Lecture 15 - UM 102 (Spring 2021)

Vamsi Pritham Pingali

IISc

Recap

- Every complex $n \times n$ matrix

Recap

- Every complex $n \times n$ matrix has n eigenvalues when
- Every complex $n \times n$ matrix has n eigenvalues when counted with multiplicity.
- Every complex $n \times n$ matrix has n eigenvalues when counted with multiplicity.
- Proved that
- Every complex $n \times n$ matrix has n eigenvalues when counted with multiplicity.
- Proved that $n \times n$ complex matrices with
- Every complex $n \times n$ matrix has n eigenvalues when counted with multiplicity.
- Proved that $n \times n$ complex matrices with n distinct eigenvalues
- Every complex $n \times n$ matrix has n eigenvalues when counted with multiplicity.
- Proved that $n \times n$ complex matrices with n distinct eigenvalues is diagonalisable.
- Every complex $n \times n$ matrix has n eigenvalues when counted with multiplicity.
- Proved that $n \times n$ complex matrices with n distinct eigenvalues is diagonalisable.
- Defined trace as
- Every complex $n \times n$ matrix has n eigenvalues when counted with multiplicity.
- Proved that $n \times n$ complex matrices with n distinct eigenvalues is diagonalisable.
- Defined trace as a tool along with
- Every complex $n \times n$ matrix has n eigenvalues when counted with multiplicity.
- Proved that $n \times n$ complex matrices with n distinct eigenvalues is diagonalisable.
- Defined trace as a tool along with the determinant
- Every complex $n \times n$ matrix has n eigenvalues when counted with multiplicity.
- Proved that $n \times n$ complex matrices with n distinct eigenvalues is diagonalisable.
- Defined trace as a tool along with the determinant to prove that two matrices
- Every complex $n \times n$ matrix has n eigenvalues when counted with multiplicity.
- Proved that $n \times n$ complex matrices with n distinct eigenvalues is diagonalisable.
- Defined trace as a tool along with the determinant to prove that two matrices are not similar. (
- Every complex $n \times n$ matrix has n eigenvalues when counted with multiplicity.
- Proved that $n \times n$ complex matrices with n distinct eigenvalues is diagonalisable.
- Defined trace as a tool along with the determinant to prove that two matrices are not similar. (Also proved that similar matrices

Recap

- Every complex $n \times n$ matrix has n eigenvalues when counted with multiplicity.
- Proved that $n \times n$ complex matrices with n distinct eigenvalues is diagonalisable.
- Defined trace as a tool along with the determinant to prove that two matrices are not similar. (Also proved that similar matrices have the same eigenvalues.)

Recap

- Every complex $n \times n$ matrix has n eigenvalues when counted with multiplicity.
- Proved that $n \times n$ complex matrices with n distinct eigenvalues is diagonalisable.
- Defined trace as a tool along with the determinant to prove that two matrices are not similar. (Also proved that similar matrices have the same eigenvalues.)
- Did examples of

Recap

- Every complex $n \times n$ matrix has n eigenvalues when counted with multiplicity.
- Proved that $n \times n$ complex matrices with n distinct eigenvalues is diagonalisable.
- Defined trace as a tool along with the determinant to prove that two matrices are not similar. (Also proved that similar matrices have the same eigenvalues.)
- Did examples of eigenvalues and eigenspaces.

Three questions

Three questions

- Three questions:

Three questions

- Three questions:
- When are

Three questions

- Three questions:
- When are the eigenvalues of a
- Three questions:
- When are the eigenvalues of a complex matrix real?
- Three questions:
- When are the eigenvalues of a complex matrix real?
- Just by looking
- Three questions:
- When are the eigenvalues of a complex matrix real?
- Just by looking at certain kinds of matrices
- Three questions:
- When are the eigenvalues of a complex matrix real?
- Just by looking at certain kinds of matrices can we deduce that
- Three questions:
- When are the eigenvalues of a complex matrix real?
- Just by looking at certain kinds of matrices can we deduce that they are diagonalisable?
- Three questions:
- When are the eigenvalues of a complex matrix real?
- Just by looking at certain kinds of matrices can we deduce that they are diagonalisable?
- Can we diagonalise
- Three questions:
- When are the eigenvalues of a complex matrix real?
- Just by looking at certain kinds of matrices can we deduce that they are diagonalisable?
- Can we diagonalise by rotations?
- Three questions:
- When are the eigenvalues of a complex matrix real?
- Just by looking at certain kinds of matrices can we deduce that they are diagonalisable?
- Can we diagonalise by rotations?
- The answer
- Three questions:
- When are the eigenvalues of a complex matrix real?
- Just by looking at certain kinds of matrices can we deduce that they are diagonalisable?
- Can we diagonalise by rotations?
- The answer to all three questions
- Three questions:
- When are the eigenvalues of a complex matrix real?
- Just by looking at certain kinds of matrices can we deduce that they are diagonalisable?
- Can we diagonalise by rotations?
- The answer to all three questions is "Yes" in
- Three questions:
- When are the eigenvalues of a complex matrix real?
- Just by looking at certain kinds of matrices can we deduce that they are diagonalisable?
- Can we diagonalise by rotations?
- The answer to all three questions is "Yes" in an important special case.

Hermitian linear maps

Hermitian linear maps

- Let V be a

Hermitian linear maps

- Let V be a complex inner product space.

Hermitian linear maps

- Let V be a complex inner product space. Let $T: V \rightarrow V$ be linear.

Hermitian linear maps

- Let V be a complex inner product space. Let $T: V \rightarrow V$ be linear.
- If v is an eigenvector

Hermitian linear maps

- Let V be a complex inner product space. Let $T: V \rightarrow V$ be linear.
- If v is an eigenvector of T with eigenvalue λ,

Hermitian linear maps

- Let V be a complex inner product space. Let $T: V \rightarrow V$ be linear.
- If v is an eigenvector of T with eigenvalue λ, then $\lambda=\frac{\langle T v, v\rangle}{\langle v, v\rangle}$ (

Hermitian linear maps

- Let V be a complex inner product space. Let $T: V \rightarrow V$ be linear.
- If v is an eigenvector of T with eigenvalue λ, then $\lambda=\frac{\langle T v, v\rangle}{\langle v, v\rangle}$ (by an easy calculation).

Hermitian linear maps

- Let V be a complex inner product space. Let $T: V \rightarrow V$ be linear.
- If v is an eigenvector of T with eigenvalue λ, then $\lambda=\frac{\langle T v, v\rangle}{\langle v, v\rangle}$ (by an easy calculation).
- By Hermitian symmetry,

Hermitian linear maps

- Let V be a complex inner product space. Let $T: V \rightarrow V$ be linear.
- If v is an eigenvector of T with eigenvalue λ, then $\lambda=\frac{\langle T v, v\rangle}{\langle v, v\rangle}$ (by an easy calculation).
- By Hermitian symmetry, $\bar{\lambda}=\frac{\langle v, T v\rangle}{\langle v, v\rangle}$.

Hermitian linear maps

- Let V be a complex inner product space. Let $T: V \rightarrow V$ be linear.
- If v is an eigenvector of T with eigenvalue λ, then $\lambda=\frac{\langle T v, v\rangle}{\langle v, v\rangle}$ (by an easy calculation).
- By Hermitian symmetry, $\bar{\lambda}=\frac{\langle v, T v\rangle}{\langle v, v\rangle}$. Thus λ is real

Hermitian linear maps

- Let V be a complex inner product space. Let $T: V \rightarrow V$ be linear.
- If v is an eigenvector of T with eigenvalue λ, then $\lambda=\frac{\langle T v, v\rangle}{\langle v, v\rangle}$ (by an easy calculation).
- By Hermitian symmetry, $\bar{\lambda}=\frac{\langle v, T v\rangle}{\langle v, v\rangle}$. Thus λ is real if and only if

Hermitian linear maps

- Let V be a complex inner product space. Let $T: V \rightarrow V$ be linear.
- If v is an eigenvector of T with eigenvalue λ, then $\lambda=\frac{\langle T v, v\rangle}{\langle v, v\rangle}$ (by an easy calculation).
- By Hermitian symmetry, $\bar{\lambda}=\frac{\langle v, T v\rangle}{\langle v, v\rangle}$. Thus λ is real if and only if $\langle v, T v\rangle=\langle T v, v\rangle$ for that eigenvector.

Hermitian linear maps

- Let V be a complex inner product space. Let $T: V \rightarrow V$ be linear.
- If v is an eigenvector of T with eigenvalue λ, then $\lambda=\frac{\langle T v, v\rangle}{\langle v, v\rangle}$ (by an easy calculation).
- By Hermitian symmetry, $\bar{\lambda}=\frac{\langle v, T v\rangle}{\langle v, v\rangle}$. Thus λ is real if and only if $\langle v, T v\rangle=\langle T v, v\rangle$ for that eigenvector. Likewise, it is purely imaginary

Hermitian linear maps

- Let V be a complex inner product space. Let $T: V \rightarrow V$ be linear.
- If v is an eigenvector of T with eigenvalue λ, then $\lambda=\frac{\langle T v, v\rangle}{\langle v, v\rangle}$ (by an easy calculation).
- By Hermitian symmetry, $\bar{\lambda}=\frac{\langle v, T v\rangle}{\langle v, v\rangle}$. Thus λ is real if and only if $\langle v, T v\rangle=\langle T v, v\rangle$ for that eigenvector. Likewise, it is purely imaginary if and only if

Hermitian linear maps

- Let V be a complex inner product space. Let $T: V \rightarrow V$ be linear.
- If v is an eigenvector of T with eigenvalue λ, then $\lambda=\frac{\langle T v, v\rangle}{\langle v, v\rangle}$ (by an easy calculation).
- By Hermitian symmetry, $\bar{\lambda}=\frac{\langle v, T v\rangle}{\langle v, v\rangle}$. Thus λ is real if and only if $\langle v, T v\rangle=\langle T v, v\rangle$ for that eigenvector. Likewise, it is purely imaginary if and only if $\langle v, T v\rangle=-\langle T v, v\rangle$.

Hermitian linear maps

- Let V be a complex inner product space. Let $T: V \rightarrow V$ be linear.
- If v is an eigenvector of T with eigenvalue λ, then $\lambda=\frac{\langle T v, v\rangle}{\langle v, v\rangle}$ (by an easy calculation).
- By Hermitian symmetry, $\bar{\lambda}=\frac{\langle v, T v\rangle}{\langle v, v\rangle}$. Thus λ is real if and only if $\langle v, T v\rangle=\langle T v, v\rangle$ for that eigenvector. Likewise, it is purely imaginary if and only if $\langle v, T v\rangle=-\langle T v, v\rangle$.
- Def:

Hermitian linear maps

- Let V be a complex inner product space. Let $T: V \rightarrow V$ be linear.
- If v is an eigenvector of T with eigenvalue λ, then $\lambda=\frac{\langle T v, v\rangle}{\langle v, v\rangle}$ (by an easy calculation).
- By Hermitian symmetry, $\bar{\lambda}=\frac{\langle v, T v\rangle}{\langle v, v\rangle}$. Thus λ is real if and only if $\langle v, T v\rangle=\langle T v, v\rangle$ for that eigenvector. Likewise, it is purely imaginary if and only if $\langle v, T v\rangle=-\langle T v, v\rangle$.
- Def: $T: V \rightarrow V$ is called

Hermitian linear maps

- Let V be a complex inner product space. Let $T: V \rightarrow V$ be linear.
- If v is an eigenvector of T with eigenvalue λ, then $\lambda=\frac{\langle T v, v\rangle}{\langle v, v\rangle}$ (by an easy calculation).
- By Hermitian symmetry, $\bar{\lambda}=\frac{\langle v, T v\rangle}{\langle v, v\rangle}$. Thus λ is real if and only if $\langle v, T v\rangle=\langle T v, v\rangle$ for that eigenvector. Likewise, it is purely imaginary if and only if $\langle v, T v\rangle=-\langle T v, v\rangle$.
- Def: $T: V \rightarrow V$ is called Hermitian if

Hermitian linear maps

- Let V be a complex inner product space. Let $T: V \rightarrow V$ be linear.
- If v is an eigenvector of T with eigenvalue λ, then $\lambda=\frac{\langle T v, v\rangle}{\langle v, v\rangle}$ (by an easy calculation).
- By Hermitian symmetry, $\bar{\lambda}=\frac{\langle v, T v\rangle}{\langle v, v\rangle}$. Thus λ is real if and only if $\langle v, T v\rangle=\langle T v, v\rangle$ for that eigenvector. Likewise, it is purely imaginary if and only if $\langle v, T v\rangle=-\langle T v, v\rangle$.
- Def: $T: V \rightarrow V$ is called Hermitian if $\langle T v, w\rangle=\langle v, T w\rangle$ for every $v, w \in V$.

Hermitian linear maps

- Let V be a complex inner product space. Let $T: V \rightarrow V$ be linear.
- If v is an eigenvector of T with eigenvalue λ, then $\lambda=\frac{\langle T v, v\rangle}{\langle v, v\rangle}$ (by an easy calculation).
- By Hermitian symmetry, $\bar{\lambda}=\frac{\langle v, T v\rangle}{\langle v, v\rangle}$. Thus λ is real if and only if $\langle v, T v\rangle=\langle T v, v\rangle$ for that eigenvector. Likewise, it is purely imaginary if and only if $\langle v, T v\rangle=-\langle T v, v\rangle$.
- Def: $T: V \rightarrow V$ is called Hermitian if $\langle T v, w\rangle=\langle v, T w\rangle$ for every $v, w \in V$. It is called

Hermitian linear maps

- Let V be a complex inner product space. Let $T: V \rightarrow V$ be linear.
- If v is an eigenvector of T with eigenvalue λ, then $\lambda=\frac{\langle T v, v\rangle}{\langle v, v\rangle}$ (by an easy calculation).
- By Hermitian symmetry, $\bar{\lambda}=\frac{\langle v, T v\rangle}{\langle v, v\rangle}$. Thus λ is real if and only if $\langle v, T v\rangle=\langle T v, v\rangle$ for that eigenvector. Likewise, it is purely imaginary if and only if $\langle v, T v\rangle=-\langle T v, v\rangle$.
- Def: $T: V \rightarrow V$ is called Hermitian if $\langle T v, w\rangle=\langle v, T w\rangle$ for every $v, w \in V$. It is called skew-Hermitian if

Hermitian linear maps

- Let V be a complex inner product space. Let $T: V \rightarrow V$ be linear.
- If v is an eigenvector of T with eigenvalue λ, then $\lambda=\frac{\langle T v, v\rangle}{\langle v, v\rangle}$ (by an easy calculation).
- By Hermitian symmetry, $\bar{\lambda}=\frac{\langle v, T v\rangle}{\langle v, v\rangle}$. Thus λ is real if and only if $\langle v, T v\rangle=\langle T v, v\rangle$ for that eigenvector. Likewise, it is purely imaginary if and only if $\langle v, T v\rangle=-\langle T v, v\rangle$.
- Def: $T: V \rightarrow V$ is called Hermitian if $\langle T v, w\rangle=\langle v, T w\rangle$ for every $v, w \in V$. It is called skew-Hermitian if $\langle T v, w\rangle=-\langle v, T w\rangle$ for every $v, w \in V$.

Hermitian linear maps

- Let V be a complex inner product space. Let $T: V \rightarrow V$ be linear.
- If v is an eigenvector of T with eigenvalue λ, then $\lambda=\frac{\langle T v, v\rangle}{\langle v, v\rangle}$ (by an easy calculation).
- By Hermitian symmetry, $\bar{\lambda}=\frac{\langle v, T v\rangle}{\langle v, v\rangle}$. Thus λ is real if and only if $\langle v, T v\rangle=\langle T v, v\rangle$ for that eigenvector. Likewise, it is purely imaginary if and only if $\langle v, T v\rangle=-\langle T v, v\rangle$.
- Def: $T: V \rightarrow V$ is called Hermitian if $\langle T v, w\rangle=\langle v, T w\rangle$ for every $v, w \in V$. It is called skew-Hermitian if $\langle T v, w\rangle=-\langle v, T w\rangle$ for every $v, w \in V$. If V is a real vector space

Hermitian linear maps

- Let V be a complex inner product space. Let $T: V \rightarrow V$ be linear.
- If v is an eigenvector of T with eigenvalue λ, then $\lambda=\frac{\langle T v, v\rangle}{\langle v, v\rangle}$ (by an easy calculation).
- By Hermitian symmetry, $\bar{\lambda}=\frac{\langle v, T v\rangle}{\langle v, v\rangle}$. Thus λ is real if and only if $\langle v, T v\rangle=\langle T v, v\rangle$ for that eigenvector. Likewise, it is purely imaginary if and only if $\langle v, T v\rangle=-\langle T v, v\rangle$.
- Def: $T: V \rightarrow V$ is called Hermitian if $\langle T v, w\rangle=\langle v, T w\rangle$ for every $v, w \in V$. It is called skew-Hermitian if $\langle T v, w\rangle=-\langle v, T w\rangle$ for every $v, w \in V$. If V is a real vector space T is called

Hermitian linear maps

- Let V be a complex inner product space. Let $T: V \rightarrow V$ be linear.
- If v is an eigenvector of T with eigenvalue λ, then $\lambda=\frac{\langle T v, v\rangle}{\langle v, v\rangle}$ (by an easy calculation).
- By Hermitian symmetry, $\bar{\lambda}=\frac{\langle v, T v\rangle}{\langle v, v\rangle}$. Thus λ is real if and only if $\langle v, T v\rangle=\langle T v, v\rangle$ for that eigenvector. Likewise, it is purely imaginary if and only if $\langle v, T v\rangle=-\langle T v, v\rangle$.
- Def: $T: V \rightarrow V$ is called Hermitian if $\langle T v, w\rangle=\langle v, T w\rangle$ for every $v, w \in V$. It is called skew-Hermitian if $\langle T v, w\rangle=-\langle v, T w\rangle$ for every $v, w \in V$. If V is a real vector space T is called symmetric or skew-symmetric instead.

Hermitian linear maps

- Let V be a complex inner product space. Let $T: V \rightarrow V$ be linear.
- If v is an eigenvector of T with eigenvalue λ, then $\lambda=\frac{\langle T v, v\rangle}{\langle v, v\rangle}$ (by an easy calculation).
- By Hermitian symmetry, $\bar{\lambda}=\frac{\langle v, T v\rangle}{\langle v, v\rangle}$. Thus λ is real if and only if $\langle v, T v\rangle=\langle T v, v\rangle$ for that eigenvector. Likewise, it is purely imaginary if and only if $\langle v, T v\rangle=-\langle T v, v\rangle$.
- Def: $T: V \rightarrow V$ is called Hermitian if $\langle T v, w\rangle=\langle v, T w\rangle$ for every $v, w \in V$. It is called skew-Hermitian if $\langle T v, w\rangle=-\langle v, T w\rangle$ for every $v, w \in V$. If V is a real vector space T is called symmetric or skew-symmetric instead.
- Clearly all eigenvalues of

Hermitian linear maps

- Let V be a complex inner product space. Let $T: V \rightarrow V$ be linear.
- If v is an eigenvector of T with eigenvalue λ, then $\lambda=\frac{\langle T v, v\rangle}{\langle v, v\rangle}$ (by an easy calculation).
- By Hermitian symmetry, $\bar{\lambda}=\frac{\langle v, T v\rangle}{\langle v, v\rangle}$. Thus λ is real if and only if $\langle v, T v\rangle=\langle T v, v\rangle$ for that eigenvector. Likewise, it is purely imaginary if and only if $\langle v, T v\rangle=-\langle T v, v\rangle$.
- Def: $T: V \rightarrow V$ is called Hermitian if $\langle T v, w\rangle=\langle v, T w\rangle$ for every $v, w \in V$. It is called skew-Hermitian if $\langle T v, w\rangle=-\langle v, T w\rangle$ for every $v, w \in V$. If V is a real vector space T is called symmetric or skew-symmetric instead.
- Clearly all eigenvalues of Hermitian linear maps are

Hermitian linear maps

- Let V be a complex inner product space. Let $T: V \rightarrow V$ be linear.
- If v is an eigenvector of T with eigenvalue λ, then $\lambda=\frac{\langle T v, v\rangle}{\langle v, v\rangle}$ (by an easy calculation).
- By Hermitian symmetry, $\bar{\lambda}=\frac{\langle v, T v\rangle}{\langle v, v\rangle}$. Thus λ is real if and only if $\langle v, T v\rangle=\langle T v, v\rangle$ for that eigenvector. Likewise, it is purely imaginary if and only if $\langle v, T v\rangle=-\langle T v, v\rangle$.
- Def: $T: V \rightarrow V$ is called Hermitian if $\langle T v, w\rangle=\langle v, T w\rangle$ for every $v, w \in V$. It is called skew-Hermitian if $\langle T v, w\rangle=-\langle v, T w\rangle$ for every $v, w \in V$. If V is a real vector space T is called symmetric or skew-symmetric instead.
- Clearly all eigenvalues of Hermitian linear maps are real, whereas

Hermitian linear maps

- Let V be a complex inner product space. Let $T: V \rightarrow V$ be linear.
- If v is an eigenvector of T with eigenvalue λ, then $\lambda=\frac{\langle T v, v\rangle}{\langle v, v\rangle}$ (by an easy calculation).
- By Hermitian symmetry, $\bar{\lambda}=\frac{\langle v, T v\rangle}{\langle v, v\rangle}$. Thus λ is real if and only if $\langle v, T v\rangle=\langle T v, v\rangle$ for that eigenvector. Likewise, it is purely imaginary if and only if $\langle v, T v\rangle=-\langle T v, v\rangle$.
- Def: $T: V \rightarrow V$ is called Hermitian if $\langle T v, w\rangle=\langle v, T w\rangle$ for every $v, w \in V$. It is called skew-Hermitian if $\langle T v, w\rangle=-\langle v, T w\rangle$ for every $v, w \in V$. If V is a real vector space T is called symmetric or skew-symmetric instead.
- Clearly all eigenvalues of Hermitian linear maps are real, whereas they are purely imaginary

Hermitian linear maps

- Let V be a complex inner product space. Let $T: V \rightarrow V$ be linear.
- If v is an eigenvector of T with eigenvalue λ, then $\lambda=\frac{\langle T v, v\rangle}{\langle v, v\rangle}$ (by an easy calculation).
- By Hermitian symmetry, $\bar{\lambda}=\frac{\langle v, T v\rangle}{\langle v, v\rangle}$. Thus λ is real if and only if $\langle v, T v\rangle=\langle T v, v\rangle$ for that eigenvector. Likewise, it is purely imaginary if and only if $\langle v, T v\rangle=-\langle T v, v\rangle$.
- Def: $T: V \rightarrow V$ is called Hermitian if $\langle T v, w\rangle=\langle v, T w\rangle$ for every $v, w \in V$. It is called skew-Hermitian if $\langle T v, w\rangle=-\langle v, T w\rangle$ for every $v, w \in V$. If V is a real vector space T is called symmetric or skew-symmetric instead.
- Clearly all eigenvalues of Hermitian linear maps are real, whereas they are purely imaginary for skew-Hermitian ones.

Hermitian matrices

Hermitian matrices

- If A is an $n \times n$ complex matrix

Hermitian matrices

- If A is an $n \times n$ complex matrix consider $T: \mathbb{C}^{n} \rightarrow \mathbb{C}^{n}$ given by

Hermitian matrices

- If A is an $n \times n$ complex matrix consider $T: \mathbb{C}^{n} \rightarrow \mathbb{C}^{n}$ given by $T(v)=A v$. Assume that

Hermitian matrices

- If A is an $n \times n$ complex matrix consider $T: \mathbb{C}^{n} \rightarrow \mathbb{C}^{n}$ given by $T(v)=A v$. Assume that \mathbb{C}^{n} is endowed with

Hermitian matrices

- If A is an $n \times n$ complex matrix consider $T: \mathbb{C}^{n} \rightarrow \mathbb{C}^{n}$ given by $T(v)=A v$. Assume that \mathbb{C}^{n} is endowed with the usual dot product.

Hermitian matrices

- If A is an $n \times n$ complex matrix consider $T: \mathbb{C}^{n} \rightarrow \mathbb{C}^{n}$ given by $T(v)=A v$. Assume that \mathbb{C}^{n} is endowed with the usual dot product. T is Hermitian if and only if

Hermitian matrices

- If A is an $n \times n$ complex matrix consider $T: \mathbb{C}^{n} \rightarrow \mathbb{C}^{n}$ given by $T(v)=A v$. Assume that \mathbb{C}^{n} is endowed with the usual dot product. T is Hermitian if and only if $\langle T v, w\rangle=(A v)^{T} \bar{w}=v^{T} A^{T} \bar{w}$ equals

Hermitian matrices

- If A is an $n \times n$ complex matrix consider $T: \mathbb{C}^{n} \rightarrow \mathbb{C}^{n}$ given by $T(v)=A v$. Assume that \mathbb{C}^{n} is endowed with the usual dot product. T is Hermitian if and only if $\langle T v, w\rangle=(A v)^{T} \bar{w}=v^{T} A^{T} \bar{w}$ equals $\langle v, T w\rangle=v^{T} \bar{A} \bar{w}$ for all v, w.

Hermitian matrices

- If A is an $n \times n$ complex matrix consider $T: \mathbb{C}^{n} \rightarrow \mathbb{C}^{n}$ given by $T(v)=A v$. Assume that \mathbb{C}^{n} is endowed with the usual dot product. T is Hermitian if and only if $\langle T v, w\rangle=(A v)^{T} \bar{w}=v^{T} A^{T} \bar{w}$ equals $\langle v, T w\rangle=v^{T} \bar{A} \bar{w}$ for all $v, w . A^{T}=\bar{A}$, i.e., $\overline{A^{T}}=A$

Hermitian matrices

- If A is an $n \times n$ complex matrix consider $T: \mathbb{C}^{n} \rightarrow \mathbb{C}^{n}$ given by $T(v)=A v$. Assume that \mathbb{C}^{n} is endowed with the usual dot product. T is Hermitian if and only if $\langle T v, w\rangle=(A v)^{T} \bar{w}=v^{T} A^{T} \bar{w}$ equals $\langle v, T w\rangle=v^{T} \bar{A} \bar{w}$ for all $v, w . A^{T}=\bar{A}$, i.e., $\overline{A^{T}}=A$ Define the adjoint $A^{\dagger}:=\overline{A^{T}}$. So a Hermitian matrix satisfies

Hermitian matrices

- If A is an $n \times n$ complex matrix consider $T: \mathbb{C}^{n} \rightarrow \mathbb{C}^{n}$ given by $T(v)=A v$. Assume that \mathbb{C}^{n} is endowed with the usual dot product. T is Hermitian if and only if $\langle T v, w\rangle=(A v)^{T} \bar{w}=v^{T} A^{T} \bar{w}$ equals $\langle v, T w\rangle=v^{T} \bar{A} \bar{w}$ for all $v, w . A^{T}=\bar{A}$, i.e., $\overline{A^{T}}=A$ Define the adjoint $A^{\dagger}:=\overline{A^{T}}$. So a Hermitian matrix satisfies $A^{\dagger}=A$ and

Hermitian matrices

- If A is an $n \times n$ complex matrix consider $T: \mathbb{C}^{n} \rightarrow \mathbb{C}^{n}$ given by $T(v)=A v$. Assume that \mathbb{C}^{n} is endowed with the usual dot product. T is Hermitian if and only if $\langle T v, w\rangle=(A v)^{T} \bar{w}=v^{T} A^{T} \bar{w}$ equals $\langle v, T w\rangle=v^{T} \bar{A} \bar{w}$ for all $v, w . A^{T}=\bar{A}$, i.e., $\overline{A^{T}}=A$ Define the adjoint $A^{\dagger}:=\overline{A^{T}}$. So a Hermitian matrix satisfies $A^{\dagger}=A$ and a skew-Hermitian one satisfies

Hermitian matrices

- If A is an $n \times n$ complex matrix consider $T: \mathbb{C}^{n} \rightarrow \mathbb{C}^{n}$ given by $T(v)=A v$. Assume that \mathbb{C}^{n} is endowed with the usual dot product. T is Hermitian if and only if $\langle T v, w\rangle=(A v)^{T} \bar{w}=v^{T} A^{T} \bar{w}$ equals $\langle v, T w\rangle=v^{T} \bar{A} \bar{w}$ for all $v, w . A^{T}=\bar{A}$, i.e., $\overline{A^{T}}=A$ Define the adjoint $A^{\dagger}:=\overline{A^{T}}$. So a Hermitian matrix satisfies $A^{\dagger}=A$ and a skew-Hermitian one satisfies $A^{\dagger}=-A$.

Hermitian matrices

- If A is an $n \times n$ complex matrix consider $T: \mathbb{C}^{n} \rightarrow \mathbb{C}^{n}$ given by $T(v)=A v$. Assume that \mathbb{C}^{n} is endowed with the usual dot product. T is Hermitian if and only if $\langle T v, w\rangle=(A v)^{T} \bar{w}=v^{T} A^{T} \bar{w}$ equals $\langle v, T w\rangle=v^{T} \bar{A} \bar{w}$ for all $v, w . A^{T}=\bar{A}$, i.e., $\overline{A^{T}}=A$ Define the adjoint $A^{\dagger}:=\overline{A^{T}}$. So a Hermitian matrix satisfies $A^{\dagger}=A$ and a skew-Hermitian one satisfies $A^{\dagger}=-A$.
- Let V be a f.d. complex inner product space

Hermitian matrices

- If A is an $n \times n$ complex matrix consider $T: \mathbb{C}^{n} \rightarrow \mathbb{C}^{n}$ given by $T(v)=A v$. Assume that \mathbb{C}^{n} is endowed with the usual dot product. T is Hermitian if and only if $\langle T v, w\rangle=(A v)^{T} \bar{w}=v^{T} A^{T} \bar{w}$ equals $\langle v, T w\rangle=v^{T} \bar{A} \bar{w}$ for all $v, w . A^{T}=\bar{A}$, i.e., $\overline{A^{T}}=A$ Define the adjoint $A^{\dagger}:=\overline{A^{T}}$. So a Hermitian matrix satisfies $A^{\dagger}=A$ and a skew-Hermitian one satisfies $A^{\dagger}=-A$.
- Let V be a f.d. complex inner product space and $T: V \rightarrow V$ be linear.

Hermitian matrices

- If A is an $n \times n$ complex matrix consider $T: \mathbb{C}^{n} \rightarrow \mathbb{C}^{n}$ given by $T(v)=A v$. Assume that \mathbb{C}^{n} is endowed with the usual dot product. T is Hermitian if and only if $\langle T v, w\rangle=(A v)^{T} \bar{w}=v^{T} A^{T} \bar{w}$ equals $\langle v, T w\rangle=v^{T} \bar{A} \bar{w}$ for all $v, w . A^{T}=\bar{A}$, i.e., $\overline{A^{T}}=A$ Define the adjoint $A^{\dagger}:=\overline{A^{T}}$. So a Hermitian matrix satisfies $A^{\dagger}=A$ and a skew-Hermitian one satisfies $A^{\dagger}=-A$.
- Let V be a f.d. complex inner product space and $T: V \rightarrow V$ be linear. Choose an orthonormal basis.

Hermitian matrices

- If A is an $n \times n$ complex matrix consider $T: \mathbb{C}^{n} \rightarrow \mathbb{C}^{n}$ given by $T(v)=A v$. Assume that \mathbb{C}^{n} is endowed with the usual dot product. T is Hermitian if and only if $\langle T v, w\rangle=(A v)^{T} \bar{w}=v^{T} A^{T} \bar{w}$ equals $\langle v, T w\rangle=v^{T} \bar{A} \bar{w}$ for all $v, w . A^{T}=\bar{A}$, i.e., $\overline{A^{T}}=A$ Define the adjoint $A^{\dagger}:=\overline{A^{T}}$. So a Hermitian matrix satisfies $A^{\dagger}=A$ and a skew-Hermitian one satisfies $A^{\dagger}=-A$.
- Let V be a f.d. complex inner product space and $T: V \rightarrow V$ be linear. Choose an orthonormal basis. Then $\langle v, w\rangle=v^{\top} \bar{w}$.

Hermitian matrices

- If A is an $n \times n$ complex matrix consider $T: \mathbb{C}^{n} \rightarrow \mathbb{C}^{n}$ given by $T(v)=A v$. Assume that \mathbb{C}^{n} is endowed with the usual dot product. T is Hermitian if and only if $\langle T v, w\rangle=(A v)^{T} \bar{w}=v^{T} A^{T} \bar{w}$ equals $\langle v, T w\rangle=v^{T} \bar{A} \bar{w}$ for all $v, w . A^{T}=\bar{A}$, i.e., $\overline{A^{T}}=A$ Define the adjoint $A^{\dagger}:=\overline{A^{T}}$. So a Hermitian matrix satisfies $A^{\dagger}=A$ and a skew-Hermitian one satisfies $A^{\dagger}=-A$.
- Let V be a f.d. complex inner product space and $T: V \rightarrow V$ be linear. Choose an orthonormal basis. Then $\langle v, w\rangle=v^{\top} \bar{w}$. Thus the matrix of T

Hermitian matrices

- If A is an $n \times n$ complex matrix consider $T: \mathbb{C}^{n} \rightarrow \mathbb{C}^{n}$ given by $T(v)=A v$. Assume that \mathbb{C}^{n} is endowed with the usual dot product. T is Hermitian if and only if $\langle T v, w\rangle=(A v)^{T} \bar{w}=v^{T} A^{T} \bar{w}$ equals $\langle v, T w\rangle=v^{T} \bar{A} \bar{w}$ for all $v, w . A^{T}=\bar{A}$, i.e., $\overline{A^{T}}=A$ Define the adjoint $A^{\dagger}:=\overline{A^{T}}$. So a Hermitian matrix satisfies $A^{\dagger}=A$ and a skew-Hermitian one satisfies $A^{\dagger}=-A$.
- Let V be a f.d. complex inner product space and $T: V \rightarrow V$ be linear. Choose an orthonormal basis. Then $\langle v, w\rangle=v^{\top} \bar{w}$. Thus the matrix of T is Hermitian if and only if T is

Hermitian matrices

- If A is an $n \times n$ complex matrix consider $T: \mathbb{C}^{n} \rightarrow \mathbb{C}^{n}$ given by $T(v)=A v$. Assume that \mathbb{C}^{n} is endowed with the usual dot product. T is Hermitian if and only if $\langle T v, w\rangle=(A v)^{T} \bar{w}=v^{T} A^{T} \bar{w}$ equals $\langle v, T w\rangle=v^{T} \bar{A} \bar{w}$ for all $v, w . A^{T}=\bar{A}$, i.e., $\overline{A^{T}}=A$ Define the adjoint $A^{\dagger}:=\overline{A^{T}}$. So a Hermitian matrix satisfies $A^{\dagger}=A$ and a skew-Hermitian one satisfies $A^{\dagger}=-A$.
- Let V be a f.d. complex inner product space and $T: V \rightarrow V$ be linear. Choose an orthonormal basis. Then $\langle v, w\rangle=v^{\top} \bar{w}$. Thus the matrix of T is Hermitian if and only if T is a Hermitian linear map

Hermitian matrices

- If A is an $n \times n$ complex matrix consider $T: \mathbb{C}^{n} \rightarrow \mathbb{C}^{n}$ given by $T(v)=A v$. Assume that \mathbb{C}^{n} is endowed with the usual dot product. T is Hermitian if and only if $\langle T v, w\rangle=(A v)^{T} \bar{w}=v^{T} A^{T} \bar{w}$ equals $\langle v, T w\rangle=v^{T} \bar{A} \bar{w}$ for all $v, w . A^{T}=\bar{A}$, i.e., $\overline{A^{T}}=A$ Define the adjoint $A^{\dagger}:=\overline{A^{T}}$. So a Hermitian matrix satisfies $A^{\dagger}=A$ and a skew-Hermitian one satisfies $A^{\dagger}=-A$.
- Let V be a f.d. complex inner product space and $T: V \rightarrow V$ be linear. Choose an orthonormal basis. Then $\langle v, w\rangle=v^{\top} \bar{w}$. Thus the matrix of T is Hermitian if and only if T is a Hermitian linear map and likewise for skew-Hermitian.

Examples

Examples

- Let $V=\mathcal{C}^{\infty}([0,1] ; \mathbb{C})$,

Examples

- Let $V=\mathcal{C}^{\infty}([0,1] ; \mathbb{C})$, with $\langle f, g\rangle=\int_{0}^{1} f(t) \bar{g}(t) d t$,

Examples

- Let $V=\mathcal{C}^{\infty}([0,1] ; \mathbb{C})$, with $\langle f, g\rangle=\int_{0}^{1} f(t) \bar{g}(t) d t$,and $T: V \rightarrow V$ be

Examples

- Let $V=\mathcal{C}^{\infty}([0,1] ; \mathbb{C})$, with $\langle f, g\rangle=\int_{0}^{1} f(t) \bar{g}(t) d t$,and $T: V \rightarrow V$ be $T(f)=x f$.

Examples

- Let $V=\mathcal{C}^{\infty}([0,1] ; \mathbb{C})$, with $\langle f, g\rangle=\int_{0}^{1} f(t) \bar{g}(t) d t$, and $T: V \rightarrow V$ be $T(f)=x f$. Then $\langle T f, g\rangle=\int_{0}^{1} x f(x) \bar{g}(x) d x=\langle f, T g\rangle$.

Examples

- Let $V=\mathcal{C}^{\infty}([0,1] ; \mathbb{C})$, with $\langle f, g\rangle=\int_{0}^{1} f(t) \bar{g}(t) d t$, and $T: V \rightarrow V$ be $T(f)=x f$. Then $\langle T f, g\rangle=\int_{0}^{1} x f(x) \bar{g}(x) d x=\langle f, T g\rangle$.
- Let $V=\mathcal{C}^{\infty}([0,1] ; \mathbb{C})$,

Examples

- Let $V=\mathcal{C}^{\infty}([0,1] ; \mathbb{C})$, with $\langle f, g\rangle=\int_{0}^{1} f(t) \bar{g}(t) d t$, and $T: V \rightarrow V$ be $T(f)=x f$. Then $\langle T f, g\rangle=\int_{0}^{1} x f(x) \bar{g}(x) d x=\langle f, T g\rangle$.
- Let $V=\mathcal{C}^{\infty}([0,1] ; \mathbb{C})$, with $\langle f, g\rangle=\int_{0}^{1} f \bar{g} d t$,

Examples

- Let $V=\mathcal{C}^{\infty}([0,1] ; \mathbb{C})$, with $\langle f, g\rangle=\int_{0}^{1} f(t) \bar{g}(t) d t$, and $T: V \rightarrow V$ be $T(f)=x f$. Then $\langle T f, g\rangle=\int_{0}^{1} x f(x) \bar{g}(x) d x=\langle f, T g\rangle$.
- Let $V=\mathcal{C}^{\infty}([0,1] ; \mathbb{C})$, with $\langle f, g\rangle=\int_{0}^{1} f \bar{g} d t$, and $T: V \rightarrow V$ be

Examples

- Let $V=\mathcal{C}^{\infty}([0,1] ; \mathbb{C})$, with $\langle f, g\rangle=\int_{0}^{1} f(t) \bar{g}(t) d t$, and $T: V \rightarrow V$ be $T(f)=x f$. Then $\langle T f, g\rangle=\int_{0}^{1} x f(x) \bar{g}(x) d x=\langle f, T g\rangle$.
- Let $V=\mathcal{C}^{\infty}([0,1] ; \mathbb{C})$, with $\langle f, g\rangle=\int_{0}^{1} f \bar{g} d t$, and $T: V \rightarrow V$ be $T(f)=\sqrt{-1} \hbar f^{\prime}$.

Examples

- Let $V=\mathcal{C}^{\infty}([0,1] ; \mathbb{C})$, with $\langle f, g\rangle=\int_{0}^{1} f(t) \bar{g}(t) d t$, and $T: V \rightarrow V$ be $T(f)=x f$. Then $\langle T f, g\rangle=\int_{0}^{1} x f(x) \bar{g}(x) d x=\langle f, T g\rangle$.
- Let $V=\mathcal{C}^{\infty}([0,1] ; \mathbb{C})$, with $\langle f, g\rangle=\int_{0}^{1} f \bar{g} d t$, and $T: V \rightarrow V$ be $T(f)=\sqrt{-1} \hbar f^{\prime}$. Then
$\langle T f, g\rangle=\int_{0}^{1} \sqrt{-1} \hbar f^{\prime} \bar{g} d t=$ $(\sqrt{-1} \hbar f \bar{g})(1)-(\sqrt{-1} \hbar f \bar{g})(0)+\int_{0}^{1} f \sqrt{\sqrt{-1} \hbar g^{\prime}} d t$.

Examples

- Let $V=\mathcal{C}^{\infty}([0,1] ; \mathbb{C})$, with $\langle f, g\rangle=\int_{0}^{1} f(t) \bar{g}(t) d t$, and $T: V \rightarrow V$ be $T(f)=x f$. Then $\langle T f, g\rangle=\int_{0}^{1} x f(x) \bar{g}(x) d x=\langle f, T g\rangle$.
- Let $V=\mathcal{C}^{\infty}([0,1] ; \mathbb{C})$, with $\langle f, g\rangle=\int_{0}^{1} f \bar{g} d t$, and $T: V \rightarrow V$ be $T(f)=\sqrt{-1} \hbar f^{\prime}$. Then
$\langle T f, g\rangle=\int_{0}^{1} \sqrt{-1} \hbar f^{\prime} \bar{g} d t=$ $(\sqrt{-1} \hbar f \bar{g})(1)-(\sqrt{-1} \hbar f \bar{g})(0)+\int_{0}^{1} f \overline{\sqrt{-1} \hbar g^{\prime}} d t$. Thus, the map is

Examples

- Let $V=\mathcal{C}^{\infty}([0,1] ; \mathbb{C})$, with $\langle f, g\rangle=\int_{0}^{1} f(t) \bar{g}(t) d t$, and $T: V \rightarrow V$ be $T(f)=x f$. Then $\langle T f, g\rangle=\int_{0}^{1} x f(x) \bar{g}(x) d x=\langle f, T g\rangle$.
- Let $V=\mathcal{C}^{\infty}([0,1] ; \mathbb{C})$, with $\langle f, g\rangle=\int_{0}^{1} f \bar{g} d t$, and $T: V \rightarrow V$ be $T(f)=\sqrt{-1} \hbar f^{\prime}$. Then
$\langle T f, g\rangle=\int_{0}^{1} \sqrt{-1} \hbar f^{\prime} \bar{g} d t=$ $(\sqrt{-1} \hbar f \bar{g})(1)-(\sqrt{-1} \hbar f \bar{g})(0)+\int_{0}^{1} f \overline{\sqrt{-1} \hbar g^{\prime}} d t$. Thus, the map is not Hermitian in general.

Orthogonality

Orthogonality

- Theorem: Let $T: V \rightarrow V$ be

Orthogonality

- Theorem: Let $T: V \rightarrow V$ be a Hermitian/Skew-Hermitian linear map.

Orthogonality

- Theorem: Let $T: V \rightarrow V$ be a Hermitian/Skew-Hermitian linear map. Let $\lambda \neq \mu$ be distinct eigenvalues of T

Orthogonality

- Theorem: Let $T: V \rightarrow V$ be a Hermitian/Skew-Hermitian linear map. Let $\lambda \neq \mu$ be distinct eigenvalues of T with eigenvectors v, w respectively.

Orthogonality

- Theorem: Let $T: V \rightarrow V$ be a Hermitian/Skew-Hermitian linear map. Let $\lambda \neq \mu$ be distinct eigenvalues of T with eigenvectors v, w respectively. Then $\langle v, w\rangle=0$.

Orthogonality

- Theorem: Let $T: V \rightarrow V$ be a Hermitian/Skew-Hermitian linear map. Let $\lambda \neq \mu$ be distinct eigenvalues of T with eigenvectors v, w respectively. Then $\langle v, w\rangle=0$.
- Proof:

Orthogonality

- Theorem: Let $T: V \rightarrow V$ be a Hermitian/Skew-Hermitian linear map. Let $\lambda \neq \mu$ be distinct eigenvalues of T with eigenvectors v, w respectively. Then $\langle v, w\rangle=0$.
- Proof: $\langle v, T w\rangle= \pm \mu\langle v, w\rangle$.

Orthogonality

- Theorem: Let $T: V \rightarrow V$ be a Hermitian/Skew-Hermitian linear map. Let $\lambda \neq \mu$ be distinct eigenvalues of T with eigenvectors v, w respectively. Then $\langle v, w\rangle=0$.
- Proof: $\langle v, T w\rangle= \pm \mu\langle v, w\rangle$. But $\langle v, T w\rangle= \pm\langle T v, w\rangle= \pm \lambda\langle v, w\rangle$.

Orthogonality

- Theorem: Let $T: V \rightarrow V$ be a Hermitian/Skew-Hermitian linear map. Let $\lambda \neq \mu$ be distinct eigenvalues of T with eigenvectors v, w respectively. Then $\langle v, w\rangle=0$.
- Proof: $\langle v, T w\rangle= \pm \mu\langle v, w\rangle$. But
$\langle v, T w\rangle= \pm\langle T v, w\rangle= \pm \lambda\langle v, w\rangle$. Comparing these two,

Orthogonality

- Theorem: Let $T: V \rightarrow V$ be a Hermitian/Skew-Hermitian linear map. Let $\lambda \neq \mu$ be distinct eigenvalues of T with eigenvectors v, w respectively. Then $\langle v, w\rangle=0$.
- Proof: $\langle v, T w\rangle= \pm \mu\langle v, w\rangle$. But
$\langle v, T w\rangle= \pm\langle T v, w\rangle= \pm \lambda\langle v, w\rangle$. Comparing these two, since $\lambda \neq \mu$,

Orthogonality

- Theorem: Let $T: V \rightarrow V$ be a Hermitian/Skew-Hermitian linear map. Let $\lambda \neq \mu$ be distinct eigenvalues of T with eigenvectors v, w respectively. Then $\langle v, w\rangle=0$.
- Proof: $\langle v, T w\rangle= \pm \mu\langle v, w\rangle$. But
$\langle v, T w\rangle= \pm\langle T v, w\rangle= \pm \lambda\langle v, w\rangle$. Comparing these two, since $\lambda \neq \mu,\langle v, w\rangle=0$.

Orthogonality

- Theorem: Let $T: V \rightarrow V$ be a Hermitian/Skew-Hermitian linear map. Let $\lambda \neq \mu$ be distinct eigenvalues of T with eigenvectors v, w respectively. Then $\langle v, w\rangle=0$.
- Proof: $\langle v, T w\rangle= \pm \mu\langle v, w\rangle$. But
$\langle v, T w\rangle= \pm\langle T v, w\rangle= \pm \lambda\langle v, w\rangle$. Comparing these two, since $\lambda \neq \mu,\langle v, w\rangle=0$.
- In other words,

Orthogonality

- Theorem: Let $T: V \rightarrow V$ be a Hermitian/Skew-Hermitian linear map. Let $\lambda \neq \mu$ be distinct eigenvalues of T with eigenvectors v, w respectively. Then $\langle v, w\rangle=0$.
- Proof: $\langle v, T w\rangle= \pm \mu\langle v, w\rangle$. But
$\langle v, T w\rangle= \pm\langle T v, w\rangle= \pm \lambda\langle v, w\rangle$. Comparing these two, since $\lambda \neq \mu,\langle v, w\rangle=0$.
- In other words, if a Hermitian linear map

Orthogonality

- Theorem: Let $T: V \rightarrow V$ be a Hermitian/Skew-Hermitian linear map. Let $\lambda \neq \mu$ be distinct eigenvalues of T with eigenvectors v, w respectively. Then $\langle v, w\rangle=0$.
- Proof: $\langle v, T w\rangle= \pm \mu\langle v, w\rangle$. But $\langle v, T w\rangle= \pm\langle T v, w\rangle= \pm \lambda\langle v, w\rangle$. Comparing these two, since $\lambda \neq \mu,\langle v, w\rangle=0$.
- In other words, if a Hermitian linear map has distinct eigenvalues

Orthogonality

- Theorem: Let $T: V \rightarrow V$ be a Hermitian/Skew-Hermitian linear map. Let $\lambda \neq \mu$ be distinct eigenvalues of T with eigenvectors v, w respectively. Then $\langle v, w\rangle=0$.
- Proof: $\langle v, T w\rangle= \pm \mu\langle v, w\rangle$. But $\langle v, T w\rangle= \pm\langle T v, w\rangle= \pm \lambda\langle v, w\rangle$. Comparing these two, since $\lambda \neq \mu,\langle v, w\rangle=0$.
- In other words, if a Hermitian linear map has distinct eigenvalues then it has an

Orthogonality

- Theorem: Let $T: V \rightarrow V$ be a Hermitian/Skew-Hermitian linear map. Let $\lambda \neq \mu$ be distinct eigenvalues of T with eigenvectors v, w respectively. Then $\langle v, w\rangle=0$.
- Proof: $\langle v, T w\rangle= \pm \mu\langle v, w\rangle$. But $\langle v, T w\rangle= \pm\langle T v, w\rangle= \pm \lambda\langle v, w\rangle$. Comparing these two, since $\lambda \neq \mu,\langle v, w\rangle=0$.
- In other words, if a Hermitian linear map has distinct eigenvalues then it has an orthonormal basis

Orthogonality

- Theorem: Let $T: V \rightarrow V$ be a Hermitian/Skew-Hermitian linear map. Let $\lambda \neq \mu$ be distinct eigenvalues of T with eigenvectors v, w respectively. Then $\langle v, w\rangle=0$.
- Proof: $\langle v, T w\rangle= \pm \mu\langle v, w\rangle$. But
$\langle v, T w\rangle= \pm\langle T v, w\rangle= \pm \lambda\langle v, w\rangle$. Comparing these two, since $\lambda \neq \mu,\langle v, w\rangle=0$.
- In other words, if a Hermitian linear map has distinct eigenvalues then it has an orthonormal basis of eigenvectors.

Orthogonality

- Theorem: Let $T: V \rightarrow V$ be a Hermitian/Skew-Hermitian linear map. Let $\lambda \neq \mu$ be distinct eigenvalues of T with eigenvectors v, w respectively. Then $\langle v, w\rangle=0$.
- Proof: $\langle v, T w\rangle= \pm \mu\langle v, w\rangle$. But $\langle v, T w\rangle= \pm\langle T v, w\rangle= \pm \lambda\langle v, w\rangle$. Comparing these two, since $\lambda \neq \mu,\langle v, w\rangle=0$.
- In other words, if a Hermitian linear map has distinct eigenvalues then it has an orthonormal basis of eigenvectors. That is, a given

Orthogonality

- Theorem: Let $T: V \rightarrow V$ be a Hermitian/Skew-Hermitian linear map. Let $\lambda \neq \mu$ be distinct eigenvalues of T with eigenvectors v, w respectively. Then $\langle v, w\rangle=0$.
- Proof: $\langle v, T w\rangle= \pm \mu\langle v, w\rangle$. But $\langle v, T w\rangle= \pm\langle T v, w\rangle= \pm \lambda\langle v, w\rangle$. Comparing these two, since $\lambda \neq \mu,\langle v, w\rangle=0$.
- In other words, if a Hermitian linear map has distinct eigenvalues then it has an orthonormal basis of eigenvectors. That is, a given orthonormal basis

Orthogonality

- Theorem: Let $T: V \rightarrow V$ be a Hermitian/Skew-Hermitian linear map. Let $\lambda \neq \mu$ be distinct eigenvalues of T with eigenvectors v, w respectively. Then $\langle v, w\rangle=0$.
- Proof: $\langle v, T w\rangle= \pm \mu\langle v, w\rangle$. But $\langle v, T w\rangle= \pm\langle T v, w\rangle= \pm \lambda\langle v, w\rangle$. Comparing these two, since $\lambda \neq \mu,\langle v, w\rangle=0$.
- In other words, if a Hermitian linear map has distinct eigenvalues then it has an orthonormal basis of eigenvectors. That is, a given orthonormal basis can be "rotated"

Orthogonality

- Theorem: Let $T: V \rightarrow V$ be a Hermitian/Skew-Hermitian linear map. Let $\lambda \neq \mu$ be distinct eigenvalues of T with eigenvectors v, w respectively. Then $\langle v, w\rangle=0$.
- Proof: $\langle v, T w\rangle= \pm \mu\langle v, w\rangle$. But $\langle v, T w\rangle= \pm\langle T v, w\rangle= \pm \lambda\langle v, w\rangle$. Comparing these two, since $\lambda \neq \mu,\langle v, w\rangle=0$.
- In other words, if a Hermitian linear map has distinct eigenvalues then it has an orthonormal basis of eigenvectors. That is, a given orthonormal basis can be "rotated" to a new orthonormal basis

Orthogonality

- Theorem: Let $T: V \rightarrow V$ be a Hermitian/Skew-Hermitian linear map. Let $\lambda \neq \mu$ be distinct eigenvalues of T with eigenvectors v, w respectively. Then $\langle v, w\rangle=0$.
- Proof: $\langle v, T w\rangle= \pm \mu\langle v, w\rangle$. But $\langle v, T w\rangle= \pm\langle T v, w\rangle= \pm \lambda\langle v, w\rangle$. Comparing these two, since $\lambda \neq \mu,\langle v, w\rangle=0$.
- In other words, if a Hermitian linear map has distinct eigenvalues then it has an orthonormal basis of eigenvectors. That is, a given orthonormal basis can be "rotated" to a new orthonormal basis where the matrix of T

Orthogonality

- Theorem: Let $T: V \rightarrow V$ be a Hermitian/Skew-Hermitian linear map. Let $\lambda \neq \mu$ be distinct eigenvalues of T with eigenvectors v, w respectively. Then $\langle v, w\rangle=0$.
- Proof: $\langle v, T w\rangle= \pm \mu\langle v, w\rangle$. But $\langle v, T w\rangle= \pm\langle T v, w\rangle= \pm \lambda\langle v, w\rangle$. Comparing these two, since $\lambda \neq \mu,\langle v, w\rangle=0$.
- In other words, if a Hermitian linear map has distinct eigenvalues then it has an orthonormal basis of eigenvectors. That is, a given orthonormal basis can be "rotated" to a new orthonormal basis where the matrix of T is diagonal.

The Spectral Theorem

The Spectral Theorem

- Theorem:

The Spectral Theorem

- Theorem: Let V be an
- Theorem: Let V be an n-dimensional complex inner product space
- Theorem: Let V be an n-dimensional complex inner product space and $T: V \rightarrow V$ be Hermitian or skew-Hermitian.
- Theorem: Let V be an n-dimensional complex inner product space and $T: V \rightarrow V$ be Hermitian or skew-Hermitian. Then there exist n orthonormal eigenvectors
- Theorem: Let V be an n-dimensional complex inner product space and $T: V \rightarrow V$ be Hermitian or skew-Hermitian. Then there exist n orthonormal eigenvectors of T forming an orthonormal basis of V.
- Theorem: Let V be an n-dimensional complex inner product space and $T: V \rightarrow V$ be Hermitian or skew-Hermitian. Then there exist n orthonormal eigenvectors of T forming an orthonormal basis of V.
- Proof:
- Theorem: Let V be an n-dimensional complex inner product space and $T: V \rightarrow V$ be Hermitian or skew-Hermitian. Then there exist n orthonormal eigenvectors of T forming an orthonormal basis of V.
- Proof: Induct on n.
- Theorem: Let V be an n-dimensional complex inner product space and $T: V \rightarrow V$ be Hermitian or skew-Hermitian. Then there exist n orthonormal eigenvectors of T forming an orthonormal basis of V.
- Proof: Induct on n. For $n=1$ it is trivial.
- Theorem: Let V be an n-dimensional complex inner product space and $T: V \rightarrow V$ be Hermitian or skew-Hermitian. Then there exist n orthonormal eigenvectors of T forming an orthonormal basis of V.
- Proof: Induct on n. For $n=1$ it is trivial. Assume truth for $n-1$.
- Theorem: Let V be an n-dimensional complex inner product space and $T: V \rightarrow V$ be Hermitian or skew-Hermitian. Then there exist n orthonormal eigenvectors of T forming an orthonormal basis of V.
- Proof: Induct on n. For $n=1$ it is trivial. Assume truth for $n-1$. Choose any eigenvalue λ_{1}
- Theorem: Let V be an n-dimensional complex inner product space and $T: V \rightarrow V$ be Hermitian or skew-Hermitian. Then there exist n orthonormal eigenvectors of T forming an orthonormal basis of V.
- Proof: Induct on n. For $n=1$ it is trivial. Assume truth for $n-1$. Choose any eigenvalue λ_{1} of T with a
- Theorem: Let V be an n-dimensional complex inner product space and $T: V \rightarrow V$ be Hermitian or skew-Hermitian. Then there exist n orthonormal eigenvectors of T forming an orthonormal basis of V.
- Proof: Induct on n. For $n=1$ it is trivial. Assume truth for $n-1$. Choose any eigenvalue λ_{1} of T with a normalised eigenvector u_{1} (
- Theorem: Let V be an n-dimensional complex inner product space and $T: V \rightarrow V$ be Hermitian or skew-Hermitian. Then there exist n orthonormal eigenvectors of T forming an orthonormal basis of V.
- Proof: Induct on n. For $n=1$ it is trivial. Assume truth for $n-1$. Choose any eigenvalue λ_{1} of T with a normalised eigenvector $u_{1}\left(\left\|u_{1}\right\|=1\right)$.
- Theorem: Let V be an n-dimensional complex inner product space and $T: V \rightarrow V$ be Hermitian or skew-Hermitian. Then there exist n orthonormal eigenvectors of T forming an orthonormal basis of V.
- Proof: Induct on n. For $n=1$ it is trivial. Assume truth for $n-1$. Choose any eigenvalue λ_{1} of T with a normalised eigenvector $u_{1}\left(\left\|u_{1}\right\|=1\right)$. Then $T u_{1}=\lambda_{1} u_{1}$.
- Theorem: Let V be an n-dimensional complex inner product space and $T: V \rightarrow V$ be Hermitian or skew-Hermitian. Then there exist n orthonormal eigenvectors of T forming an orthonormal basis of V.
- Proof: Induct on n. For $n=1$ it is trivial. Assume truth for $n-1$. Choose any eigenvalue λ_{1} of T with a normalised eigenvector $u_{1}\left(\left\|u_{1}\right\|=1\right)$. Then $T u_{1}=\lambda_{1} u_{1}$. Let S be the
- Theorem: Let V be an n-dimensional complex inner product space and $T: V \rightarrow V$ be Hermitian or skew-Hermitian. Then there exist n orthonormal eigenvectors of T forming an orthonormal basis of V.
- Proof: Induct on n. For $n=1$ it is trivial. Assume truth for $n-1$. Choose any eigenvalue λ_{1} of T with a normalised eigenvector $u_{1}\left(\left\|u_{1}\right\|=1\right)$. Then $T u_{1}=\lambda_{1} u_{1}$. Let S be the span of u_{1} and
- Theorem: Let V be an n-dimensional complex inner product space and $T: V \rightarrow V$ be Hermitian or skew-Hermitian. Then there exist n orthonormal eigenvectors of T forming an orthonormal basis of V.
- Proof: Induct on n. For $n=1$ it is trivial. Assume truth for $n-1$. Choose any eigenvalue λ_{1} of T with a normalised eigenvector $u_{1}\left(\left\|u_{1}\right\|=1\right)$. Then $T u_{1}=\lambda_{1} u_{1}$. Let S be the span of u_{1} and S^{\perp} be its orthogonal complement.
- Theorem: Let V be an n-dimensional complex inner product space and $T: V \rightarrow V$ be Hermitian or skew-Hermitian. Then there exist n orthonormal eigenvectors of T forming an orthonormal basis of V.
- Proof: Induct on n. For $n=1$ it is trivial. Assume truth for $n-1$. Choose any eigenvalue λ_{1} of T with a normalised eigenvector $u_{1}\left(\left\|u_{1}\right\|=1\right)$. Then $T u_{1}=\lambda_{1} u_{1}$. Let S be the span of u_{1} and S^{\perp} be its orthogonal complement.
- We first note that
- Theorem: Let V be an n-dimensional complex inner product space and $T: V \rightarrow V$ be Hermitian or skew-Hermitian. Then there exist n orthonormal eigenvectors of T forming an orthonormal basis of V.
- Proof: Induct on n. For $n=1$ it is trivial. Assume truth for $n-1$. Choose any eigenvalue λ_{1} of T with a normalised eigenvector $u_{1}\left(\left\|u_{1}\right\|=1\right)$. Then $T u_{1}=\lambda_{1} u_{1}$. Let S be the span of u_{1} and S^{\perp} be its orthogonal complement.
- We first note that T takes S^{\perp} to itself, i.e.,
- Theorem: Let V be an n-dimensional complex inner product space and $T: V \rightarrow V$ be Hermitian or skew-Hermitian. Then there exist n orthonormal eigenvectors of T forming an orthonormal basis of V.
- Proof: Induct on n. For $n=1$ it is trivial. Assume truth for $n-1$. Choose any eigenvalue λ_{1} of T with a normalised eigenvector $u_{1}\left(\left\|u_{1}\right\|=1\right)$. Then $T u_{1}=\lambda_{1} u_{1}$. Let S be the span of u_{1} and S^{\perp} be its orthogonal complement.
- We first note that T takes S^{\perp} to itself, i.e., if $s \in S^{\perp}$ then
- Theorem: Let V be an n-dimensional complex inner product space and $T: V \rightarrow V$ be Hermitian or skew-Hermitian. Then there exist n orthonormal eigenvectors of T forming an orthonormal basis of V.
- Proof: Induct on n. For $n=1$ it is trivial. Assume truth for $n-1$. Choose any eigenvalue λ_{1} of T with a normalised eigenvector $u_{1}\left(\left\|u_{1}\right\|=1\right)$. Then $T u_{1}=\lambda_{1} u_{1}$. Let S be the span of u_{1} and S^{\perp} be its orthogonal complement.
- We first note that T takes S^{\perp} to itself, i.e., if $s \in S^{\perp}$ then $T(s) \in S^{\perp}$.
- Theorem: Let V be an n-dimensional complex inner product space and $T: V \rightarrow V$ be Hermitian or skew-Hermitian. Then there exist n orthonormal eigenvectors of T forming an orthonormal basis of V.
- Proof: Induct on n. For $n=1$ it is trivial. Assume truth for $n-1$. Choose any eigenvalue λ_{1} of T with a normalised eigenvector $u_{1}\left(\left\|u_{1}\right\|=1\right)$. Then $T u_{1}=\lambda_{1} u_{1}$. Let S be the span of u_{1} and S^{\perp} be its orthogonal complement.
- We first note that T takes S^{\perp} to itself, i.e., if $s \in S^{\perp}$ then $T(s) \in S^{\perp}$. Indeed, if T is Hermitian

The Spectral Theorem

- Theorem: Let V be an n-dimensional complex inner product space and $T: V \rightarrow V$ be Hermitian or skew-Hermitian. Then there exist n orthonormal eigenvectors of T forming an orthonormal basis of V.
- Proof: Induct on n. For $n=1$ it is trivial. Assume truth for $n-1$. Choose any eigenvalue λ_{1} of T with a normalised eigenvector $u_{1}\left(\left\|u_{1}\right\|=1\right)$. Then $T u_{1}=\lambda_{1} u_{1}$. Let S be the span of u_{1} and S^{\perp} be its orthogonal complement.
- We first note that T takes S^{\perp} to itself, i.e., if $s \in S^{\perp}$ then $T(s) \in S^{\perp}$. Indeed, if T is Hermitian $\left\langle T(s), u_{1}\right\rangle=\left\langle s, T u_{1}\right\rangle=\bar{\lambda}_{1}\left\langle s, u_{1}\right\rangle=0$.

The Spectral Theorem

- Theorem: Let V be an n-dimensional complex inner product space and $T: V \rightarrow V$ be Hermitian or skew-Hermitian. Then there exist n orthonormal eigenvectors of T forming an orthonormal basis of V.
- Proof: Induct on n. For $n=1$ it is trivial. Assume truth for $n-1$. Choose any eigenvalue λ_{1} of T with a normalised eigenvector $u_{1}\left(\left\|u_{1}\right\|=1\right)$. Then $T u_{1}=\lambda_{1} u_{1}$. Let S be the span of u_{1} and S^{\perp} be its orthogonal complement.
- We first note that T takes S^{\perp} to itself, i.e., if $s \in S^{\perp}$ then $T(s) \in S^{\perp}$. Indeed, if T is Hermitian $\left\langle T(s), u_{1}\right\rangle=\left\langle s, T u_{1}\right\rangle=\bar{\lambda}_{1}\left\langle s, u_{1}\right\rangle=0$. Likewise if it is

The Spectral Theorem

- Theorem: Let V be an n-dimensional complex inner product space and $T: V \rightarrow V$ be Hermitian or skew-Hermitian. Then there exist n orthonormal eigenvectors of T forming an orthonormal basis of V.
- Proof: Induct on n. For $n=1$ it is trivial. Assume truth for $n-1$. Choose any eigenvalue λ_{1} of T with a normalised eigenvector $u_{1}\left(\left\|u_{1}\right\|=1\right)$. Then $T u_{1}=\lambda_{1} u_{1}$. Let S be the span of u_{1} and S^{\perp} be its orthogonal complement.
- We first note that T takes S^{\perp} to itself, i.e., if $s \in S^{\perp}$ then $T(s) \in S^{\perp}$. Indeed, if T is Hermitian $\left\langle T(s), u_{1}\right\rangle=\left\langle s, T u_{1}\right\rangle=\bar{\lambda}_{1}\left\langle s, u_{1}\right\rangle=0$. Likewise if it is skew-Hermitian.

The Spectral Theorem

The Spectral Theorem

- $\operatorname{dim}\left(S^{\perp}\right)=n-1$:

The Spectral Theorem

- $\operatorname{dim}\left(S^{\perp}\right)=n-1$: Extend u_{1} to a

The Spectral Theorem

- $\operatorname{dim}\left(S^{\perp}\right)=n-1$: Extend u_{1} to a basis $u_{1}, v_{2}, \ldots, v_{n}$ of V.

The Spectral Theorem

- $\operatorname{dim}\left(S^{\perp}\right)=n-1$: Extend u_{1} to a basis $u_{1}, v_{2}, \ldots, v_{n}$ of V. Using Gram-Schmidt,
- $\operatorname{dim}\left(S^{\perp}\right)=n-1$: Extend u_{1} to a basis $u_{1}, v_{2}, \ldots, v_{n}$ of V. Using Gram-Schmidt, convert this to
- $\operatorname{dim}\left(S^{\perp}\right)=n-1$: Extend u_{1} to a basis $u_{1}, v_{2}, \ldots, v_{n}$ of V. Using Gram-Schmidt, convert this to an orthonormal basis $u_{1}, w_{2}, \ldots, w_{n}$.
- $\operatorname{dim}\left(S^{\perp}\right)=n-1$: Extend u_{1} to a basis $u_{1}, v_{2}, \ldots, v_{n}$ of V. Using Gram-Schmidt, convert this to an orthonormal basis $u_{1}, w_{2}, \ldots, w_{n}$. Let $x \in S^{\perp}$.
- $\operatorname{dim}\left(S^{\perp}\right)=n-1$: Extend u_{1} to a basis $u_{1}, v_{2}, \ldots, v_{n}$ of V. Using Gram-Schmidt, convert this to an orthonormal basis $u_{1}, w_{2}, \ldots, w_{n}$. Let $x \in S^{\perp}$. Write $x=x_{1} u_{1}+x_{2} w_{2}+\ldots$.
- $\operatorname{dim}\left(S^{\perp}\right)=n-1$: Extend u_{1} to a basis $u_{1}, v_{2}, \ldots, v_{n}$ of V. Using Gram-Schmidt, convert this to an orthonormal basis $u_{1}, w_{2}, \ldots, w_{n}$. Let $x \in S^{\perp}$. Write $x=x_{1} u_{1}+x_{2} w_{2}+\ldots$. Then $0=\left\langle x, u_{1}\right\rangle=x_{1}$.
- $\operatorname{dim}\left(S^{\perp}\right)=n-1$: Extend u_{1} to a basis $u_{1}, v_{2}, \ldots, v_{n}$ of V. Using Gram-Schmidt, convert this to an orthonormal basis $u_{1}, w_{2}, \ldots, w_{n}$. Let $x \in S^{\perp}$. Write $x=x_{1} u_{1}+x_{2} w_{2}+\ldots$. Then $0=\left\langle x, u_{1}\right\rangle=x_{1}$. Thus $x=x_{2} w_{2}+\ldots$.
- $\operatorname{dim}\left(S^{\perp}\right)=n-1$: Extend u_{1} to a basis $u_{1}, v_{2}, \ldots, v_{n}$ of V. Using Gram-Schmidt, convert this to an orthonormal basis $u_{1}, w_{2}, \ldots, w_{n}$. Let $x \in S^{\perp}$. Write $x=x_{1} u_{1}+x_{2} w_{2}+\ldots$. Then $0=\left\langle x, u_{1}\right\rangle=x_{1}$. Thus $x=x_{2} w_{2}+\ldots$. Hence $\operatorname{dim}\left(S^{\perp}\right)=n-1$.
- $\operatorname{dim}\left(S^{\perp}\right)=n-1$: Extend u_{1} to a basis $u_{1}, v_{2}, \ldots, v_{n}$ of V. Using Gram-Schmidt, convert this to an orthonormal basis $u_{1}, w_{2}, \ldots, w_{n}$. Let $x \in S^{\perp}$. Write $x=x_{1} u_{1}+x_{2} w_{2}+\ldots$. Then $0=\left\langle x, u_{1}\right\rangle=x_{1}$. Thus $x=x_{2} w_{2}+\ldots$. Hence $\operatorname{dim}\left(S^{\perp}\right)=n-1$.
- Now $T: S^{\perp} \rightarrow S^{\perp}$ is
- $\operatorname{dim}\left(S^{\perp}\right)=n-1$: Extend u_{1} to a basis $u_{1}, v_{2}, \ldots, v_{n}$ of V. Using Gram-Schmidt, convert this to an orthonormal basis $u_{1}, w_{2}, \ldots, w_{n}$. Let $x \in S^{\perp}$. Write $x=x_{1} u_{1}+x_{2} w_{2}+\ldots$. Then $0=\left\langle x, u_{1}\right\rangle=x_{1}$. Thus $x=x_{2} w_{2}+\ldots$. Hence $\operatorname{dim}\left(S^{\perp}\right)=n-1$.
- Now $T: S^{\perp} \rightarrow S^{\perp}$ is a Hermitian/Skew-Hermitian linear map
- $\operatorname{dim}\left(S^{\perp}\right)=n-1$: Extend u_{1} to a basis $u_{1}, v_{2}, \ldots, v_{n}$ of V. Using Gram-Schmidt, convert this to an orthonormal basis $u_{1}, w_{2}, \ldots, w_{n}$. Let $x \in S^{\perp}$. Write $x=x_{1} u_{1}+x_{2} w_{2}+\ldots$. Then $0=\left\langle x, u_{1}\right\rangle=x_{1}$. Thus $x=x_{2} w_{2}+\ldots$. Hence $\operatorname{dim}\left(S^{\perp}\right)=n-1$.
- Now $T: S^{\perp} \rightarrow S^{\perp}$ is a Hermitian/Skew-Hermitian linear map from an $n-1$ dimensional space
- $\operatorname{dim}\left(S^{\perp}\right)=n-1$: Extend u_{1} to a basis $u_{1}, v_{2}, \ldots, v_{n}$ of V. Using Gram-Schmidt, convert this to an orthonormal basis $u_{1}, w_{2}, \ldots, w_{n}$. Let $x \in S^{\perp}$. Write $x=x_{1} u_{1}+x_{2} w_{2}+\ldots$. Then $0=\left\langle x, u_{1}\right\rangle=x_{1}$. Thus $x=x_{2} w_{2}+\ldots$. Hence $\operatorname{dim}\left(S^{\perp}\right)=n-1$.
- Now $T: S^{\perp} \rightarrow S^{\perp}$ is a Hermitian/Skew-Hermitian linear map from an $n-1$ dimensional space to itself.
- $\operatorname{dim}\left(S^{\perp}\right)=n-1$: Extend u_{1} to a basis $u_{1}, v_{2}, \ldots, v_{n}$ of V. Using Gram-Schmidt, convert this to an orthonormal basis $u_{1}, w_{2}, \ldots, w_{n}$. Let $x \in S^{\perp}$. Write $x=x_{1} u_{1}+x_{2} w_{2}+\ldots$. Then $0=\left\langle x, u_{1}\right\rangle=x_{1}$. Thus $x=x_{2} w_{2}+\ldots$. Hence $\operatorname{dim}\left(S^{\perp}\right)=n-1$.
- Now $T: S^{\perp} \rightarrow S^{\perp}$ is a Hermitian/Skew-Hermitian linear map from an $n-1$ dimensional space to itself. By the induction hypothesis,
- $\operatorname{dim}\left(S^{\perp}\right)=n-1$: Extend u_{1} to a basis $u_{1}, v_{2}, \ldots, v_{n}$ of V. Using Gram-Schmidt, convert this to an orthonormal basis $u_{1}, w_{2}, \ldots, w_{n}$. Let $x \in S^{\perp}$. Write $x=x_{1} u_{1}+x_{2} w_{2}+\ldots$. Then $0=\left\langle x, u_{1}\right\rangle=x_{1}$. Thus $x=x_{2} w_{2}+\ldots$. Hence $\operatorname{dim}\left(S^{\perp}\right)=n-1$.
- Now $T: S^{\perp} \rightarrow S^{\perp}$ is a Hermitian/Skew-Hermitian linear map from an $n-1$ dimensional space to itself. By the induction hypothesis, S^{\perp} has an orthonormal basis u_{2}, \ldots, u_{n} of
- $\operatorname{dim}\left(S^{\perp}\right)=n-1$: Extend u_{1} to a basis $u_{1}, v_{2}, \ldots, v_{n}$ of V. Using Gram-Schmidt, convert this to an orthonormal basis $u_{1}, w_{2}, \ldots, w_{n}$. Let $x \in S^{\perp}$. Write $x=x_{1} u_{1}+x_{2} w_{2}+\ldots$. Then $0=\left\langle x, u_{1}\right\rangle=x_{1}$. Thus $x=x_{2} w_{2}+\ldots$. Hence $\operatorname{dim}\left(S^{\perp}\right)=n-1$.
- Now $T: S^{\perp} \rightarrow S^{\perp}$ is a Hermitian/Skew-Hermitian linear map from an $n-1$ dimensional space to itself. By the induction hypothesis, S^{\perp} has an orthonormal basis u_{2}, \ldots, u_{n} of eigenvectors.
- $\operatorname{dim}\left(S^{\perp}\right)=n-1$: Extend u_{1} to a basis $u_{1}, v_{2}, \ldots, v_{n}$ of V. Using Gram-Schmidt, convert this to an orthonormal basis $u_{1}, w_{2}, \ldots, w_{n}$. Let $x \in S^{\perp}$. Write $x=x_{1} u_{1}+x_{2} w_{2}+\ldots$. Then $0=\left\langle x, u_{1}\right\rangle=x_{1}$. Thus $x=x_{2} w_{2}+\ldots$. Hence $\operatorname{dim}\left(S^{\perp}\right)=n-1$.
- Now $T: S^{\perp} \rightarrow S^{\perp}$ is a Hermitian/Skew-Hermitian linear map from an $n-1$ dimensional space to itself. By the induction hypothesis, S^{\perp} has an orthonormal basis u_{2}, \ldots, u_{n} of eigenvectors.
- Thus u_{1}, \ldots, u_{n} form an
- $\operatorname{dim}\left(S^{\perp}\right)=n-1$: Extend u_{1} to a basis $u_{1}, v_{2}, \ldots, v_{n}$ of V. Using Gram-Schmidt, convert this to an orthonormal basis $u_{1}, w_{2}, \ldots, w_{n}$. Let $x \in S^{\perp}$. Write $x=x_{1} u_{1}+x_{2} w_{2}+\ldots$ Then $0=\left\langle x, u_{1}\right\rangle=x_{1}$. Thus $x=x_{2} w_{2}+\ldots$. Hence $\operatorname{dim}\left(S^{\perp}\right)=n-1$.
- Now $T: S^{\perp} \rightarrow S^{\perp}$ is a Hermitian/Skew-Hermitian linear map from an $n-1$ dimensional space to itself. By the induction hypothesis, S^{\perp} has an orthonormal basis u_{2}, \ldots, u_{n} of eigenvectors.
- Thus u_{1}, \ldots, u_{n} form an orthonormal basis of V
- $\operatorname{dim}\left(S^{\perp}\right)=n-1$: Extend u_{1} to a basis $u_{1}, v_{2}, \ldots, v_{n}$ of V. Using Gram-Schmidt, convert this to an orthonormal basis $u_{1}, w_{2}, \ldots, w_{n}$. Let $x \in S^{\perp}$. Write $x=x_{1} u_{1}+x_{2} w_{2}+\ldots$ Then $0=\left\langle x, u_{1}\right\rangle=x_{1}$. Thus $x=x_{2} w_{2}+\ldots$. Hence $\operatorname{dim}\left(S^{\perp}\right)=n-1$.
- Now $T: S^{\perp} \rightarrow S^{\perp}$ is a Hermitian/Skew-Hermitian linear map from an $n-1$ dimensional space to itself. By the induction hypothesis, S^{\perp} has an orthonormal basis u_{2}, \ldots, u_{n} of eigenvectors.
- Thus u_{1}, \ldots, u_{n} form an orthonormal basis of V consisting of eigenvectors of T.

Unitary and orthogonal matrices

Unitary and orthogonal matrices

- A matrix/linear map $U: \mathbb{C}^{n} \rightarrow \mathbb{C}^{n}$

Unitary and orthogonal matrices

- A matrix/linear map $U: \mathbb{C}^{n} \rightarrow \mathbb{C}^{n}$ preserves the usual dot product, i.e.,

Unitary and orthogonal matrices

- A matrix/linear map $U: \mathbb{C}^{n} \rightarrow \mathbb{C}^{n}$ preserves the usual dot product, i.e., $\langle U v, U w\rangle=\langle v, w\rangle$

Unitary and orthogonal matrices

- A matrix/linear map $U: \mathbb{C}^{n} \rightarrow \mathbb{C}^{n}$ preserves the usual dot product, i.e., $\langle U v, U w\rangle=\langle v, w\rangle$ if and only if

Unitary and orthogonal matrices

- A matrix/linear map $U: \mathbb{C}^{n} \rightarrow \mathbb{C}^{n}$ preserves the usual dot product, i.e., $\langle U v, U w\rangle=\langle v, w\rangle$ if and only if $U^{T} \bar{U}=I$, i.e.,

Unitary and orthogonal matrices

- A matrix/linear map $U: \mathbb{C}^{n} \rightarrow \mathbb{C}^{n}$ preserves the usual dot product, i.e., $\langle U v, U w\rangle=\langle v, w\rangle$ if and only if $U^{T} \bar{U}=I$, i.e., $U^{\dagger} U=I$ and hence

Unitary and orthogonal matrices

- A matrix/linear map $U: \mathbb{C}^{n} \rightarrow \mathbb{C}^{n}$ preserves the usual dot product, i.e., $\langle U v, U w\rangle=\langle v, w\rangle$ if and only if $U^{T} \bar{U}=I$, i.e., $U^{\dagger} U=I$ and hence $U U^{\dagger}=I$.

Unitary and orthogonal matrices

- A matrix/linear map $U: \mathbb{C}^{n} \rightarrow \mathbb{C}^{n}$ preserves the usual dot product, i.e., $\langle U v, U w\rangle=\langle v, w\rangle$ if and only if $U^{T} \bar{U}=I$, i.e., $U^{\dagger} U=I$ and hence $U U^{\dagger}=I$.
- Def:

Unitary and orthogonal matrices

- A matrix/linear map $U: \mathbb{C}^{n} \rightarrow \mathbb{C}^{n}$ preserves the usual dot product, i.e., $\langle U v, U w\rangle=\langle v, w\rangle$ if and only if $U^{T} \bar{U}=I$, i.e., $U^{\dagger} U=I$ and hence $U U^{\dagger}=I$.
- Def: A complex $n \times n$ matrix U

Unitary and orthogonal matrices

- A matrix/linear map $U: \mathbb{C}^{n} \rightarrow \mathbb{C}^{n}$ preserves the usual dot product, i.e., $\langle U v, U w\rangle=\langle v, w\rangle$ if and only if $U^{T} \bar{U}=I$, i.e., $U^{\dagger} U=I$ and hence $U U^{\dagger}=I$.
- Def: A complex $n \times n$ matrix U is said to be unitary if

Unitary and orthogonal matrices

- A matrix/linear map $U: \mathbb{C}^{n} \rightarrow \mathbb{C}^{n}$ preserves the usual dot product, i.e., $\langle U v, U w\rangle=\langle v, w\rangle$ if and only if $U^{T} \bar{U}=I$, i.e., $U^{\dagger} U=I$ and hence $U U^{\dagger}=I$.
- Def: A complex $n \times n$ matrix U is said to be unitary if $U U^{\dagger}=U^{\dagger} U=I$, i.e,

Unitary and orthogonal matrices

- A matrix/linear map $U: \mathbb{C}^{n} \rightarrow \mathbb{C}^{n}$ preserves the usual dot product, i.e., $\langle U v, U w\rangle=\langle v, w\rangle$ if and only if $U^{T} \bar{U}=I$, i.e., $U^{\dagger} U=I$ and hence $U U^{\dagger}=I$.
- Def: A complex $n \times n$ matrix U is said to be unitary if $U U^{\dagger}=U^{\dagger} U=I$, i.e, $U^{-1}=U^{\dagger}$.

Unitary and orthogonal matrices

- A matrix/linear map $U: \mathbb{C}^{n} \rightarrow \mathbb{C}^{n}$ preserves the usual dot product, i.e., $\langle U v, U w\rangle=\langle v, w\rangle$ if and only if $U^{T} \bar{U}=I$, i.e., $U^{\dagger} U=I$ and hence $U U^{\dagger}=I$.
- Def: A complex $n \times n$ matrix U is said to be unitary if $U U^{\dagger}=U^{\dagger} U=I$, i.e, $U^{-1}=U^{\dagger}$. A real matrix O is said to be

Unitary and orthogonal matrices

- A matrix/linear map $U: \mathbb{C}^{n} \rightarrow \mathbb{C}^{n}$ preserves the usual dot product, i.e., $\langle U v, U w\rangle=\langle v, w\rangle$ if and only if $U^{T} \bar{U}=I$, i.e., $U^{\dagger} U=I$ and hence $U U^{\dagger}=I$.
- Def: A complex $n \times n$ matrix U is said to be unitary if $U U^{\dagger}=U^{\dagger} U=I$, i.e, $U^{-1}=U^{\dagger}$. A real matrix O is said to be orthogonal if

Unitary and orthogonal matrices

- A matrix/linear map $U: \mathbb{C}^{n} \rightarrow \mathbb{C}^{n}$ preserves the usual dot product, i.e., $\langle U v, U w\rangle=\langle v, w\rangle$ if and only if $U^{T} \bar{U}=I$, i.e., $U^{\dagger} U=I$ and hence $U U^{\dagger}=I$.
- Def: A complex $n \times n$ matrix U is said to be unitary if $U U^{\dagger}=U^{\dagger} U=I$, i.e, $U^{-1}=U^{\dagger}$. A real matrix O is said to be orthogonal if $O O^{T}=O^{T} O=l$.

Unitary and orthogonal matrices

- A matrix/linear map $U: \mathbb{C}^{n} \rightarrow \mathbb{C}^{n}$ preserves the usual dot product, i.e., $\langle U v, U w\rangle=\langle v, w\rangle$ if and only if $U^{T} \bar{U}=I$, i.e., $U^{\dagger} U=I$ and hence $U U^{\dagger}=I$.
- Def: A complex $n \times n$ matrix U is said to be unitary if $U U^{\dagger}=U^{\dagger} U=I$, i.e, $U^{-1}=U^{\dagger}$. A real matrix O is said to be orthogonal if $O O^{T}=O^{T} O=1$.
- If V is a f.d. complex inner product space

Unitary and orthogonal matrices

- A matrix/linear map $U: \mathbb{C}^{n} \rightarrow \mathbb{C}^{n}$ preserves the usual dot product, i.e., $\langle U v, U w\rangle=\langle v, w\rangle$ if and only if $U^{T} \bar{U}=I$, i.e., $U^{\dagger} U=I$ and hence $U U^{\dagger}=I$.
- Def: A complex $n \times n$ matrix U is said to be unitary if $U U^{\dagger}=U^{\dagger} U=I$, i.e, $U^{-1}=U^{\dagger}$. A real matrix O is said to be orthogonal if $O O^{T}=O^{T} O=I$.
- If V is a f.d. complex inner product space then $T: V \rightarrow V$ is said to be

Unitary and orthogonal matrices

- A matrix/linear map $U: \mathbb{C}^{n} \rightarrow \mathbb{C}^{n}$ preserves the usual dot product, i.e., $\langle U v, U w\rangle=\langle v, w\rangle$ if and only if $U^{T} \bar{U}=I$, i.e., $U^{\dagger} U=I$ and hence $U U^{\dagger}=I$.
- Def: A complex $n \times n$ matrix U is said to be unitary if $U U^{\dagger}=U^{\dagger} U=I$, i.e, $U^{-1}=U^{\dagger}$. A real matrix O is said to be orthogonal if $O O^{T}=O^{T} O=I$.
- If V is a f.d. complex inner product space then $T: V \rightarrow V$ is said to be a unitary transformation if

Unitary and orthogonal matrices

- A matrix/linear map $U: \mathbb{C}^{n} \rightarrow \mathbb{C}^{n}$ preserves the usual dot product, i.e., $\langle U v, U w\rangle=\langle v, w\rangle$ if and only if $U^{T} \bar{U}=I$, i.e., $U^{\dagger} U=I$ and hence $U U^{\dagger}=I$.
- Def: A complex $n \times n$ matrix U is said to be unitary if $U U^{\dagger}=U^{\dagger} U=I$, i.e, $U^{-1}=U^{\dagger}$. A real matrix O is said to be orthogonal if $O O^{T}=O^{T} O=I$.
- If V is a f.d. complex inner product space then $T: V \rightarrow V$ is said to be a unitary transformation if $\langle T v, T w\rangle=\langle v, w\rangle$.

Unitary and orthogonal matrices

- A matrix/linear map $U: \mathbb{C}^{n} \rightarrow \mathbb{C}^{n}$ preserves the usual dot product, i.e., $\langle U v, U w\rangle=\langle v, w\rangle$ if and only if $U^{T} \bar{U}=I$, i.e., $U^{\dagger} U=I$ and hence $U U^{\dagger}=I$.
- Def: A complex $n \times n$ matrix U is said to be unitary if $U U^{\dagger}=U^{\dagger} U=I$, i.e, $U^{-1}=U^{\dagger}$. A real matrix O is said to be orthogonal if $O O^{T}=O^{T} O=I$.
- If V is a f.d. complex inner product space then $T: V \rightarrow V$ is said to be a unitary transformation if $\langle T v, T w\rangle=\langle v, w\rangle$. Note that T is unitary if and only if

Unitary and orthogonal matrices

- A matrix/linear map $U: \mathbb{C}^{n} \rightarrow \mathbb{C}^{n}$ preserves the usual dot product, i.e., $\langle U v, U w\rangle=\langle v, w\rangle$ if and only if $U^{\top} \bar{U}=I$, i.e., $U^{\dagger} U=I$ and hence $U U^{\dagger}=I$.
- Def: A complex $n \times n$ matrix U is said to be unitary if $U U^{\dagger}=U^{\dagger} U=I$, i.e, $U^{-1}=U^{\dagger}$. A real matrix O is said to be orthogonal if $O O^{T}=O^{T} O=I$.
- If V is a f.d. complex inner product space then $T: V \rightarrow V$ is said to be a unitary transformation if $\langle T v, T w\rangle=\langle v, w\rangle$. Note that T is unitary if and only if there is an orthonormal basis in which [T] is unitary.

Unitary and orthogonal matrices

- A matrix/linear map $U: \mathbb{C}^{n} \rightarrow \mathbb{C}^{n}$ preserves the usual dot product, i.e., $\langle U v, U w\rangle=\langle v, w\rangle$ if and only if $U^{\top} \bar{U}=I$, i.e., $U^{\dagger} U=I$ and hence $U U^{\dagger}=I$.
- Def: A complex $n \times n$ matrix U is said to be unitary if $U U^{\dagger}=U^{\dagger} U=I$, i.e, $U^{-1}=U^{\dagger}$. A real matrix O is said to be orthogonal if $O O^{T}=O^{T} O=I$.
- If V is a f.d. complex inner product space then $T: V \rightarrow V$ is said to be a unitary transformation if $\langle T v, T w\rangle=\langle v, w\rangle$. Note that T is unitary if and only if there is an orthonormal basis in which [T] is unitary.
- If $A= \pm A^{\dagger}$

Unitary and orthogonal matrices

- A matrix/linear map $U: \mathbb{C}^{n} \rightarrow \mathbb{C}^{n}$ preserves the usual dot product, i.e., $\langle U v, U w\rangle=\langle v, w\rangle$ if and only if $U^{\top} \bar{U}=I$, i.e., $U^{\dagger} U=I$ and hence $U U^{\dagger}=I$.
- Def: A complex $n \times n$ matrix U is said to be unitary if $U U^{\dagger}=U^{\dagger} U=I$, i.e, $U^{-1}=U^{\dagger}$. A real matrix O is said to be orthogonal if $O O^{T}=O^{T} O=I$.
- If V is a f.d. complex inner product space then $T: V \rightarrow V$ is said to be a unitary transformation if $\langle T v, T w\rangle=\langle v, w\rangle$. Note that T is unitary if and only if there is an orthonormal basis in which [T] is unitary.
- If $A= \pm A^{\dagger}$ then $U^{\dagger} A U=D$

Unitary and orthogonal matrices

- A matrix/linear map $U: \mathbb{C}^{n} \rightarrow \mathbb{C}^{n}$ preserves the usual dot product, i.e., $\langle U v, U w\rangle=\langle v, w\rangle$ if and only if $U^{\top} \bar{U}=I$, i.e., $U^{\dagger} U=I$ and hence $U U^{\dagger}=I$.
- Def: A complex $n \times n$ matrix U is said to be unitary if $U U^{\dagger}=U^{\dagger} U=I$, i.e, $U^{-1}=U^{\dagger}$. A real matrix O is said to be orthogonal if $O O^{T}=O^{T} O=I$.
- If V is a f.d. complex inner product space then $T: V \rightarrow V$ is said to be a unitary transformation if $\langle T v, T w\rangle=\langle v, w\rangle$. Note that T is unitary if and only if there is an orthonormal basis in which [T] is unitary.
- If $A= \pm A^{\dagger}$ then $U^{\dagger} A U=D$ where U is a unitary matrix:

Unitary and orthogonal matrices

- A matrix/linear map $U: \mathbb{C}^{n} \rightarrow \mathbb{C}^{n}$ preserves the usual dot product, i.e., $\langle U v, U w\rangle=\langle v, w\rangle$ if and only if $U^{T} \bar{U}=I$, i.e., $U^{\dagger} U=I$ and hence $U U^{\dagger}=I$.
- Def: A complex $n \times n$ matrix U is said to be unitary if $U U^{\dagger}=U^{\dagger} U=I$, i.e, $U^{-1}=U^{\dagger}$. A real matrix O is said to be orthogonal if $O O^{T}=O^{T} O=I$.
- If V is a f.d. complex inner product space then $T: V \rightarrow V$ is said to be a unitary transformation if $\langle T v, T w\rangle=\langle v, w\rangle$. Note that T is unitary if and only if there is an orthonormal basis in which [T] is unitary.
- If $A= \pm A^{\dagger}$ then $U^{\dagger} A U=D$ where U is a unitary matrix: Indeed, $T v=A v$ has

Unitary and orthogonal matrices

- A matrix/linear map $U: \mathbb{C}^{n} \rightarrow \mathbb{C}^{n}$ preserves the usual dot product, i.e., $\langle U v, U w\rangle=\langle v, w\rangle$ if and only if $U^{T} \bar{U}=I$, i.e., $U^{\dagger} U=I$ and hence $U U^{\dagger}=I$.
- Def: A complex $n \times n$ matrix U is said to be unitary if $U U^{\dagger}=U^{\dagger} U=I$, i.e, $U^{-1}=U^{\dagger}$. A real matrix O is said to be orthogonal if $O O^{T}=O^{T} O=I$.
- If V is a f.d. complex inner product space then $T: V \rightarrow V$ is said to be a unitary transformation if $\langle T v, T w\rangle=\langle v, w\rangle$. Note that T is unitary if and only if there is an orthonormal basis in which [T] is unitary.
- If $A= \pm A^{\dagger}$ then $U^{\dagger} A U=D$ where U is a unitary matrix: Indeed, $T v=A v$ has an orthonormal basis of

Unitary and orthogonal matrices

- A matrix/linear map $U: \mathbb{C}^{n} \rightarrow \mathbb{C}^{n}$ preserves the usual dot product, i.e., $\langle U v, U w\rangle=\langle v, w\rangle$ if and only if $U^{T} \bar{U}=I$, i.e., $U^{\dagger} U=I$ and hence $U U^{\dagger}=I$.
- Def: A complex $n \times n$ matrix U is said to be unitary if $U U^{\dagger}=U^{\dagger} U=I$, i.e, $U^{-1}=U^{\dagger}$. A real matrix O is said to be orthogonal if $O O^{T}=O^{T} O=I$.
- If V is a f.d. complex inner product space then $T: V \rightarrow V$ is said to be a unitary transformation if $\langle T v, T w\rangle=\langle v, w\rangle$. Note that T is unitary if and only if there is an orthonormal basis in which [T] is unitary.
- If $A= \pm A^{\dagger}$ then $U^{\dagger} A U=D$ where U is a unitary matrix: Indeed, $T v=A v$ has an orthonormal basis of eigenvectors.

Unitary and orthogonal matrices

- A matrix/linear map $U: \mathbb{C}^{n} \rightarrow \mathbb{C}^{n}$ preserves the usual dot product, i.e., $\langle U v, U w\rangle=\langle v, w\rangle$ if and only if $U^{T} \bar{U}=I$, i.e., $U^{\dagger} U=I$ and hence $U U^{\dagger}=I$.
- Def: A complex $n \times n$ matrix U is said to be unitary if $U U^{\dagger}=U^{\dagger} U=I$, i.e, $U^{-1}=U^{\dagger}$. A real matrix O is said to be orthogonal if $O O^{T}=O^{T} O=I$.
- If V is a f.d. complex inner product space then $T: V \rightarrow V$ is said to be a unitary transformation if $\langle T v, T w\rangle=\langle v, w\rangle$. Note that T is unitary if and only if there is an orthonormal basis in which [T] is unitary.
- If $A= \pm A^{\dagger}$ then $U^{\dagger} A U=D$ where U is a unitary matrix: Indeed, $T v=A v$ has an orthonormal basis of eigenvectors. Consider $U: \mathbb{C}^{n} \rightarrow \mathbb{C}^{n}$ taking

Unitary and orthogonal matrices

- A matrix/linear map $U: \mathbb{C}^{n} \rightarrow \mathbb{C}^{n}$ preserves the usual dot product, i.e., $\langle U v, U w\rangle=\langle v, w\rangle$ if and only if $U^{T} \bar{U}=I$, i.e., $U^{\dagger} U=I$ and hence $U U^{\dagger}=I$.
- Def: A complex $n \times n$ matrix U is said to be unitary if $U U^{\dagger}=U^{\dagger} U=I$, i.e, $U^{-1}=U^{\dagger}$. A real matrix O is said to be orthogonal if $O O^{T}=O^{T} O=I$.
- If V is a f.d. complex inner product space then $T: V \rightarrow V$ is said to be a unitary transformation if $\langle T v, T w\rangle=\langle v, w\rangle$. Note that T is unitary if and only if there is an orthonormal basis in which [T] is unitary.
- If $A= \pm A^{\dagger}$ then $U^{\dagger} A U=D$ where U is a unitary matrix: Indeed, $T v=A v$ has an orthonormal basis of eigenvectors. Consider $U: \mathbb{C}^{n} \rightarrow \mathbb{C}^{n}$ taking the usual orthonormal basis to

Unitary and orthogonal matrices

- A matrix/linear map $U: \mathbb{C}^{n} \rightarrow \mathbb{C}^{n}$ preserves the usual dot product, i.e., $\langle U v, U w\rangle=\langle v, w\rangle$ if and only if $U^{T} \bar{U}=I$, i.e., $U^{\dagger} U=I$ and hence $U U^{\dagger}=I$.
- Def: A complex $n \times n$ matrix U is said to be unitary if $U U^{\dagger}=U^{\dagger} U=I$, i.e, $U^{-1}=U^{\dagger}$. A real matrix O is said to be orthogonal if $O O^{T}=O^{T} O=I$.
- If V is a f.d. complex inner product space then $T: V \rightarrow V$ is said to be a unitary transformation if $\langle T v, T w\rangle=\langle v, w\rangle$. Note that T is unitary if and only if there is an orthonormal basis in which [T] is unitary.
- If $A= \pm A^{\dagger}$ then $U^{\dagger} A U=D$ where U is a unitary matrix: Indeed, $T v=A v$ has an orthonormal basis of eigenvectors. Consider $U: \mathbb{C}^{n} \rightarrow \mathbb{C}^{n}$ taking the usual orthonormal basis to the eigenvector one.

Unitary and orthogonal matrices

- A matrix/linear map $U: \mathbb{C}^{n} \rightarrow \mathbb{C}^{n}$ preserves the usual dot product, i.e., $\langle U v, U w\rangle=\langle v, w\rangle$ if and only if $U^{T} \bar{U}=I$, i.e., $U^{\dagger} U=I$ and hence $U U^{\dagger}=I$.
- Def: A complex $n \times n$ matrix U is said to be unitary if $U U^{\dagger}=U^{\dagger} U=I$, i.e, $U^{-1}=U^{\dagger}$. A real matrix O is said to be orthogonal if $O O^{T}=O^{T} O=I$.
- If V is a f.d. complex inner product space then $T: V \rightarrow V$ is said to be a unitary transformation if $\langle T v, T w\rangle=\langle v, w\rangle$. Note that T is unitary if and only if there is an orthonormal basis in which [T] is unitary.
- If $A= \pm A^{\dagger}$ then $U^{\dagger} A U=D$ where U is a unitary matrix: Indeed, $T v=A v$ has an orthonormal basis of eigenvectors. Consider $U: \mathbb{C}^{n} \rightarrow \mathbb{C}^{n}$ taking the usual orthonormal basis to the eigenvector one. U is a unitary matrix.

Unitary and orthogonal matrices

- A matrix/linear map $U: \mathbb{C}^{n} \rightarrow \mathbb{C}^{n}$ preserves the usual dot product, i.e., $\langle U v, U w\rangle=\langle v, w\rangle$ if and only if $U^{T} \bar{U}=I$, i.e., $U^{\dagger} U=I$ and hence $U U^{\dagger}=I$.
- Def: A complex $n \times n$ matrix U is said to be unitary if $U U^{\dagger}=U^{\dagger} U=I$, i.e, $U^{-1}=U^{\dagger}$. A real matrix O is said to be orthogonal if $O O^{T}=O^{T} O=I$.
- If V is a f.d. complex inner product space then $T: V \rightarrow V$ is said to be a unitary transformation if $\langle T v, T w\rangle=\langle v, w\rangle$. Note that T is unitary if and only if there is an orthonormal basis in which [T] is unitary.
- If $A= \pm A^{\dagger}$ then $U^{\dagger} A U=D$ where U is a unitary matrix: Indeed, $T v=A v$ has an orthonormal basis of eigenvectors. Consider $U: \mathbb{C}^{n} \rightarrow \mathbb{C}^{n}$ taking the usual orthonormal basis to the eigenvector one. U is a unitary matrix. Hence $U^{\dagger} A U=U^{-1} A U=D$.

