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Recap

Every complex n × n matrix has n eigenvalues when counted
with multiplicity.

Proved that n × n complex matrices with n distinct
eigenvalues is diagonalisable.

Defined trace as a tool along with the determinant to prove
that two matrices are not similar. (Also proved that similar
matrices have the same eigenvalues.)

Did examples of eigenvalues and eigenspaces.

Vamsi Pritham Pingali Lecture 15 2/10



Recap

Every complex n × n matrix

has n eigenvalues when counted
with multiplicity.

Proved that n × n complex matrices with n distinct
eigenvalues is diagonalisable.

Defined trace as a tool along with the determinant to prove
that two matrices are not similar. (Also proved that similar
matrices have the same eigenvalues.)

Did examples of eigenvalues and eigenspaces.

Vamsi Pritham Pingali Lecture 15 2/10



Recap

Every complex n × n matrix has n eigenvalues when

counted
with multiplicity.

Proved that n × n complex matrices with n distinct
eigenvalues is diagonalisable.

Defined trace as a tool along with the determinant to prove
that two matrices are not similar. (Also proved that similar
matrices have the same eigenvalues.)

Did examples of eigenvalues and eigenspaces.

Vamsi Pritham Pingali Lecture 15 2/10



Recap

Every complex n × n matrix has n eigenvalues when counted
with multiplicity.

Proved that n × n complex matrices with n distinct
eigenvalues is diagonalisable.

Defined trace as a tool along with the determinant to prove
that two matrices are not similar. (Also proved that similar
matrices have the same eigenvalues.)

Did examples of eigenvalues and eigenspaces.

Vamsi Pritham Pingali Lecture 15 2/10



Recap

Every complex n × n matrix has n eigenvalues when counted
with multiplicity.

Proved that

n × n complex matrices with n distinct
eigenvalues is diagonalisable.

Defined trace as a tool along with the determinant to prove
that two matrices are not similar. (Also proved that similar
matrices have the same eigenvalues.)

Did examples of eigenvalues and eigenspaces.

Vamsi Pritham Pingali Lecture 15 2/10



Recap

Every complex n × n matrix has n eigenvalues when counted
with multiplicity.

Proved that n × n complex matrices with

n distinct
eigenvalues is diagonalisable.

Defined trace as a tool along with the determinant to prove
that two matrices are not similar. (Also proved that similar
matrices have the same eigenvalues.)

Did examples of eigenvalues and eigenspaces.

Vamsi Pritham Pingali Lecture 15 2/10



Recap

Every complex n × n matrix has n eigenvalues when counted
with multiplicity.

Proved that n × n complex matrices with n distinct
eigenvalues

is diagonalisable.

Defined trace as a tool along with the determinant to prove
that two matrices are not similar. (Also proved that similar
matrices have the same eigenvalues.)

Did examples of eigenvalues and eigenspaces.

Vamsi Pritham Pingali Lecture 15 2/10



Recap

Every complex n × n matrix has n eigenvalues when counted
with multiplicity.

Proved that n × n complex matrices with n distinct
eigenvalues is diagonalisable.

Defined trace as a tool along with the determinant to prove
that two matrices are not similar. (Also proved that similar
matrices have the same eigenvalues.)

Did examples of eigenvalues and eigenspaces.

Vamsi Pritham Pingali Lecture 15 2/10



Recap

Every complex n × n matrix has n eigenvalues when counted
with multiplicity.

Proved that n × n complex matrices with n distinct
eigenvalues is diagonalisable.

Defined trace as

a tool along with the determinant to prove
that two matrices are not similar. (Also proved that similar
matrices have the same eigenvalues.)

Did examples of eigenvalues and eigenspaces.

Vamsi Pritham Pingali Lecture 15 2/10



Recap

Every complex n × n matrix has n eigenvalues when counted
with multiplicity.

Proved that n × n complex matrices with n distinct
eigenvalues is diagonalisable.

Defined trace as a tool along with

the determinant to prove
that two matrices are not similar. (Also proved that similar
matrices have the same eigenvalues.)

Did examples of eigenvalues and eigenspaces.

Vamsi Pritham Pingali Lecture 15 2/10



Recap

Every complex n × n matrix has n eigenvalues when counted
with multiplicity.

Proved that n × n complex matrices with n distinct
eigenvalues is diagonalisable.

Defined trace as a tool along with the determinant

to prove
that two matrices are not similar. (Also proved that similar
matrices have the same eigenvalues.)

Did examples of eigenvalues and eigenspaces.

Vamsi Pritham Pingali Lecture 15 2/10



Recap

Every complex n × n matrix has n eigenvalues when counted
with multiplicity.

Proved that n × n complex matrices with n distinct
eigenvalues is diagonalisable.

Defined trace as a tool along with the determinant to prove
that two matrices

are not similar. (Also proved that similar
matrices have the same eigenvalues.)

Did examples of eigenvalues and eigenspaces.

Vamsi Pritham Pingali Lecture 15 2/10



Recap

Every complex n × n matrix has n eigenvalues when counted
with multiplicity.

Proved that n × n complex matrices with n distinct
eigenvalues is diagonalisable.

Defined trace as a tool along with the determinant to prove
that two matrices are not similar. (

Also proved that similar
matrices have the same eigenvalues.)

Did examples of eigenvalues and eigenspaces.

Vamsi Pritham Pingali Lecture 15 2/10



Recap

Every complex n × n matrix has n eigenvalues when counted
with multiplicity.

Proved that n × n complex matrices with n distinct
eigenvalues is diagonalisable.

Defined trace as a tool along with the determinant to prove
that two matrices are not similar. (Also proved that similar
matrices

have the same eigenvalues.)

Did examples of eigenvalues and eigenspaces.

Vamsi Pritham Pingali Lecture 15 2/10



Recap

Every complex n × n matrix has n eigenvalues when counted
with multiplicity.

Proved that n × n complex matrices with n distinct
eigenvalues is diagonalisable.

Defined trace as a tool along with the determinant to prove
that two matrices are not similar. (Also proved that similar
matrices have the same eigenvalues.)

Did examples of eigenvalues and eigenspaces.

Vamsi Pritham Pingali Lecture 15 2/10



Recap

Every complex n × n matrix has n eigenvalues when counted
with multiplicity.

Proved that n × n complex matrices with n distinct
eigenvalues is diagonalisable.

Defined trace as a tool along with the determinant to prove
that two matrices are not similar. (Also proved that similar
matrices have the same eigenvalues.)

Did examples of

eigenvalues and eigenspaces.

Vamsi Pritham Pingali Lecture 15 2/10



Recap

Every complex n × n matrix has n eigenvalues when counted
with multiplicity.

Proved that n × n complex matrices with n distinct
eigenvalues is diagonalisable.

Defined trace as a tool along with the determinant to prove
that two matrices are not similar. (Also proved that similar
matrices have the same eigenvalues.)

Did examples of eigenvalues and eigenspaces.

Vamsi Pritham Pingali Lecture 15 2/10



Three questions

Three questions:

When are the eigenvalues of a complex matrix real?

Just by looking at certain kinds of matrices can we deduce
that they are diagonalisable?

Can we diagonalise by rotations?

The answer to all three questions is ”Yes” in an important
special case.
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Hermitian linear maps

Let V be a complex inner product space. Let T : V → V be
linear.

If v is an eigenvector of T with eigenvalue λ, then λ = 〈Tv ,v〉
〈v ,v〉

(by an easy calculation).

By Hermitian symmetry, λ̄ = 〈v ,Tv〉
〈v ,v〉 . Thus λ is real if and only

if 〈v ,Tv〉 = 〈Tv , v〉 for that eigenvector. Likewise, it is purely
imaginary if and only if 〈v ,Tv〉 = −〈Tv , v〉.
Def: T : V → V is called Hermitian if 〈Tv ,w〉 = 〈v ,Tw〉 for
every v ,w ∈ V . It is called skew-Hermitian if
〈Tv ,w〉 = −〈v ,Tw〉 for every v ,w ∈ V . If V is a real vector
space T is called symmetric or skew-symmetric instead.

Clearly all eigenvalues of Hermitian linear maps are real,
whereas they are purely imaginary for skew-Hermitian ones.
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Hermitian matrices

If A is an n × n complex matrix consider T : Cn → Cn given
by T (v) = Av . Assume that Cn is endowed with the usual
dot product. T is Hermitian if and only if
〈Tv ,w〉 = (Av)T w̄ = vTAT w̄ equals 〈v ,Tw〉 = vT Āw̄ for all

v ,w . AT = Ā, i.e., AT = A Define the adjoint A† := AT . So
a Hermitian matrix satisfies A† = A and a skew-Hermitian one
satisfies A† = −A.

Let V be a f.d. complex inner product space and T : V → V
be linear. Choose an orthonormal basis. Then 〈v ,w〉 = vT w̄ .
Thus the matrix of T is Hermitian if and only if T is a
Hermitian linear map and likewise for skew-Hermitian.
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Examples

Let V = C∞([0, 1];C), with 〈f , g〉 =
∫ 1
0 f (t)ḡ(t)dt,and

T : V → V be T (f ) = xf . Then

〈Tf , g〉 =
∫ 1
0 xf (x)ḡ(x)dx = 〈f ,Tg〉.

Let V = C∞([0, 1];C), with 〈f , g〉 =
∫ 1
0 f ḡdt, and

T : V → V be T (f ) =
√
−1~f ′. Then

〈Tf , g〉 =
∫ 1
0

√
−1~f ′ḡdt =

(
√
−1~f ḡ)(1)− (

√
−1~f ḡ)(0) +

∫ 1
0 f
√
−1~g ′dt. Thus, the

map is not Hermitian in general.
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−1~f ḡ)(0) +

∫ 1
0 f
√
−1~g ′dt. Thus, the

map is not Hermitian in general.

Vamsi Pritham Pingali Lecture 15 6/10



Examples

Let V = C∞([0, 1];C), with 〈f , g〉 =
∫ 1
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−1~f ḡ)(0) +

∫ 1
0 f
√
−1~g ′dt. Thus, the

map is not Hermitian in general.

Vamsi Pritham Pingali Lecture 15 6/10



Orthogonality

Theorem: Let T : V → V be a Hermitian/Skew-Hermitian
linear map. Let λ 6= µ be distinct eigenvalues of T with
eigenvectors v ,w respectively. Then 〈v ,w〉 = 0.

Proof: 〈v ,Tw〉 = ±µ〈v ,w〉. But
〈v ,Tw〉 = ±〈Tv ,w〉 = ±λ〈v ,w〉. Comparing these two, since
λ 6= µ, 〈v ,w〉 = 0.

In other words, if a Hermitian linear map has distinct
eigenvalues then it has an orthonormal basis of eigenvectors.
That is, a given orthonormal basis can be “rotated” to a new
orthonormal basis where the matrix of T is diagonal.
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The Spectral Theorem

Theorem: Let V be an n-dimensional complex inner product
space and T : V → V be Hermitian or skew-Hermitian. Then
there exist n orthonormal eigenvectors of T forming an
orthonormal basis of V .

Proof: Induct on n. For n = 1 it is trivial. Assume truth for
n − 1. Choose any eigenvalue λ1 of T with a normalised
eigenvector u1 (‖u1‖ = 1). Then Tu1 = λ1u1. Let S be the
span of u1 and S⊥ be its orthogonal complement.

We first note that T takes S⊥ to itself, i.e., if s ∈ S⊥ then
T (s) ∈ S⊥. Indeed, if T is Hermitian
〈T (s), u1〉 = 〈s,Tu1〉 = λ̄1〈s, u1〉 = 0. Likewise if it is
skew-Hermitian.
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The Spectral Theorem

dim(S⊥) = n − 1: Extend u1 to a basis u1, v2, . . . , vn of V .
Using Gram-Schmidt, convert this to an orthonormal basis
u1,w2, . . . ,wn. Let x ∈ S⊥. Write x = x1u1 + x2w2 + . . ..
Then 0 = 〈x , u1〉 = x1. Thus x = x2w2 + . . .. Hence
dim(S⊥) = n − 1.

Now T : S⊥ → S⊥ is a Hermitian/Skew-Hermitian linear map
from an n − 1 dimensional space to itself. By the induction
hypothesis, S⊥ has an orthonormal basis u2, . . . , un of
eigenvectors.

Thus u1, . . . , un form an orthonormal basis of V consisting of
eigenvectors of T .
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Unitary and orthogonal matrices

A matrix/linear map U : Cn → Cn preserves the usual dot
product, i.e., 〈Uv ,Uw〉 = 〈v ,w〉 if and only if UT Ū = I , i.e.,
U†U = I and hence UU† = I .

Def: A complex n × n matrix U is said to be unitary if
UU† = U†U = I , i.e, U−1 = U†. A real matrix O is said to be
orthogonal if OOT = OTO = I .

If V is a f.d. complex inner product space then T : V → V is
said to be a unitary transformation if 〈Tv ,Tw〉 = 〈v ,w〉.
Note that T is unitary if and only if there is an orthonormal
basis in which [T ] is unitary.

If A = ±A† then U†AU = D where U is a unitary matrix:
Indeed, Tv = Av has an orthonormal basis of eigenvectors.
Consider U : Cn → Cn taking the usual orthonormal basis to
the eigenvector one. U is a unitary matrix. Hence
U†AU = U−1AU = D.
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U†U = I and hence UU† = I .

Def:

A complex n × n matrix U is said to be unitary if
UU† = U†U = I , i.e, U−1 = U†. A real matrix O is said to be
orthogonal if OOT = OTO = I .

If V is a f.d. complex inner product space then T : V → V is
said to be a unitary transformation if 〈Tv ,Tw〉 = 〈v ,w〉.
Note that T is unitary if and only if there is an orthonormal
basis in which [T ] is unitary.

If A = ±A† then U†AU = D where U is a unitary matrix:
Indeed, Tv = Av has an orthonormal basis of eigenvectors.
Consider U : Cn → Cn taking the usual orthonormal basis to
the eigenvector one. U is a unitary matrix. Hence
U†AU = U−1AU = D.

Vamsi Pritham Pingali Lecture 15 10/10



Unitary and orthogonal matrices

A matrix/linear map U : Cn → Cn preserves the usual dot
product, i.e., 〈Uv ,Uw〉 = 〈v ,w〉 if and only if UT Ū = I , i.e.,
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U†U = I and hence UU† = I .

Def: A complex n × n matrix U is said to be unitary if

UU† = U†U = I , i.e, U−1 = U†. A real matrix O is said to be
orthogonal if OOT = OTO = I .

If V is a f.d. complex inner product space then T : V → V is
said to be a unitary transformation if 〈Tv ,Tw〉 = 〈v ,w〉.
Note that T is unitary if and only if there is an orthonormal
basis in which [T ] is unitary.

If A = ±A† then U†AU = D where U is a unitary matrix:
Indeed, Tv = Av has an orthonormal basis of eigenvectors.
Consider U : Cn → Cn taking the usual orthonormal basis to
the eigenvector one. U is a unitary matrix. Hence
U†AU = U−1AU = D.

Vamsi Pritham Pingali Lecture 15 10/10



Unitary and orthogonal matrices

A matrix/linear map U : Cn → Cn preserves the usual dot
product, i.e., 〈Uv ,Uw〉 = 〈v ,w〉 if and only if UT Ū = I , i.e.,
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U†U = I and hence UU† = I .

Def: A complex n × n matrix U is said to be unitary if
UU† = U†U = I , i.e, U−1 = U†. A real matrix O is said to be
orthogonal if OOT = OTO = I .

If V is a f.d. complex inner product space then T : V → V is
said to be a unitary transformation if 〈Tv ,Tw〉 = 〈v ,w〉.

Note that T is unitary if and only if there is an orthonormal
basis in which [T ] is unitary.

If A = ±A† then U†AU = D where U is a unitary matrix:
Indeed, Tv = Av has an orthonormal basis of eigenvectors.
Consider U : Cn → Cn taking the usual orthonormal basis to
the eigenvector one. U is a unitary matrix. Hence
U†AU = U−1AU = D.

Vamsi Pritham Pingali Lecture 15 10/10



Unitary and orthogonal matrices

A matrix/linear map U : Cn → Cn preserves the usual dot
product, i.e., 〈Uv ,Uw〉 = 〈v ,w〉 if and only if UT Ū = I , i.e.,
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