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Recap

We agreed that calculating Mn where M is a square matrix is
important (for Fibonacci sequences and Markov chains for
instance).

We observed that if M is similar to a diagonal matrix we are
“done”.

We defined the eigenvalues and eigenvectors of T : V → V .
Likewise for a matrix. We defined diagonalisability.

Gave examples. Saw that these notions depend on the field
and on the matrix. In particular, not everything is
diagonalisable!

Proved that eigenvalues are roots of the characteristic
polynomial, det(λI − T ) that lie in F.
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Eigenvalues

Firstly, not every real polynomial has real roots!

However, it is an important result that every complex
polynomial has at least one complex root. (The fundamental
theorem of algebra.) Moreover, if it has degree n then
counting roots with multiplicity, there are exactly n roots.

Thus every complex matrix has n complex eigenvalues when
counted with multiplicity.

Assume from now that every vector space is over C and so is
every matrix.
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Diagonalisability

Since not every matrix is diagonalisable, it is natural to
wonder when a matrix is so.

Theorem: Let u1, . . . , uk be eigenvectors of a linear map
T : V → V such that the corresponding eigenvalues are
distinct. Then the eigenvectors u1, . . . , uk are linearly
independent.

As a consequence, if V is f.d. of dim n, and all n eigenvalues
of T are distinct then T is diagonalisable.

Proof of Theorem: We induct on k . For k = 1 it is by
definition. Assume truth for 1, 2, . . . , k − 1. Suppose∑

i ciui = 0. Then
∑

i ciT (ui ) = 0. Hence
∑

i ciλiui = 0.
Eliminate c1 by multiplying the first equation by λ1 and
subtracting to get c2(λ2 − λ1)u2 + . . . = 0. By the induction
hypothesis c2 = c3 = . . . = 0. Thus, so is c1.
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Simple criteria for checking similarity

Given two square matrices A and B when are they similar?

This question is not easy to answer. But there are necessary
(but NOT sufficient) conditions that A and B must satisfy.
Assume A = P−1BP.

Then det(λI − A) = det(λP−1P − P−1BP) = det(λI − B).
So their eigenvalues must be equal!

In particular, det(A) = det(B). Moreover, we define
tr(A) =

∑
i Aii . The coefficient of λn−1 is −tr(A). Thus

tr(A) =
∑

i λi . Hence tr(A) = tr(B) if A and B are similar.

As a part of HW you will prove that tr(AB) = tr(BA).
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Example-1

Calculate the eigenvalues and eigenspaces of

T =

 2 1 1
2 3 4
−1 −1 −2

 over C.

The characteristic polynomial is

pT (λ) = det(λI − T ) =

∣∣∣∣∣∣
λ− 2 −1 −1
−2 λ− 3 −4
1 1 λ+ 2

∣∣∣∣∣∣.
C2 → C2 − C3, R3 → R3 + R2 and expanding along the
second column yields pT (λ) = (λ+ 1)(λ− 1)(λ− 3).

So the eigenvalues are −1, 1, 3. They are distinct and hence
the matrix is diagonalisable.

So we find the eigenspaces by solving Tv = λv .
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Example-1

For λ = 1 and v =

 v1
v2
v3

 we need to solve (I − T )v = 0.

Let’s do row operations to the augmented matrix [I − T |0].
R3 → R3 + R1, R2 → R2 − 2R1 yield
2v3 = 0 = −2v3 = −v1 − v2 − v3. Hence v3 = 0, v2 = −v1.
Thus every eigenvector corresponding to λ = 1 is of the form
t(1,−1, 0) where t 6= 0 is any complex number.

Likewise, the eigenspace of λ = −1 is spanned by (0, 1,−1)
and that of λ = 3 is spanned by (2, 3,−1).
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Example-1

To find a matrix P such that P−1TP is D =

 1 0 0
0 −1 0
0 0 3

,

note that P−1TPe1 = De1 = λ1e1 = e1. Thus the first
column of P must be an eigenvector corresponding to λ = 1,

i.e.,
1
−1
0

will do.

Likewise for the other columns. Thus P is

 1 0 2
−1 1 3
0 −1 −1

.

More generally, if we have a basis of eigenvectors then P−1TP
is diagonal where the columns of P are the eigenvectors. So
T = PDP−1.
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Example-2

T =

 2 1 1
2 3 2
3 3 4


pT (λ) = (λ− 1)2(λ− 7) by C2 → C2 − C1, R3 → R3 + R2

and expanding along the second column.

For λ = 1, consider [I − T |0] and do R2 → R2 − 2R1,
R3 → R3 − 3R1 to get −v1 − v2 − v3 = 0. Hence
(1, 0,−1), (0, 1,−1) span the eigenspace of λ = 1. Likewise,
(1, 2, 3) spans the eigenspace of λ = 7.

Thus P−1TP =

 1 0 0
0 1 0
0 0 7

 where P =

 1 0 1
0 1 2
−1 −1 3

.
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0 1 2
−1 −1 3

.
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Example-3

T =

 2 −1 1
0 3 −1
2 1 3

.

pT (λ) = (λ− 2)2(λ− 4).

For λ = 2, the eigenspace is 1-dimensional and is spanned by
(−1, 1, 1). For λ = 4, it is spanned by (1,−1, 1).

Hence T is NOT diagonalisable.
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