigenvalues are distinct. Then the eigenvectors u_1, \ldots, u_k are linearly independent.
- As a consequence, if V is f.d. of dim n, and all n eigenvalues of T are distinct then T is diagonalisable.
- Proof of Theorem: We induct on k. For k = 1 it is by definition. Assume truth for 1, 2, ..., k 1. Suppose $\sum_i c_i u_i = 0$. Then $\sum_i c_i T(u_i) = 0$. Hence $\sum_i c_i \lambda_i u_i = 0$. Eliminate c_1 by multiplying

- Since not every matrix is diagonalisable, it is natural to wonder when a matrix is so.
- Theorem: Let u_1, \ldots, u_k be eigenvectors of a linear map $T: V \to V$ such that the corresponding eigenvalues are distinct. Then the eigenvectors u_1, \ldots, u_k are linearly independent.
- As a consequence, if V is f.d. of dim n, and all n eigenvalues of T are distinct then T is diagonalisable.
- Proof of Theorem: We induct on k. For k = 1 it is by definition. Assume truth for 1, 2, ..., k 1. Suppose $\sum_i c_i u_i = 0$. Then $\sum_i c_i T(u_i) = 0$. Hence $\sum_i c_i \lambda_i u_i = 0$. Eliminate c_1 by multiplying the first equation by

- Since not every matrix is diagonalisable, it is natural to wonder when a matrix is so.
- Theorem: Let u_1, \ldots, u_k be eigenvectors of a linear map $T: V \to V$ such that the corresponding eigenvalues are distinct. Then the eigenvectors u_1, \ldots, u_k are linearly independent.
- As a consequence, if V is f.d. of dim n, and all n eigenvalues of T are distinct then T is diagonalisable.
- Proof of Theorem: We induct on k. For k = 1 it is by definition. Assume truth for 1, 2, ..., k 1. Suppose $\sum_i c_i u_i = 0$. Then $\sum_i c_i T(u_i) = 0$. Hence $\sum_i c_i \lambda_i u_i = 0$. Eliminate c_1 by multiplying the first equation by λ_1 and subtracting

- Since not every matrix is diagonalisable, it is natural to wonder when a matrix is so.
- Theorem: Let u_1, \ldots, u_k be eigenvectors of a linear map $T: V \to V$ such that the corresponding eigenvalues are distinct. Then the eigenvectors u_1, \ldots, u_k are linearly independent.
- As a consequence, if V is f.d. of dim n, and all n eigenvalues of T are distinct then T is diagonalisable.
- Proof of Theorem: We induct on k. For k = 1 it is by definition. Assume truth for 1, 2, ..., k 1. Suppose $\sum_i c_i u_i = 0$. Then $\sum_i c_i T(u_i) = 0$. Hence $\sum_i c_i \lambda_i u_i = 0$. Eliminate c_1 by multiplying the first equation by λ_1 and subtracting to get $c_2(\lambda_2 \lambda_1)u_2 + ... = 0$.

- Since not every matrix is diagonalisable, it is natural to wonder when a matrix is so.
- Theorem: Let u_1, \ldots, u_k be eigenvectors of a linear map $T: V \to V$ such that the corresponding eigenvalues are distinct. Then the eigenvectors u_1, \ldots, u_k are linearly independent.
- As a consequence, if V is f.d. of dim n, and all n eigenvalues of T are distinct then T is diagonalisable.
- Proof of Theorem: We induct on k. For k = 1 it is by definition. Assume truth for 1, 2, ..., k 1. Suppose $\sum_i c_i u_i = 0$. Then $\sum_i c_i T(u_i) = 0$. Hence $\sum_i c_i \lambda_i u_i = 0$. Eliminate c_1 by multiplying the first equation by λ_1 and subtracting to get $c_2(\lambda_2 \lambda_1)u_2 + ... = 0$. By the induction hypothesis

聞 と く ヨ と く ヨ と …

- Since not every matrix is diagonalisable, it is natural to wonder when a matrix is so.
- Theorem: Let u_1, \ldots, u_k be eigenvectors of a linear map $T: V \to V$ such that the corresponding eigenvalues are distinct. Then the eigenvectors u_1, \ldots, u_k are linearly independent.
- As a consequence, if V is f.d. of dim n, and all n eigenvalues of T are distinct then T is diagonalisable.
- Proof of Theorem: We induct on k. For k = 1 it is by definition. Assume truth for 1, 2, ..., k 1. Suppose $\sum_i c_i u_i = 0$. Then $\sum_i c_i T(u_i) = 0$. Hence $\sum_i c_i \lambda_i u_i = 0$. Eliminate c_1 by multiplying the first equation by λ_1 and subtracting to get $c_2(\lambda_2 \lambda_1)u_2 + ... = 0$. By the induction hypothesis $c_2 = c_3 = ... = 0$.

4/10

伺 と く ヨ と く ヨ と …

- Since not every matrix is diagonalisable, it is natural to wonder when a matrix is so.
- Theorem: Let u_1, \ldots, u_k be eigenvectors of a linear map $T: V \to V$ such that the corresponding eigenvalues are distinct. Then the eigenvectors u_1, \ldots, u_k are linearly independent.
- As a consequence, if V is f.d. of dim n, and all n eigenvalues of T are distinct then T is diagonalisable.
- Proof of Theorem: We induct on k. For k = 1 it is by definition. Assume truth for 1, 2, ..., k 1. Suppose $\sum_i c_i u_i = 0$. Then $\sum_i c_i T(u_i) = 0$. Hence $\sum_i c_i \lambda_i u_i = 0$. Eliminate c_1 by multiplying the first equation by λ_1 and subtracting to get $c_2(\lambda_2 \lambda_1)u_2 + ... = 0$. By the induction hypothesis $c_2 = c_3 = ... = 0$. Thus, so is c_1 .

Э.

• Given two square matrices

⊒ ⊳

• Given two square matrices A and B

• Given two square matrices A and B when are they similar?

- Given two square matrices A and B when are they similar?
- This question is

- Given two square matrices A and B when are they similar?
- This question is *not* easy to answer.

- Given two square matrices A and B when are they similar?
- This question is *not* easy to answer. But there are

- Given two square matrices A and B when are they similar?
- This question is *not* easy to answer. But there are *necessary* (but

- Given two square matrices A and B when are they similar?
- This question is *not* easy to answer. But there are *necessary* (but NOT *sufficient*) conditions

- Given two square matrices A and B when are they similar?
- This question is *not* easy to answer. But there are *necessary* (but NOT *sufficient*) conditions that A and B

- Given two square matrices A and B when are they similar?
- This question is *not* easy to answer. But there are *necessary* (but NOT *sufficient*) conditions that A and B must satisfy.

- Given two square matrices A and B when are they similar?
- This question is *not* easy to answer. But there are *necessary* (but NOT *sufficient*) conditions that A and B must satisfy. Assume $A = P^{-1}BP$.

- Given two square matrices A and B when are they similar?
- This question is *not* easy to answer. But there are *necessary* (but NOT *sufficient*) conditions that A and B must satisfy. Assume $A = P^{-1}BP$.
- Then

- Given two square matrices A and B when are they similar?
- This question is not easy to answer. But there are necessary (but NOT sufficient) conditions that A and B must satisfy. Assume A = P⁻¹BP.

• Then
$$det(\lambda I - A) = det(\lambda P^{-1}P - P^{-1}BP) = det(\lambda I - B).$$

- Given two square matrices A and B when are they similar?
- This question is not easy to answer. But there are necessary (but NOT sufficient) conditions that A and B must satisfy. Assume A = P⁻¹BP.
- Then $det(\lambda I A) = det(\lambda P^{-1}P P^{-1}BP) = det(\lambda I B)$. So their eigenvalues

5/10

- Given two square matrices A and B when are they similar?
- This question is not easy to answer. But there are necessary (but NOT sufficient) conditions that A and B must satisfy. Assume A = P⁻¹BP.
- Then $det(\lambda I A) = det(\lambda P^{-1}P P^{-1}BP) = det(\lambda I B)$. So their eigenvalues must be equal!

5/10

- Given two square matrices A and B when are they similar?
- This question is not easy to answer. But there are necessary (but NOT sufficient) conditions that A and B must satisfy. Assume A = P⁻¹BP.
- Then $det(\lambda I A) = det(\lambda P^{-1}P P^{-1}BP) = det(\lambda I B)$. So their eigenvalues must be equal!
- In particular,

- Given two square matrices A and B when are they similar?
- This question is not easy to answer. But there are necessary (but NOT sufficient) conditions that A and B must satisfy. Assume A = P⁻¹BP.
- Then $det(\lambda I A) = det(\lambda P^{-1}P P^{-1}BP) = det(\lambda I B)$. So their eigenvalues must be equal!
- In particular, det(A) = det(B).

5/10

- Given two square matrices A and B when are they similar?
- This question is not easy to answer. But there are necessary (but NOT sufficient) conditions that A and B must satisfy. Assume A = P⁻¹BP.
- Then $det(\lambda I A) = det(\lambda P^{-1}P P^{-1}BP) = det(\lambda I B)$. So their eigenvalues must be equal!
- In particular, det(A) = det(B). Moreover, we define

- Given two square matrices A and B when are they similar?
- This question is not easy to answer. But there are necessary (but NOT sufficient) conditions that A and B must satisfy. Assume A = P⁻¹BP.
- Then $det(\lambda I A) = det(\lambda P^{-1}P P^{-1}BP) = det(\lambda I B)$. So their eigenvalues must be equal!
- In particular, det(A) = det(B). Moreover, we define tr(A) = ∑_i A_{ii}.

5/10

- Given two square matrices A and B when are they similar?
- This question is not easy to answer. But there are necessary (but NOT sufficient) conditions that A and B must satisfy. Assume A = P⁻¹BP.
- Then $det(\lambda I A) = det(\lambda P^{-1}P P^{-1}BP) = det(\lambda I B)$. So their eigenvalues must be equal!
- In particular, det(A) = det(B). Moreover, we define tr(A) = ∑_i A_{ii}. The coefficient of

- Given two square matrices A and B when are they similar?
- This question is not easy to answer. But there are necessary (but NOT sufficient) conditions that A and B must satisfy. Assume A = P⁻¹BP.
- Then $det(\lambda I A) = det(\lambda P^{-1}P P^{-1}BP) = det(\lambda I B)$. So their eigenvalues must be equal!
- In particular, det(A) = det(B). Moreover, we define tr(A) = ∑_i A_{ii}. The coefficient of λ^{n−1} is

- Given two square matrices A and B when are they similar?
- This question is not easy to answer. But there are necessary (but NOT sufficient) conditions that A and B must satisfy. Assume A = P⁻¹BP.
- Then $det(\lambda I A) = det(\lambda P^{-1}P P^{-1}BP) = det(\lambda I B)$. So their eigenvalues must be equal!
- In particular, det(A) = det(B). Moreover, we define $tr(A) = \sum_{i} A_{ii}$. The coefficient of λ^{n-1} is -tr(A).

- Given two square matrices A and B when are they similar?
- This question is not easy to answer. But there are necessary (but NOT sufficient) conditions that A and B must satisfy. Assume A = P⁻¹BP.
- Then $det(\lambda I A) = det(\lambda P^{-1}P P^{-1}BP) = det(\lambda I B)$. So their eigenvalues must be equal!
- In particular, det(A) = det(B). Moreover, we define $tr(A) = \sum_{i} A_{ii}$. The coefficient of λ^{n-1} is -tr(A). Thus $tr(A) = \sum_{i} \lambda_{i}$.

- Given two square matrices A and B when are they similar?
- This question is not easy to answer. But there are necessary (but NOT sufficient) conditions that A and B must satisfy. Assume A = P⁻¹BP.
- Then $det(\lambda I A) = det(\lambda P^{-1}P P^{-1}BP) = det(\lambda I B)$. So their eigenvalues must be equal!
- In particular, det(A) = det(B). Moreover, we define $tr(A) = \sum_{i} A_{ii}$. The coefficient of λ^{n-1} is -tr(A). Thus $tr(A) = \sum_{i} \lambda_{i}$. Hence tr(A) = tr(B) if

- Given two square matrices A and B when are they similar?
- This question is not easy to answer. But there are necessary (but NOT sufficient) conditions that A and B must satisfy. Assume A = P⁻¹BP.
- Then $det(\lambda I A) = det(\lambda P^{-1}P P^{-1}BP) = det(\lambda I B)$. So their eigenvalues must be equal!
- In particular, det(A) = det(B). Moreover, we define $tr(A) = \sum_{i} A_{ii}$. The coefficient of λ^{n-1} is -tr(A). Thus $tr(A) = \sum_{i} \lambda_{i}$. Hence tr(A) = tr(B) if A and B are similar.

- Given two square matrices A and B when are they similar?
- This question is not easy to answer. But there are necessary (but NOT sufficient) conditions that A and B must satisfy. Assume A = P⁻¹BP.
- Then $det(\lambda I A) = det(\lambda P^{-1}P P^{-1}BP) = det(\lambda I B)$. So their eigenvalues must be equal!
- In particular, det(A) = det(B). Moreover, we define $tr(A) = \sum_{i} A_{ii}$. The coefficient of λ^{n-1} is -tr(A). Thus $tr(A) = \sum_{i} \lambda_{i}$. Hence tr(A) = tr(B) if A and B are similar.
- As a part of

- Given two square matrices A and B when are they similar?
- This question is not easy to answer. But there are necessary (but NOT sufficient) conditions that A and B must satisfy. Assume A = P⁻¹BP.
- Then $det(\lambda I A) = det(\lambda P^{-1}P P^{-1}BP) = det(\lambda I B)$. So their eigenvalues must be equal!
- In particular, det(A) = det(B). Moreover, we define $tr(A) = \sum_{i} A_{ii}$. The coefficient of λ^{n-1} is -tr(A). Thus $tr(A) = \sum_{i} \lambda_{i}$. Hence tr(A) = tr(B) if A and B are similar.
- As a part of HW you will prove that

- Given two square matrices A and B when are they similar?
- This question is not easy to answer. But there are necessary (but NOT sufficient) conditions that A and B must satisfy. Assume A = P⁻¹BP.
- Then $det(\lambda I A) = det(\lambda P^{-1}P P^{-1}BP) = det(\lambda I B)$. So their eigenvalues must be equal!
- In particular, det(A) = det(B). Moreover, we define $tr(A) = \sum_{i} A_{ii}$. The coefficient of λ^{n-1} is -tr(A). Thus $tr(A) = \sum_{i} \lambda_{i}$. Hence tr(A) = tr(B) if A and B are similar.
- As a part of HW you will prove that tr(AB) = tr(BA).

< ≣⇒

2

æ

• Calculate

< P

æ

'문▶' ★ 문▶

• Calculate the eigenvalues and

문 🛌 문

• Calculate the eigenvalues and eigenspaces of

ъ

• Calculate the eigenvalues and eigenspaces of $\begin{bmatrix} 2 & 1 & 1 \end{bmatrix}$

$$T = \begin{bmatrix} 2 & 1 & 1 \\ 2 & 3 & 4 \\ -1 & -1 & -2 \end{bmatrix} \text{ over } \mathbb{C}.$$

æ

< ∃ >

• Calculate the eigenvalues and eigenspaces of $T = \begin{bmatrix} 2 & 1 & 1 \\ 2 & 3 & 4 \end{bmatrix} \text{ over } \mathbb{C}$

$$I = \begin{bmatrix} 2 & 5 & 4 \\ -1 & -1 & -2 \end{bmatrix} \text{ over } 0$$

• The characteristic polynomial is

• Calculate the eigenvalues and eigenspaces of $\begin{bmatrix} 2 & 1 & 1 \end{bmatrix}$

$$T = \begin{bmatrix} 2 & 1 & 1 \\ 2 & 3 & 4 \\ -1 & -1 & -2 \end{bmatrix} \text{ over } \mathbb{C}.$$

• The characteristic polynomial is $p_T(\lambda) = \det(\lambda I - T) = \begin{vmatrix} \lambda - 2 & -1 & -1 \\ -2 & \lambda - 3 & -4 \\ 1 & 1 & \lambda + 2 \end{vmatrix}.$

• Calculate the eigenvalues and eigenspaces of $\begin{bmatrix} 2 & 1 & 1 \end{bmatrix}$

$$T = \begin{bmatrix} 2 & 1 & 1 \\ 2 & 3 & 4 \\ -1 & -1 & -2 \end{bmatrix} \text{ over } \mathbb{C}.$$

• The characteristic polynomial is $p_T(\lambda) = \det(\lambda I - T) = \begin{vmatrix} \lambda - 2 & -1 & -1 \\ -2 & \lambda - 3 & -4 \\ 1 & 1 & \lambda + 2 \end{vmatrix}.$ $C_2 \to C_2 - C_3,$

• Calculate the eigenvalues and eigenspaces of $\begin{bmatrix} 2 & 1 & 1 \end{bmatrix}$

$$T = \begin{bmatrix} 2 & 1 & 1 \\ 2 & 3 & 4 \\ -1 & -1 & -2 \end{bmatrix} \text{ over } \mathbb{C}.$$

• The characteristic polynomial is $p_T(\lambda) = \det(\lambda I - T) = \begin{vmatrix} \lambda - 2 & -1 & -1 \\ -2 & \lambda - 3 & -4 \\ 1 & 1 & \lambda + 2 \end{vmatrix} .$ $C_2 \to C_2 - C_3, R_3 \to R_3 + R_2 \text{ and}$

• Calculate the eigenvalues and eigenspaces of $\begin{bmatrix} 2 & 1 & 1 \end{bmatrix}$

$$T = \begin{bmatrix} 2 & 1 & 1 \\ 2 & 3 & 4 \\ -1 & -1 & -2 \end{bmatrix} \text{ over } \mathbb{C}.$$

• The characteristic polynomial is $p_T(\lambda) = \det(\lambda I - T) = \begin{vmatrix} \lambda - 2 & -1 & -1 \\ -2 & \lambda - 3 & -4 \\ 1 & 1 & \lambda + 2 \end{vmatrix}$ $C_2 \to C_2 - C_3, R_3 \to R_3 + R_2 \text{ and expanding along}$

• Calculate the eigenvalues and eigenspaces of $\begin{bmatrix} 2 & 1 & 1 \end{bmatrix}$

$$T = \begin{bmatrix} 2 & 1 & 1 \\ 2 & 3 & 4 \\ -1 & -1 & -2 \end{bmatrix} \text{ over } \mathbb{C}.$$

• The characteristic polynomial is

$$p_T(\lambda) = \det(\lambda I - T) = \begin{vmatrix} \lambda - 2 & -1 & -1 \\ -2 & \lambda - 3 & -4 \\ 1 & 1 & \lambda + 2 \end{vmatrix}.$$

 $C_2 \rightarrow C_2 - C_3$, $R_3 \rightarrow R_3 + R_2$ and expanding along the second column

6/10

• Calculate the eigenvalues and eigenspaces of $\begin{bmatrix} 2 & 1 & 1 \end{bmatrix}$

$$T = \begin{bmatrix} 2 & 1 & 1 \\ 2 & 3 & 4 \\ -1 & -1 & -2 \end{bmatrix} \text{ over } \mathbb{C}.$$

• The characteristic polynomial is

$$p_T(\lambda) = \det(\lambda I - T) = \begin{vmatrix} \lambda - 2 & -1 & -1 \\ -2 & \lambda - 3 & -4 \\ 1 & 1 & \lambda + 2 \end{vmatrix}.$$

 $C_2 \rightarrow C_2 - C_3$, $R_3 \rightarrow R_3 + R_2$ and expanding along the second column yields

• Calculate the eigenvalues and eigenspaces of

$$T = \begin{bmatrix} 2 & 1 & 1 \\ 2 & 3 & 4 \\ -1 & -1 & -2 \end{bmatrix} \text{ over } \mathbb{C}.$$

• The characteristic polynomial is

$$p_T(\lambda) = \det(\lambda I - T) = egin{bmatrix} \lambda - 2 & -1 & -1 \ -2 & \lambda - 3 & -4 \ 1 & 1 & \lambda + 2 \end{bmatrix}.$$

 $C_2 \rightarrow C_2 - C_3$, $R_3 \rightarrow R_3 + R_2$ and expanding along the second column yields $p_T(\lambda) = (\lambda + 1)(\lambda - 1)(\lambda - 3)$.

• Calculate the eigenvalues and eigenspaces of

$$T = \begin{bmatrix} 2 & 1 & 1 \\ 2 & 3 & 4 \\ -1 & -1 & -2 \end{bmatrix} \text{ over } \mathbb{C}.$$

• The characteristic polynomial is

$$p_T(\lambda) = \det(\lambda I - T) = \begin{vmatrix} \lambda - 2 & -1 & -1 \\ -2 & \lambda - 3 & -4 \\ 1 & 1 & \lambda + 2 \end{vmatrix}.$$

 $C_2 \rightarrow C_2 - C_3$, $R_3 \rightarrow R_3 + R_2$ and expanding along the second column yields $p_T(\lambda) = (\lambda + 1)(\lambda - 1)(\lambda - 3)$.

• So the eigenvalues are
$$-1, 1, 3$$
.

• Calculate the eigenvalues and eigenspaces of $\begin{bmatrix} 2 & 1 & 1 \end{bmatrix}$

$$T = \begin{bmatrix} 2 & 1 & 1 \\ 2 & 3 & 4 \\ -1 & -1 & -2 \end{bmatrix} \text{ over } \mathbb{C}.$$

• The characteristic polynomial is

$$p_T(\lambda) = \det(\lambda I - T) = egin{bmatrix} \lambda - 2 & -1 & -1 \ -2 & \lambda - 3 & -4 \ 1 & 1 & \lambda + 2 \end{bmatrix}.$$

 $C_2 \rightarrow C_2 - C_3$, $R_3 \rightarrow R_3 + R_2$ and expanding along the second column yields $p_T(\lambda) = (\lambda + 1)(\lambda - 1)(\lambda - 3)$.

• So the eigenvalues are -1, 1, 3. They are distinct

• Calculate the eigenvalues and eigenspaces of

$$T = \begin{bmatrix} 2 & 1 & 1 \\ 2 & 3 & 4 \\ -1 & -1 & -2 \end{bmatrix} \text{ over } \mathbb{C}.$$

• The characteristic polynomial is

$$p_T(\lambda) = \det(\lambda I - T) = \begin{vmatrix} \lambda - 2 & -1 & -1 \\ -2 & \lambda - 3 & -4 \\ 1 & 1 & \lambda + 2 \end{vmatrix}.$$

 $C_2 \rightarrow C_2 - C_3$, $R_3 \rightarrow R_3 + R_2$ and expanding along the second column yields $p_T(\lambda) = (\lambda + 1)(\lambda - 1)(\lambda - 3)$.

• So the eigenvalues are -1, 1, 3. They are distinct and hence the matrix is

• Calculate the eigenvalues and eigenspaces of $\begin{bmatrix} 2 & 1 & 1 \end{bmatrix}$

$$T = \begin{bmatrix} 2 & 1 & 1 \\ 2 & 3 & 4 \\ -1 & -1 & -2 \end{bmatrix} \text{ over } \mathbb{C}.$$

• The characteristic polynomial is

$$p_T(\lambda) = \det(\lambda I - T) = \begin{vmatrix} \lambda - 2 & -1 & -1 \\ -2 & \lambda - 3 & -4 \\ 1 & 1 & \lambda + 2 \end{vmatrix}.$$

 $C_2 \rightarrow C_2 - C_3$, $R_3 \rightarrow R_3 + R_2$ and expanding along the second column yields $p_T(\lambda) = (\lambda + 1)(\lambda - 1)(\lambda - 3)$.

• So the eigenvalues are -1, 1, 3. They are distinct and hence the matrix is diagonalisable.

• Calculate the eigenvalues and eigenspaces of

$$T = \begin{bmatrix} 2 & 1 & 1 \\ 2 & 3 & 4 \\ -1 & -1 & -2 \end{bmatrix} \text{ over } \mathbb{C}.$$

• The characteristic polynomial is

$$p_T(\lambda) = \det(\lambda I - T) = \begin{vmatrix} \lambda - 2 & -1 & -1 \\ -2 & \lambda - 3 & -4 \\ 1 & 1 & \lambda + 2 \end{vmatrix}.$$

 $C_2 \rightarrow C_2 - C_3$, $R_3 \rightarrow R_3 + R_2$ and expanding along the second column yields $p_T(\lambda) = (\lambda + 1)(\lambda - 1)(\lambda - 3)$.

- So the eigenvalues are -1, 1, 3. They are distinct and hence the matrix is diagonalisable.
- So we find

6/10

• Calculate the eigenvalues and eigenspaces of

$$T = \begin{bmatrix} 2 & 1 & 1 \\ 2 & 3 & 4 \\ -1 & -1 & -2 \end{bmatrix} \text{ over } \mathbb{C}.$$

• The characteristic polynomial is

$$p_T(\lambda) = \det(\lambda I - T) = \begin{vmatrix} \lambda - 2 & -1 & -1 \\ -2 & \lambda - 3 & -4 \\ 1 & 1 & \lambda + 2 \end{vmatrix}.$$

 $C_2 \rightarrow C_2 - C_3$, $R_3 \rightarrow R_3 + R_2$ and expanding along the second column yields $p_T(\lambda) = (\lambda + 1)(\lambda - 1)(\lambda - 3)$.

- So the eigenvalues are -1, 1, 3. They are distinct and hence the matrix is diagonalisable.
- So we find the eigenspaces by

• Calculate the eigenvalues and eigenspaces of

$$T = \begin{bmatrix} 2 & 1 & 1 \\ 2 & 3 & 4 \\ -1 & -1 & -2 \end{bmatrix} \text{ over } \mathbb{C}.$$

• The characteristic polynomial is

$$p_T(\lambda) = \det(\lambda I - T) = \begin{vmatrix} \lambda - 2 & -1 & -1 \\ -2 & \lambda - 3 & -4 \\ 1 & 1 & \lambda + 2 \end{vmatrix}.$$

 $C_2 \rightarrow C_2 - C_3$, $R_3 \rightarrow R_3 + R_2$ and expanding along the second column yields $p_T(\lambda) = (\lambda + 1)(\lambda - 1)(\lambda - 3)$.

- So the eigenvalues are -1, 1, 3. They are distinct and hence the matrix is diagonalisable.
- So we find the eigenspaces by solving $Tv = \lambda v$.

▶ < ≣ ▶

2

• For $\lambda = 1$

Vamsi Pritham Pingali Lecture 14 7/10

æ

P

'문 ► ★ 문

• For
$$\lambda = 1$$
 and $v = \begin{bmatrix} v_1 \\ v_2 \\ v_3 \end{bmatrix}$

▶ < ≣ ▶

2

• For
$$\lambda = 1$$
 and $v = \begin{bmatrix} v_1 \\ v_2 \\ v_3 \end{bmatrix}$ we need to solve $(I - T)v = 0$.

2

P

▶ < ≣ ▶

• For
$$\lambda = 1$$
 and $v = \begin{bmatrix} v_1 \\ v_2 \\ v_3 \end{bmatrix}$ we need to solve $(I - T)v = 0$.
• Let's do

- 4 回 > - 4 回 > - 4 回 >

• For
$$\lambda = 1$$
 and $v = \begin{bmatrix} v_1 \\ v_2 \\ v_3 \end{bmatrix}$ we need to solve $(I - T)v = 0$.

• Let's do row operations to the augmented matrix [I - T|0].

P.

▲ 문 ▶ . ▲ 문 ▶ ...

• For
$$\lambda = 1$$
 and $v = \begin{bmatrix} v_1 \\ v_2 \\ v_3 \end{bmatrix}$ we need to solve $(I - T)v = 0$.

• Let's do row operations to the augmented matrix [I - T|0]. $R_3 \rightarrow R_3 + R_1$, $R_2 \rightarrow R_2 - 2R_1$ yield

 э

• For
$$\lambda = 1$$
 and $v = \begin{bmatrix} v_1 \\ v_2 \\ v_3 \end{bmatrix}$ we need to solve $(I - T)v = 0$.

• Let's do row operations to the augmented matrix [I - T|0]. $R_3 \rightarrow R_3 + R_1$, $R_2 \rightarrow R_2 - 2R_1$ yield $2v_3 = 0 = -2v_3 = -v_1 - v_2 - v_3$.

э

-∢ ≣ ▶

• For
$$\lambda = 1$$
 and $v = \begin{bmatrix} v_1 \\ v_2 \\ v_3 \end{bmatrix}$ we need to solve $(I - T)v = 0$.

• Let's do row operations to the augmented matrix [I - T|0]. $R_3 \rightarrow R_3 + R_1$, $R_2 \rightarrow R_2 - 2R_1$ yield $2v_3 = 0 = -2v_3 = -v_1 - v_2 - v_3$. Hence $v_3 = 0$, $v_2 = -v_1$.

э

• For
$$\lambda = 1$$
 and $v = \begin{bmatrix} v_1 \\ v_2 \\ v_3 \end{bmatrix}$ we need to solve $(I - T)v = 0$.

• Let's do row operations to the augmented matrix [I - T|0]. $R_3 \rightarrow R_3 + R_1$, $R_2 \rightarrow R_2 - 2R_1$ yield $2v_3 = 0 = -2v_3 = -v_1 - v_2 - v_3$. Hence $v_3 = 0$, $v_2 = -v_1$. Thus every eigenvector corresponding to

• For
$$\lambda = 1$$
 and $v = \begin{bmatrix} v_1 \\ v_2 \\ v_3 \end{bmatrix}$ we need to solve $(I - T)v = 0$.

• Let's do row operations to the augmented matrix [I - T|0]. $R_3 \rightarrow R_3 + R_1$, $R_2 \rightarrow R_2 - 2R_1$ yield $2v_3 = 0 = -2v_3 = -v_1 - v_2 - v_3$. Hence $v_3 = 0$, $v_2 = -v_1$. Thus every eigenvector corresponding to $\lambda = 1$ is of the form

• For
$$\lambda = 1$$
 and $v = \begin{bmatrix} v_1 \\ v_2 \\ v_3 \end{bmatrix}$ we need to solve $(I - T)v = 0$.

• Let's do row operations to the augmented matrix [I - T|0]. $R_3 \rightarrow R_3 + R_1$, $R_2 \rightarrow R_2 - 2R_1$ yield $2v_3 = 0 = -2v_3 = -v_1 - v_2 - v_3$. Hence $v_3 = 0$, $v_2 = -v_1$. Thus every eigenvector corresponding to $\lambda = 1$ is of the form t(1, -1, 0) where $t \neq 0$ is any complex number.

• For
$$\lambda = 1$$
 and $v = \begin{bmatrix} v_1 \\ v_2 \\ v_3 \end{bmatrix}$ we need to solve $(I - T)v = 0$.

- Let's do row operations to the augmented matrix [I T|0]. $R_3 \rightarrow R_3 + R_1$, $R_2 \rightarrow R_2 - 2R_1$ yield $2v_3 = 0 = -2v_3 = -v_1 - v_2 - v_3$. Hence $v_3 = 0$, $v_2 = -v_1$. Thus every eigenvector corresponding to $\lambda = 1$ is of the form t(1, -1, 0) where $t \neq 0$ is any complex number.
- Likewise,

• For
$$\lambda = 1$$
 and $v = \begin{bmatrix} v_1 \\ v_2 \\ v_3 \end{bmatrix}$ we need to solve $(I - T)v = 0$.

- Let's do row operations to the augmented matrix [I T|0]. $R_3 \rightarrow R_3 + R_1$, $R_2 \rightarrow R_2 - 2R_1$ yield $2v_3 = 0 = -2v_3 = -v_1 - v_2 - v_3$. Hence $v_3 = 0$, $v_2 = -v_1$. Thus every eigenvector corresponding to $\lambda = 1$ is of the form t(1, -1, 0) where $t \neq 0$ is any complex number.
- Likewise, the eigenspace of $\lambda = -1$ is spanned by

• For
$$\lambda = 1$$
 and $v = \begin{bmatrix} v_1 \\ v_2 \\ v_3 \end{bmatrix}$ we need to solve $(I - T)v = 0$.

- Let's do row operations to the augmented matrix [I T|0]. $R_3 \rightarrow R_3 + R_1$, $R_2 \rightarrow R_2 - 2R_1$ yield $2v_3 = 0 = -2v_3 = -v_1 - v_2 - v_3$. Hence $v_3 = 0$, $v_2 = -v_1$. Thus every eigenvector corresponding to $\lambda = 1$ is of the form t(1, -1, 0) where $t \neq 0$ is any complex number.
- Likewise, the eigenspace of $\lambda=-1$ is spanned by (0,1,-1) and that of

• For
$$\lambda = 1$$
 and $v = \begin{bmatrix} v_1 \\ v_2 \\ v_3 \end{bmatrix}$ we need to solve $(I - T)v = 0$.

- Let's do row operations to the augmented matrix [I T|0]. $R_3 \rightarrow R_3 + R_1$, $R_2 \rightarrow R_2 - 2R_1$ yield $2v_3 = 0 = -2v_3 = -v_1 - v_2 - v_3$. Hence $v_3 = 0$, $v_2 = -v_1$. Thus every eigenvector corresponding to $\lambda = 1$ is of the form t(1, -1, 0) where $t \neq 0$ is any complex number.
- Likewise, the eigenspace of $\lambda = -1$ is spanned by (0, 1, -1) and that of $\lambda = 3$ is spanned by

• For
$$\lambda = 1$$
 and $v = \begin{bmatrix} v_1 \\ v_2 \\ v_3 \end{bmatrix}$ we need to solve $(I - T)v = 0$.

- Let's do row operations to the augmented matrix [I T|0]. $R_3 \rightarrow R_3 + R_1$, $R_2 \rightarrow R_2 - 2R_1$ yield $2v_3 = 0 = -2v_3 = -v_1 - v_2 - v_3$. Hence $v_3 = 0$, $v_2 = -v_1$. Thus every eigenvector corresponding to $\lambda = 1$ is of the form t(1, -1, 0) where $t \neq 0$ is any complex number.
- Likewise, the eigenspace of $\lambda = -1$ is spanned by (0, 1, -1)and that of $\lambda = 3$ is spanned by (2, 3, -1).

2

< ≣⇒

• To find a matrix P

문▶ ★ 문▶

• To find a matrix P such that
$$P^{-1}TP$$
 is $D = \begin{bmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 3 \end{bmatrix}$,

▲□ ▶ ▲ 目

æ

_ र ≣ ≯

• To find a matrix *P* such that $P^{-1}TP$ is $D = \begin{bmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 3 \end{bmatrix}$,

note that $P^{-1}TPe_1 = De_1 = \lambda_1 e_1 = e_1$.

• To find a matrix *P* such that $P^{-1}TP$ is $D = \begin{bmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 3 \end{bmatrix}$,

note that $P^{-1}TPe_1 = De_1 = \lambda_1e_1 = e_1$. Thus the first column of P must be

• To find a matrix *P* such that $P^{-1}TP$ is $D = \begin{bmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 3 \end{bmatrix}$,

note that $P^{-1}TPe_1 = De_1 = \lambda_1e_1 = e_1$. Thus the first column of P must be an eigenvector corresponding to

• To find a matrix *P* such that $P^{-1}TP$ is $D = \begin{bmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 3 \end{bmatrix}$, note that $P^{-1}TPe_1 = De_1 = \lambda_1 e_1 = e_1$. Thus the first

column of P must be an eigenvector corresponding to $\lambda = 1$,

i.e.,

• To find a matrix P such that $P^{-1}TP$ is $D = \begin{bmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 3 \end{bmatrix}$, note that $P^{-1}TPe_1 = De_1 = \lambda_1e_1 = e_1$. Thus the first column of P must be an eigenvector corresponding to $\lambda = 1$, 1i.e., -1 will do.

• To find a matrix P such that $P^{-1}TP$ is $D = \begin{bmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 3 \end{bmatrix}$, note that $P^{-1}TPe_1 = De_1 = \lambda_1e_1 = e_1$. Thus the first column of P must be an eigenvector corresponding to $\lambda = 1$, 1i.e., -1 will do.

• Likewise for the other columns.

8/10

• To find a matrix P such that $P^{-1}TP$ is $D = \begin{bmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 3 \end{bmatrix}$, note that $P^{-1}TPe_1 = De_1 = \lambda_1e_1 = e_1$. Thus the first column of P must be an eigenvector corresponding to $\lambda = 1$, 1i.e., -1 will do.

• Likewise for the other columns. Thus P is

8/10

• To find a matrix P such that $P^{-1}TP$ is $D = \begin{bmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 3 \end{bmatrix}$, note that $P^{-1}TPe_1 = De_1 = \lambda_1e_1 = e_1$. Thus the first column of P must be an eigenvector corresponding to $\lambda = 1$, 1i.e., -1 will do. 0

• Likewise for the other columns. Thus P is $\begin{bmatrix} 1 & 0 & 2 \\ -1 & 1 & 3 \\ 0 & -1 & -1 \end{bmatrix}$.

• To find a matrix P such that $P^{-1}TP$ is $D = \begin{bmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 3 \end{bmatrix}$, note that $P^{-1}TPe_1 = De_1 = \lambda_1e_1 = e_1$. Thus the first column of P must be an eigenvector corresponding to $\lambda = 1$, 1i.e., -1 will do. 0

• Likewise for the other columns. Thus P is $\begin{bmatrix} 1 & 0 & 2 \\ -1 & 1 & 3 \\ 0 & -1 & -1 \end{bmatrix}$.

More generally,

8/10

• To find a matrix P such that $P^{-1}TP$ is $D = \begin{bmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 3 \end{bmatrix}$, note that $P^{-1}TPe_1 = De_1 = \lambda_1e_1 = e_1$. Thus the first column of P must be an eigenvector corresponding to $\lambda = 1$, 1i.e., -1 will do.

• Likewise for the other columns. Thus P is $\begin{vmatrix} 1 & 0 & 2 \\ -1 & 1 & 3 \\ 0 & -1 & -1 \end{vmatrix}$.

• More generally, if we have a basis

• To find a matrix P such that $P^{-1}TP$ is $D = \begin{bmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 3 \end{bmatrix}$, note that $P^{-1}TPe_1 = De_1 = \lambda_1e_1 = e_1$. Thus the first column of P must be an eigenvector corresponding to $\lambda = 1$, 1i.e., -1 will do.

• Likewise for the other columns. Thus P is $\begin{bmatrix} 1 & 0 & 2 \\ -1 & 1 & 3 \\ 0 & -1 & -1 \end{bmatrix}$.

• More generally, if we have a basis of eigenvectors

• To find a matrix P such that $P^{-1}TP$ is $D = \begin{bmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 3 \end{bmatrix}$, note that $P^{-1}TPe_1 = De_1 = \lambda_1e_1 = e_1$. Thus the first column of P must be an eigenvector corresponding to $\lambda = 1$, 1i.e., -1 will do.

• Likewise for the other columns. Thus P is $\begin{bmatrix} 1 & 0 & 2 \\ -1 & 1 & 3 \\ 0 & -1 & -1 \end{bmatrix}$.

• More generally, if we have a basis of eigenvectors then $P^{-1}TP$ is diagonal

• To find a matrix P such that $P^{-1}TP$ is $D = \begin{bmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 3 \end{bmatrix}$, note that $P^{-1}TPe_1 = De_1 = \lambda_1e_1 = e_1$. Thus the first column of P must be an eigenvector corresponding to $\lambda = 1$, 1i.e., -1 will do.

• Likewise for the other columns. Thus P is $\begin{bmatrix} 1 & 0 & 2 \\ -1 & 1 & 3 \\ 0 & -1 & -1 \end{bmatrix}$.

• More generally, if we have a basis of eigenvectors then $P^{-1}TP$ is diagonal where the columns of P are

• To find a matrix P such that $P^{-1}TP$ is $D = \begin{bmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 3 \end{bmatrix}$, note that $P^{-1}TPe_1 = De_1 = \lambda_1e_1 = e_1$. Thus the first column of P must be an eigenvector corresponding to $\lambda = 1$, 1i.e., -1 will do.

• Likewise for the other columns. Thus P is $\begin{bmatrix} 1 & 0 & 2 \\ -1 & 1 & 3 \\ 0 & -1 & -1 \end{bmatrix}$.

• More generally, if we have a basis of eigenvectors then $P^{-1}TP$ is diagonal where the columns of P are the eigenvectors. So

• To find a matrix P such that $P^{-1}TP$ is $D = \begin{bmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 3 \end{bmatrix}$, note that $P^{-1}TPe_1 = De_1 = \lambda_1e_1 = e_1$. Thus the first column of P must be an eigenvector corresponding to $\lambda = 1$, 1i.e., -1 will do.

- Likewise for the other columns. Thus P is $\begin{bmatrix} 1 & 0 & 2 \\ -1 & 1 & 3 \\ 0 & -1 & -1 \end{bmatrix}$.
- More generally, if we have a basis of eigenvectors then $P^{-1}TP$ is diagonal where the columns of P are the eigenvectors. So $T = PDP^{-1}$.

P

< ≣ >

•
$$T = \begin{bmatrix} 2 & 1 & 1 \\ 2 & 3 & 2 \\ 3 & 3 & 4 \end{bmatrix}$$

< ≣ >

•
$$T = \begin{bmatrix} 2 & 1 & 1 \\ 2 & 3 & 2 \\ 3 & 3 & 4 \end{bmatrix}$$

• $p_T(\lambda) = (\lambda - 1)^2 (\lambda - 7)$ by

< ≣ >

-

•
$$T = \begin{bmatrix} 2 & 1 & 1 \\ 2 & 3 & 2 \\ 3 & 3 & 4 \end{bmatrix}$$

• $p_T(\lambda) = (\lambda - 1)^2 (\lambda - 7)$ by $C_2 \to C_2 - C_1$, $R_3 \to R_3 + R_2$
and

_

P

æ

-∢ ≣⇒

•
$$T = \begin{bmatrix} 2 & 1 & 1 \\ 2 & 3 & 2 \\ 3 & 3 & 4 \end{bmatrix}$$

• $p_T(\lambda) = (\lambda - 1)^2(\lambda - 7)$ by $C_2 \rightarrow C_2 - C_1$, $R_3 \rightarrow R_3 + R_2$ and expanding along the second column.

글 🖌 🖌 글 🕨

•
$$T = \begin{bmatrix} 2 & 1 & 1 \\ 2 & 3 & 2 \\ 3 & 3 & 4 \end{bmatrix}$$

• $p_T(\lambda) = (\lambda - 1)^2(\lambda - 7)$ by $C_2 \rightarrow C_2 - C_1$, $R_3 \rightarrow R_3 + R_2$ and expanding along the second column.

• For
$$\lambda = 1$$
,

글 🖌 🖌 글 🕨

•
$$T = \begin{bmatrix} 2 & 1 & 1 \\ 2 & 3 & 2 \\ 3 & 3 & 4 \end{bmatrix}$$

• $p_T(\lambda) = (\lambda - 1)^2(\lambda - 7)$ by $C_2 \rightarrow C_2 - C_1$, $R_3 \rightarrow R_3 + R_2$ and expanding along the second column.

• For
$$\lambda = 1$$
, consider $[I - T|0]$ and

글 🖌 🖌 글 🕨

•
$$T = \begin{bmatrix} 2 & 1 & 1 \\ 2 & 3 & 2 \\ 3 & 3 & 4 \end{bmatrix}$$

- $p_T(\lambda) = (\lambda 1)^2(\lambda 7)$ by $C_2 \rightarrow C_2 C_1$, $R_3 \rightarrow R_3 + R_2$ and expanding along the second column.
- For $\lambda = 1$, consider [I T|0] and do $R_2 \rightarrow R_2 2R_1$, $R_3 \rightarrow R_3 3R_1$ to get

э

•
$$T = \begin{bmatrix} 2 & 1 & 1 \\ 2 & 3 & 2 \\ 3 & 3 & 4 \end{bmatrix}$$

- $p_T(\lambda) = (\lambda 1)^2(\lambda 7)$ by $C_2 \rightarrow C_2 C_1$, $R_3 \rightarrow R_3 + R_2$ and expanding along the second column.
- For $\lambda = 1$, consider [I T|0] and do $R_2 \rightarrow R_2 2R_1$, $R_3 \rightarrow R_3 - 3R_1$ to get $-v_1 - v_2 - v_3 = 0$.

•
$$T = \begin{bmatrix} 2 & 1 & 1 \\ 2 & 3 & 2 \\ 3 & 3 & 4 \end{bmatrix}$$

- $p_T(\lambda) = (\lambda 1)^2(\lambda 7)$ by $C_2 \rightarrow C_2 C_1$, $R_3 \rightarrow R_3 + R_2$ and expanding along the second column.
- For $\lambda = 1$, consider [I T|0] and do $R_2 \rightarrow R_2 2R_1$, $R_3 \rightarrow R_3 - 3R_1$ to get $-v_1 - v_2 - v_3 = 0$. Hence (1, 0, -1), (0, 1, -1) span the eigenspace of

3

•
$$T = \begin{bmatrix} 2 & 1 & 1 \\ 2 & 3 & 2 \\ 3 & 3 & 4 \end{bmatrix}$$

- $p_T(\lambda) = (\lambda 1)^2(\lambda 7)$ by $C_2 \rightarrow C_2 C_1$, $R_3 \rightarrow R_3 + R_2$ and expanding along the second column.
- For $\lambda = 1$, consider [I T|0] and do $R_2 \rightarrow R_2 2R_1$, $R_3 \rightarrow R_3 - 3R_1$ to get $-v_1 - v_2 - v_3 = 0$. Hence (1, 0, -1), (0, 1, -1) span the eigenspace of $\lambda = 1$. Likewise,

•
$$T = \begin{bmatrix} 2 & 1 & 1 \\ 2 & 3 & 2 \\ 3 & 3 & 4 \end{bmatrix}$$

- $p_T(\lambda) = (\lambda 1)^2(\lambda 7)$ by $C_2 \rightarrow C_2 C_1$, $R_3 \rightarrow R_3 + R_2$ and expanding along the second column.
- For $\lambda = 1$, consider [I T|0] and do $R_2 \rightarrow R_2 2R_1$, $R_3 \rightarrow R_3 - 3R_1$ to get $-v_1 - v_2 - v_3 = 0$. Hence (1, 0, -1), (0, 1, -1) span the eigenspace of $\lambda = 1$. Likewise, (1, 2, 3) spans the eigenspace of

•
$$T = \begin{bmatrix} 2 & 1 & 1 \\ 2 & 3 & 2 \\ 3 & 3 & 4 \end{bmatrix}$$

- $p_T(\lambda) = (\lambda 1)^2(\lambda 7)$ by $C_2 \rightarrow C_2 C_1$, $R_3 \rightarrow R_3 + R_2$ and expanding along the second column.
- For $\lambda = 1$, consider [I T|0] and do $R_2 \rightarrow R_2 2R_1$, $R_3 \rightarrow R_3 - 3R_1$ to get $-v_1 - v_2 - v_3 = 0$. Hence (1, 0, -1), (0, 1, -1) span the eigenspace of $\lambda = 1$. Likewise, (1, 2, 3) spans the eigenspace of $\lambda = 7$.

•
$$T = \begin{bmatrix} 2 & 1 & 1 \\ 2 & 3 & 2 \\ 3 & 3 & 4 \end{bmatrix}$$

- $p_T(\lambda) = (\lambda 1)^2(\lambda 7)$ by $C_2 \rightarrow C_2 C_1$, $R_3 \rightarrow R_3 + R_2$ and expanding along the second column.
- For $\lambda = 1$, consider [I T|0] and do $R_2 \rightarrow R_2 2R_1$, $R_3 \rightarrow R_3 - 3R_1$ to get $-v_1 - v_2 - v_3 = 0$. Hence (1, 0, -1), (0, 1, -1) span the eigenspace of $\lambda = 1$. Likewise, (1, 2, 3) spans the eigenspace of $\lambda = 7$.

• Thus
$$P^{-1}TP = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 7 \end{bmatrix}$$
 where $P = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 2 \\ -1 & -1 & 3 \end{bmatrix}$

< ≣⇒

•
$$T = \begin{bmatrix} 2 & -1 & 1 \\ 0 & 3 & -1 \\ 2 & 1 & 3 \end{bmatrix}$$
.

< ≣⇒

•
$$T = \begin{bmatrix} 2 & -1 & 1 \\ 0 & 3 & -1 \\ 2 & 1 & 3 \end{bmatrix}$$
.
• $p_T(\lambda) = (\lambda - 2)^2 (\lambda - 4)$.

・聞き ・ ほき・ ・ ほき

•
$$T = \begin{bmatrix} 2 & -1 & 1 \\ 0 & 3 & -1 \\ 2 & 1 & 3 \end{bmatrix}$$
.
• $p_T(\lambda) = (\lambda - 2)^2 (\lambda - 4)$.
• For $\lambda = 2$,

・聞き ・ ほき・ ・ ほき

•
$$T = \begin{bmatrix} 2 & -1 & 1 \\ 0 & 3 & -1 \\ 2 & 1 & 3 \end{bmatrix}$$
.
• $p_T(\lambda) = (\lambda - 2)^2 (\lambda - 4)$.

• For
$$\lambda = 2$$
, the eigenspace is 1-dimensional and

< ≣⇒

Im ▶ < 10</p>

•
$$T = \begin{bmatrix} 2 & -1 & 1 \\ 0 & 3 & -1 \\ 2 & 1 & 3 \end{bmatrix}$$
.
• $p_T(\lambda) = (\lambda - 2)^2 (\lambda - 4)$.

• For $\lambda = 2$, the eigenspace is 1-dimensional and is spanned by (-1, 1, 1).

문 문 문

•
$$T = \begin{bmatrix} 2 & -1 & 1 \\ 0 & 3 & -1 \\ 2 & 1 & 3 \end{bmatrix}$$
.
• $p_T(\lambda) = (\lambda - 2)^2 (\lambda - 4)$.

• For $\lambda=$ 2, the eigenspace is 1-dimensional and is spanned by (-1,1,1). For $\lambda=$ 4,

< ∃ →

10/10

•
$$T = \begin{bmatrix} 2 & -1 & 1 \\ 0 & 3 & -1 \\ 2 & 1 & 3 \end{bmatrix}$$
.
• $p_T(\lambda) = (\lambda - 2)^2 (\lambda - 4)$

• For $\lambda = 2$, the eigenspace is 1-dimensional and is spanned by (-1, 1, 1). For $\lambda = 4$, it is spanned by

•

∋⊳

•
$$T = \begin{bmatrix} 2 & -1 & 1 \\ 0 & 3 & -1 \\ 2 & 1 & 3 \end{bmatrix}$$
.
• $p_T(\lambda) = (\lambda - 2)^2 (\lambda - 4)$.

• For $\lambda = 2$, the eigenspace is 1-dimensional and is spanned by (-1, 1, 1). For $\lambda = 4$, it is spanned by (1, -1, 1).

3) 3

•
$$T = \begin{bmatrix} 2 & -1 & 1 \\ 0 & 3 & -1 \\ 2 & 1 & 3 \end{bmatrix}$$
.
• $p_T(\lambda) = (\lambda - 2)^2(\lambda - 4)$.

- For $\lambda = 2$, the eigenspace is 1-dimensional and is spanned by (-1, 1, 1). For $\lambda = 4$, it is spanned by (1, -1, 1).
- Hence T is

•
$$T = \begin{bmatrix} 2 & -1 & 1 \\ 0 & 3 & -1 \\ 2 & 1 & 3 \end{bmatrix}$$
.
• $p_T(\lambda) = (\lambda - 2)^2 (\lambda - 4)$.

- For $\lambda = 2$, the eigenspace is 1-dimensional and is spanned by (-1, 1, 1). For $\lambda = 4$, it is spanned by (1, -1, 1).
- Hence *T* is NOT diagonalisable.

3) 3